

Information Systems Division

Combined use of association rules mining and clustering methods

Marie Plasse, Ndeye Niang-Keita, Gilbert Saporta, Damien Gauthier

marie.plasse@mpsa.com niang@cnam.fr saporta@cnam.fr damien.gauthier@mpsa.com

Centre de Recherche en Informatique du CNAM

Conservatoire National des Arts et Métiers Chaire de Statistique Appliquée - Case 41 292 rue Saint Martin 75 141 Paris Cedex 03

CONSERVATOIRE N A T I O N A L D E S A R T S E I M E T I E R S

3rd IASC world conference on Computational Statistics & Data Analysis Limassol, Cyprus, 28-31 October, 2005

- Association rules mining
- Clustering techniques
- Combined use of the two methods & application
- Conclusion & future work

MOTIVATION

- Industrial data :
 - A set of vehicles described by a large set of binary flags
- Motivation : decision-making aid
 - Always searching for a greater quality level, the car manufacturer can take advantage of knowledge of associations between attributes.
- Our work :
 - We are looking for patterns in data : Associations discovery

Vehicles	A1	A2	A2	A2	A3	•••	AP
O D	1	0	0	1	0		0
	0	0	1	1	0		0
	0	1	0	0	1		0
	1	0	0	0	1		0
	0	1	0	0	0		1
	0	1	0	0	0		0
	0	0	1	0	0		0

Overview

Motivation

Association rules mining

Clustering techniques

Combined use of the two methods & application

Conclusion & future work

CEDRIC

Association rules mining

Clustering techniques

- Combined use of the two methods & application
- Conclusion & future work

ASSOCIATION RULES MINING

• Marketing target : basket data analysis

Basket	Purchases
1	{bread, butter, milk}
2	{bread, meat}
n	{fruit juice, fish, strawberries, bread}

"90% of transactions that purchase bread and butter also purchase milk" (Agrawal et al., 1993)

{ bread, butter } \Rightarrow {milk }

where $A \cap C = \emptyset$

3rd IASC world conference on Computational Statistics & Data Analysis, Limassol, Cyprus, 28-31 October, 2005

CEDRIC

CONSERVATOIRE

NATIONAL DESARTS EIMETIERS

• Reliability : <u>Support</u> : % of transactions that contain all items of A and C

$$sup(A \Rightarrow C) = P(A \cap C) = P(C/A) \cdot P(A)$$

• Supp = $30 \% \Rightarrow 30\%$ of transactions contain

5/22

• Strength : <u>Confidence</u> : % de transactions that contain C among the ones that contain C

$$conf(A \Longrightarrow C) = P(C/A) = \frac{P(A \cap C)}{P(A)} = \frac{sup(A \Longrightarrow C)}{sup(A)}$$

• Conf = 90 % \rightarrow 90% of transactions that contain \checkmark + $\overline{222}$, contain also

CONSERVATOIRE NATIONAL

DESARTS EIMETIERS

- Association rules mining
- Clustering techniques
- Combined use of the two methods & application
- Conclusion & future work

ALGORITHM'S RUDIMENTS

- First algorithm in 1993 (Agrawal et Srikant) → APriori algorithm in 1994
 - Find frequent itemsets (support)
 - Find association rules (confidence)
- A measure of rules interest : "lift"

$$lift(A \Longrightarrow C) = \frac{P(A \cap C)}{P(A).P(C)}$$

• *lift* = 2 \rightarrow transactions that contain \swarrow + \bowtie + \bowtie are twice more than if the purchase of \checkmark + \bowtie and the purchase of \checkmark were independent purchases.

CEDRIC

Association rules mining

Clustering techniques

- Combined use of the two methods & application
- Conclusion & future work

- Data size :
 - More than 80 000 vehicles (≈transactions) → 4 months of manufacturing
 - More than 3000 attributes (≈items)

• Sparse data :

CEDRIC

CONSERVATOIRE NATIONAL DESARTS

EIMETIERS

- Motivation
- Association rules mining
- Clustering techniques
- Combined use of the two methods & application
- Conclusion & future work

• Count of co-occurrences per vehicle :

8/22

CEDRIC

CONSERVATOIRE

D E S A R T S E I M E T I E R S

Association rules mining

- Clustering techniques
- Combined use of the two methods & application
- Conclusion & future work

OUPUT : ASSOCIATION RULES

Minimum support (minimum count of vehicles that support the rule)	Minimum confidence	Count of rules	Maximum size of rules
500	50 %	16	3
400	50 %	29	3
300	50 %	194	5
250	50 %	1299	6
200	50 %	102 981	10
100	50 %	1 623 555	13

• Aims :

- Reduce count of rules
- Reduce size of rules
- A first reduction is obtained by manual grouping :

Minimum support	Minimum confidence	Count of rules	Maximum size of rules
100	50 %	600636	12

3rd IASC world conference on Computational Statistics & Data Analysis, Limassol, Cyprus, 28-31 October, 2005

Overview

Motivation

Association rules mining

Clustering techniques

Combined use of the two methods & application

Conclusion & future work

CONSERVATOIRE N A T I O N A L D E S A R T S E I M E T I E R S C E D R I C

MotivationAssociation rules mining

Clustering techniques

- Combined use of the two methods & application
- Conclusion & future work

CLUSTERING OF VARIABLES

• Input data : binary matrix

More	than	3000	columns

Vehicles	Attribute 1	Attribute 2	 Attribute p
1	1	0	1
2	0	0	1
n	0	1	0

More than 80000 rows

 Clustering of variables aim at grouping attributes into a limited number of homogenous clusters

CONSERVATOIRE N A T I O N A L D E S A R T S E I M E T I E R S C E D R I C

Association rules mining

Clustering techniques

Combined use of the two methods & application

Vehicle

1

2

3

. . .

n

n₁₁

 n_{01}

n₁

Conclusion & future work

CEDRIC

12/22

Variable j

1

0

3rd IASC world conference on Computational Statistics & Data Analysis, Limassol, Cyprus, 28-31 October, 2005

Association rules mining

Clustering techniques

- Combined use of the two methods & application
- Conclusion & future work

CLUSTERING TECHNIQUES USED

- Agglomerative hierarchical clustering procedure
 - Provides hierarchical clusters : dendrogram
 - Ward's method
- Divisive clustering procedure (Proc Varclus)
 - Provides one-dimensional clusters
 - Assigns each variable to the component with which it has the higher squared correlation

Association rules mining

- Combined use of the two methods & application
- Conclusion & future work

NUMBER OF VARIABLES IN CLUSTERS

• Number of variables per clusters :

			Clusters								
	R ²	3058	10	6	5	4	4	4	4	3	3
	Ochiai	2762	201	84	13	11	8	6	6	5	5
Coef.	Jaccard	2973	72	12	10	8	6	6	5	5	4
	Dice	2690	298	61	12	11	7	6	6	5	5
	Russel & Rao	2928	117	16	12	10	5	5	4	2	2
,	Varclus	1282	1001	349	156	111	61	60	41	28	12

• Remark on the choice of the clusters number

- Motivation
- Association rules mining

Clustering techniques

- Combined use of the two methods & application
- Conclusion & future work

COMPARISON OF PARTITIONS

• Paired comparison of partitions thanks to Rand's coefficient :

$$R = \frac{2\sum_{u}\sum_{v}n_{uv}^{2} - \sum_{u}n_{u.}^{2} - \sum_{v}n_{.v}^{2} + n^{2}}{n^{2}}$$

	Ward -R ²	Ward- Ochiai	Ward- Jaccard	Ward -Dice	Ward- Russel Rao	Varclus
Ward-R ²						
Ward-Ochiai	0,82		_			
Ward-Jaccard	0,94	0,87		_		
Ward-Dice	0,78	0,79	0,82			
Ward-Russel Rao	0,87	0,80	0,84	0,86		
Varclus	0,31	0,39	0,34	0,41	0,35	

Percent of pairs in agreement :

- 2 variables that are clustered together in the two partitions
- 2 variables that are clustered in different clusters in the two partitions

15/22

Overview

Motivation

Association rules mining

Clustering techniques

Combined use of the two methods & application

Conclusion & future work

CONSERVATOIRE N A T I O N A L D E S A R T S E I M E T I E R S C E D R I C

Association rules mining

Clustering techniques

Combined use of the two methods & application

Conclusion & future work

COMBINED USE AND APPLICATION

PSA PEUGEOT CITROËN

• Mining association rules inside each clusters :

Test	Count of rules	Maximum size of rules	Reduction of the count of rules
without Clustering	600636	12	
Ward - R ²	600637	12	0 %
Ward - Jaccard	481649	12	
Ward - Russel & Rao	481388	12	20 %
Ward - Ochiai	479474	12	
Ward - Dice	481648	12	
Varclus	5239	4	99 %

At first sight, there's no improvement

- Association rules mining
- Clustering techniques
- Combined use of the two methods & application

Conclusion & future work

DETECTION OF ATYPICAL CLUSTER

PSA PEUGEOT CITROË

• 10-clusters partition with agglomerative clustering and Russel Rao coefficient

Cluster	Number of variables in the cluster	Number of rules found in the cluster	Maximum size of rules
1	2	0	0
2	12	481170	12
3	2	0	0
4	5	24	4
5	117	55	4
6	4	22	4
7	10	33	4
8	5	22	4
9	16	1	2
10	2928	61	4

Cluster 2 is the same whatever the clustering procedure
 it produces many complex rules

CONSERVATOIRE NATIONAL DESARTS EIMETHERS

- Motivation
 Association rules mining
 Clustering techniques
- Combined use of the two methods & application
- Conclusion & future work

• Mining association rules inside each clusters except atypical cluster :

	Count of rules	Maximum size of rules	Reduction of the count of rules
Without clustering	600636	12	
Ward - R ²	43	4	
Ward - Jaccard	479	5	
Ward - Russel & Rao	218	4	
Ward - Ochiai	459	5	+ de 99 %
Ward - Dice	478	5	
Varclus	21	4	

- The number of rules to analyse has significantly decreased
- The output rules are more simple to analyse
- Clustering has detected an atypical cluster of attributes to treat separately

Overview

Motivation

Association rules mining

Clustering techniques

Combined use of the two methods & application

Conclusion & future work

CONSERVATOIRE N AT I O N A L D E S A R T S ET M ET I E R S C E D R I C

- Association rules mining
- Clustering techniques
- Combined use of the two methods & application
- Conclusion & future work

CONCLUSION & FUTURE WORK

- Previous clustering of variables provides to :
 - Point an atypical cluster of attributes to analyse separately
 - Decrease the number of generated rules
 - Decrease their complexity
- The choice of Russel Rao is coherent because of his link with the support
- Current and future works :
 - Adapt of Qannari & Vigneau method to binary data
 - Study of the different measures of rules relevancy
 - Apply simultaneous clustering of rows and columns

REFERENCES

- Agrawal R., Srikant R. (1994) Fast Algorithms for Mining Association Rules. In : Proceedings of the 20th Int'l Conference on Very Large Databases (VLDB), Santiago, Chile.
- Hébrail G., Lechevallier Y. (2003) Data mining et analyse des données. In : Govaert G. Analyse des données. Ed. Lavoisier, Paris, pp 323-355
- Vigneau E., Qannari E.M. (2003) *Clustering of variables around latent component* - *application to sensory analysis*. Communications in Statistics, Simulation and Computation, 32(4), pp 1131-1150
- Nakache J.P., Confais J. (2005) Approche pragmatique de la classification, Ed. Technip, Paris
- Gower J.C., Legendre P. (1986) Metric and euclidean properties of dissimilarity coefficients. In : Journal of Classification Vol.3, pp 5-48
- Youness G., Saporta G. (2004) Some Measures of Agreement Between Close Partitions - Student vol. 5(1), pp. 1-12.

CEDRIC

FIMETLERS