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MOTIVATION

 Motivation

 Motivation : decision-making aid

 Always searching for a greater quality level, 

the car manufacturer can take advantage of 

knowledge of associations between 

attributes. 

 Industrial data : 

 A set of vehicles described by a large set of 

binary flags

 Our work : 

 We are looking for patterns in data : Associations discovery
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ASSOCIATION RULES MINING

 Marketing target : basket data analysis

PurchasesBasket

{fruit juice, fish, strawberries, bread}n

…

{bread, meat}2

{bread, butter, milk}1

"90% of transactions that purchase bread and butter

also purchase milk" (Agrawal et al., 1993)

{ bread, butter } {milk }

antecedent consequent

where    A ∩ C = ØItemset A  Itemset C
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THE BASICS

 Reliability : Support : % of transactions that contain all items of A and C 

sup( A C ) P( A C ) P(C / A) P( A)    

 Strength : Confidence :  % de transactions that contain C among the ones 

that contain C

P( A C ) sup( A C )
conf ( A C ) P( C / A )

P( A ) sup( A )

 
   

 Supp = 30 %  30% of transactions contain                +             + 

 Conf = 90 %  90% of transactions that contain             +          , contain also
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{bread, butter } { milk }


antecedent

Itemset A

consequent

Itemset C
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ALGORITHM'S RUDIMENTS

 Find frequent itemsets (support)

 Find association rules (confidence)

 First algorithm in 1993 (Agrawal et Srikant)  APriori  algorithm in 1994
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 A measure of rules interest : "lift"

 P A C
lift( A C )

P( A ).P( C )


 

 lift = 2  transactions that contain            +           +         are twice more than if the 

purchase of           +           and the purchase of         were independent purchases. 

 Association rules mining
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DATA FEATURE

 Data size :

 More than 80 000 vehicles (≈transactions)  4 months of manufacturing

 More than 3000 attributes (≈items)

2 %1621

4 %3242

6 %4863

8 %6485

10 %8106

12 %9727 

Count of 

vehicles

Count & percent of the 100 more frequent attributes

 Sparse data :
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DATA FEATURE

 Count of co-occurrences per vehicle :
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Count of attributes owned by vehicle
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OUPUT : ASSOCIATION RULES

Minimum support (minimum count 

of vehicles that support the rule)

Minimum 

confidence
Count of rules

Maximum 

size of rules

500 50 % 16 3

Minimum support (minimum count 

of vehicles that support the rule)

Minimum 

confidence
Count of rules

Maximum 

size of rules

500 50 % 16 3

400 50 % 29 3

Minimum support (minimum count     

of vehicles that support the rule)

Minimum 

confidence
Count of rules

Maximum  

size of rules

500 50 % 16 3

400 50 % 29 3

300 50 % 194 5

250 50 % 1299 6

200 50 % 102 981 10

100 50 % 1 623 555 13

 Aims : 

 Reduce count of rules

 Reduce size of rules

Minimum 

support 

Minimum 

confidence
Count of rules Maximum  size of rules

100 50 % 600636 12

 A first reduction is obtained by manual grouping :
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CLUSTERING OF VARIABLES

 Input data : binary matrix

010n

…

1002

1011

Attribute p…Attribute 2Attribute 1Vehicles

More than 3000 columns

More than 80000 rows
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 Clustering of variables aim at grouping attributes into a limited 

number of homogenous clusters 

 Clustering techniques
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PROXIMITY MEASURES

co-occurences count

total count

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CLUSTERING TECHNIQUES USED

 Agglomerative hierarchical clustering procedure

 Provides hierarchical clusters : dendrogram

 Ward's method

2 1 

1

PCA

PCA

2 ' 1 

1 '

PCA

2 '' 1 

1 '' 

 Divisive clustering procedure (Proc Varclus)

 Provides one-dimensional clusters 

 Assigns each variable to the component with which it has the higher 

squared correlation
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NUMBER OF VARIABLES IN CLUSTERS

 Remark on the choice of the clusters number

 Number of variables per clusters :
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122841606111115634910011282Varclus

224551012161172928Russel & Rao

556671112612982690Dice

4556681012722973Jaccard

556681113842012762Ochiai

33444456103058R²

Coef.

Clusters
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COMPARISON OF PARTITIONS

 Paired comparison of partitions thanks to Rand's coefficient :

2 2 2 2

uv u. .v

u v u v

2

2 n n n n

R
n

  


  

Percent of pairs in 

agreement :

- 2 variables that are 

clustered together in 

the two partitions

- 2 variables that are 

clustered in different 

clusters in the two 

partitions

Ward

-R²

Ward-

Ochiai

Ward-

Jaccard

Ward

-Dice

Ward-

Russel 

Rao

Varclus

Ward-R²

Ward-Ochiai 0,82

Ward-Jaccard 0,94 0,87

Ward-Dice 0,78 0,79 0,82

Ward-Russel 

Rao
0,87 0,80 0,84 0,86

Varclus 0,31 0,39 0,34 0,41 0,35
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COMBINED USE AND APPLICATION

 At first sight, there's no improvement

20 %

12481648Ward - Dice

45239Varclus

12479474Ward - Ochiai

12481388Ward - Russel & Rao

99 %

12481649Ward - Jaccard

0 %12600637Ward - R²

.12600636without Clustering

Reduction of the 

count of rules

Maximum size 

of rules
Count of rulesTest

 Mining association rules inside each clusters :

A B

F  G
J  D

M K, L
C  E

V  W

U  T
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DETECTION OF ATYPICAL CLUSTER

 10-clusters partition with agglomerative clustering and Russel Rao coefficient

Cluster
Number of variables 

in the cluster

Number of rules found 

in the cluster

Maximum size of 

rules

1 2 0 0

2 12 481170 12

3 2 0 0

4 5 24 4

5 117 55 4

6 4 22 4

7 10 33 4

8 5 22 4

9 16 1 2

10 2928 61 4

 Cluster 2 is the same whatever the clustering procedure

 it produces many complex rules
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RESULTS

Count of rules Maximum size of rules
Reduction of the 

count of rules

Without clustering 600636 12 .

Ward - R² 43 4

+ de 99 %

Ward - Jaccard 479 5

Ward - Russel & Rao 218 4

Ward - Ochiai 459 5

Ward - Dice 478 5

Varclus 21 4

 Mining association rules inside each clusters except atypical cluster :

 The number of rules to analyse has significantly decreased

 The output rules are more simple to analyse

 Clustering has detected an atypical cluster of attributes to treat 

separately

19
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CONCLUSION & FUTURE WORK

 Previous clustering of variables provides to :

 Point an atypical cluster of attributes to analyse separately 

 Decrease the number of generated rules

 Decrease their complexity

 The choice of Russel Rao is coherent because of his link with the support

 Current and future works :

 Adapt of Qannari & Vigneau method to binary data

 Study of the different measures of rules relevancy

 Apply simultaneous clustering of rows and columns
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