David Delahaye
email: david.delahaye@inria.fr2.micaela.mayero@inria.fr

Micaela Mayero

Journées Francophones des Langages Applicatifs JFLA01 Field: une procédure de décision pour les nombres réels en Coq

Nous nous proposons d'automatiser les preuves d'égalités sur les nombres réels dans le système

Coq en utilisant la théorie des corps commutatifs. L'idée de l'algorithme consiste à se débarrasser des inverses an de pouvoir se brancher sur la procédure de décision déjà existante sur les anneaux abéliens (Ring). L'élimination des inverses se fait de manière complètement réexive et la réexion est réalisée au moyen d'un nouveau langage de tactiques intégré au système Coq (version V7).

Nous pensons étendre cette tactique à tous les corps commutatifs bien qu'actuellement, seuls les nombres réels soient concernés.

1.

Introduction

La théorie des nombres réels dans le système Coq est axiomatique [START_REF] Barras | The Coq Proof Assistant Reference Manual Version 6[END_REF] et les preuves se font à grand renfort de réécritures [START_REF] Boutin | Réexions sur les quotients[END_REF] , ce qui fait grossir la taille des scripts ainsi que les termes preuves. La tactique Ring qui permet de décider d'égalités sur les anneaux abéliens a permis de résoudre partiellement ce problème et se révèle très utile dans les preuves ne faisant pas intervenir l'inverse. On peut l'utiliser dans des théorèmes auxiliaires triviaux servant à compléter la théorie comme : ∀x, y ∈ R.x + y = 0 → y = (-x) où pas moins de cinq réécritures sont nécessaires pour résoudre sans la tactique Ring. Mais, on peut aussi l'utiliser dans des théorèmes non triviaux où l'inverse n'intervient pas, comme le théorème des 3 intervalles ([11]).

Cependant, Ring ne règle pas le cas des égalités avec inverses qui, si elles ne sont pas diciles à montrer, n'en restent pas moins très fastidieuses à résoudre. Ces preuves sont d'autant plus pénibles à construire qu'elles ralentissent de manière conséquente le développement de la théorie des nombres réels. En eet, les théorèmes sur les limites et les dérivées font systématiquement intervenir des égalités avec des inverses dans les "preuves ε"3 lorsque l'on veut composer, additionner, ... Ces égalités sont relativement triviales et alourdissent considérablement les preuves fondamentales de limites et de dérivées. Un exemple typique est celui de la dérivée de l'addition où l'on doit montrer que la somme des dérivées est égale à la dérivée de la somme. Pour ce faire, on prend deux fonctions f et g ainsi que leurs dérivées en x0, c'est-à-dire f (x0) et g (x0). Par dénition, les deux dérivées peuvent s'exprimer comme suit :

f (x0) = lim x→x 0 f (x) -f (x0) x -x0 g (x0) = lim x→x 0 g(x) -g(x0)
x -x0 En utilisant le théorème d'addition des limites, on obtient directement :

f (x0) + g (x0) = lim x→x 0 f (x) -f (x0)
x -x0 + g(x) -g(x0)

x -x0

En utilisant la dénition de la limite, on a pour tout domaine D de R :

∀ε > 0, ∃α > 0, ∀x ∈ D\x0, si |x -x0| < α alors f (x) -f (x0) x -x0 + g(x) -g(x0) x -x0 -(f (x0) + g (x0)) < ε
Maintenant, il sut de montrer l'égalité suivante :

f (x) -f (x0) x -x0 + g(x) -g(x0) x -x0 = f (x) + g(x) -(f (x0) + g(x0))
x -x0 pour conclure que f (x0) + g (x0) et (f + g) (x0) coïncident. Cette dernière égalité est clairement triviale mais la preuve formelle l'est beaucoup moins [START_REF] Delahaye | A Tactic Language for the System Coq[END_REF] . Il faut d'abord réduire au même dénominateur (4 réécritures) puis montrer l'égalité sur les numérateurs (6 réécritures). L'utilisation de Ring sur les numérateurs économise des réécritures et au total, cette égalité nécessite 4 réécritures + 1 tactique (Ring). Nous pensons que ce genre d'égalité doit être résolue directement par une tactique, à la fois pour un gain de temps considérable dans les développements mais aussi de concision dans les scripts où l'on a plutôt envie de rendre implicites de telles preuves.

Dans ce papier, nous présenterons, tout d'abord, l'algorithme que nous avons utilisé pour décider les égalités sur les corps commutatifs (sur R en particulier) modulo certaines inégalités (conditions que les dénominateurs doivent être non nuls). Ensuite, nous donnerons une idée assez globale de l'implantation qui se fait de manière totalement réexive et qui utilise des spécicités propres à la version V7 de Coq, à savoir le langage de tactiques. Enn, nous nous appuierons sur plusieurs exemples, faciles pour certains et plus réalistes pour d'autres an de mettre en évidence la correction de la tactique ainsi que ses performances.

Algorithme

Principe

L'idée de l'algorithme est de minimiser les opérations de simplication de manière à se brancher le plus tôt possible sur la procédure de décision sur les anneaux abéliens (Ring). Cela signie qu'il faut éliminer tous les inverses intervenant dans l'égalité qu'il s'agit de résoudre.

Pour ce faire, nous proposons la suite d'étapes suivantes : Transformer les expressions x -y en x + (-y) et x/y en x * 1/y. Chercher tous les inverses apparaissant dans l'égalité pour en faire un produit. Distribuer totalement à gauche et à droite de l'égalité, excepté dans les inverses. Associer à droite chaque monôme, excepté dans les inverses [START_REF] Gabbay | The Undecidability of Intuitionnistic Theories of Algebraically Closed Fields and Real Closed Fields[END_REF] . Multiplier à gauche et à droite par le produit d'inverses, que l'on a construit précédemment, en générant la condition que tous les inverses doivent être non nuls.

Distribuer seulement le produit sur la somme de monômes à gauche et à droite sans réassocier à droite. Éliminer les inverses des monômes en utilisant la règle de corps x.1/x = 1, si x = 0 et en permutant les éléments du monôme si nécessaire, c'est-à-dire s'il reste des inverses et que la règle de corps ne peut pas s'appliquer [START_REF] Geuvers | Equational Reasoning via Partial Reection[END_REF] . Recommencer le processus s'il reste encore des inverses. La dernière étape qui consiste à réitérer le processus s'explique par le fait qu'il peut y avoir d'autres inverses dans les inverses et ce, dans des expressions pouvant être compliquées. Pour éviter la réitération, une idée serait de se lancer dans une simplication directe en utilisant la règle 1/1/x = x, si x = 0. Toutefois, l'expérience a montré que le codage de cette simplication était plutôt complexe et générait un lemme de correction dicile. Par ailleurs, les expressions devant être diérentes de 0 n'étaient pas exactement les mêmes que celles nécessaires pour l'élimination des inverses dans les monômes. On pouvait certes les déduire mais le lemme de correction correspondant à l'élimination des inverses devenait alors plus compliqué à montrer. On a donc tout avantage à se limiter à la règle x.1/x = 1, si x = 0 qui tend à simplier grandement l'algorithme et ce pour une perte d'ecacité négligeable en pratique [START_REF] Harrison | Metatheory and Reection in Theorem Proving : a Survey and Critique[END_REF] .

Après ces étapes, nous obtenons une expression débarrassée de tous ses inverses et il sut d'appeler Ring pour conclure.

Exemple

Considérons un petit exemple en détaillant les étapes de preuve an de voir comment la procédure fonctionne ; étant donné x et y, deux variables réelles, on se propose de montrer l'égalité suivante :

x * (1 x + x x + y) = (- 1 y) * y * (-(x * x x + y) -1)
On commence par transformer les moins binaires et les divisions :

x * (1 x + x * 1 x + y) = (- 1 y) * y * (-(x * x) * 1 x + y + (-1))
On construit le produit d'inverses que l'on appellera p :

p = x * ((x + y) * (y * (x + y)))
On distribue totalement à gauche et à droite sauf dans les inverses :

x * 1 x + x * 1 x + y = (-1) * 1 y * y * ((-1) * (x * x) * 1 x + y) + (-1) * 1 y * (-1)
On associe à droite chaque monôme sauf dans les inverses :

x * 1 x + x * 1 x + y = (-1) * (1 y * (y * ((-1) * (x * (x * 1 x + y))))) + (-1) * (1 y * (-1))
On multiplie à gauche et à droite par p en générant la condition de correction :

(x * ((x + y) * (y * (x + y)))) * (x * 1 x + x * 1 x + y) = (x * ((x + y) * (y * (x + y)))) * ((-1) * (1 y * (y * ((-1) * (x * (x * 1 x + y))))) + (-1) * (1 y * (-1)))
Avec x * ((x + y) * (y * (x + y))) = 0.

On distribue ce produit sur les monômes sans réassocier à droite :

(x * ((x + y) * (y * (x + y)))) * (x * 1 x)+ (x * ((x + y) * (y * (x + y)))) * (x * 1 x + y) = (x * ((x + y) * (y * (x + y)))) * (((-1) * (1 y * (y * ((-1) * (x * (x * 1 x + y))))))+ (x * ((x + y) * (y * (x + y)))) * ((-1) * (1 y * (-1)))
On élimine les inverses en permutant si nécessaire :

((x + y) * (y * ((x + y)))) * x + (x * (y * (x + y))) * x = (x * (x + y)) * ((-1) * (y * ((-1) * (x * x)))) + (x * ((x + y) * (x + y))) * ((-1) * (-1))
On obtient alors une égalité sur les anneaux abéliens que Ring sait résoudre.

Remarques

Nous n'avons pas encore formalisé la preuve que cet algorithme décide bien des égalités sur les nombres réels et sur les corps commutatifs plus généralement modulo certaines preuves d'inégalités. Il semble clair, cependant, qu'il est correct dans la mesure où l'on n'utilise que des axiomes de corps. On peut également se convaincre de la terminaison de la procédure puisque le nombre d'inverses décroît à chaque étape.

Par ailleurs, il est important de souligner que notre démarche ne vise pas à résoudre le problème global de décision sur les corps commutatifs dont on ne sait pas, a priori, s'il est décidable ou non. En eet, nous ne cherchons pas à prouver les conditions sur les inverses qui sont laissées à l'utilisateur. Ainsi, nous nous plaçons dans une optique où l'inverse est une fonction totale. Dans un souci de généralité, notre méthode a pour vocation, à terme, de traiter tous les corps commutatifs. Si on avait voulu traiter seulement les nombres réels, notre approche aurait été bien diérente et on aurait certainement opté pour des algorithmes résolvant au premier ordre tels que, entre autres, la méthode de Tarski8 ([12]), l'algorithme de Kreisel-Krivine9 ([9]) ou la décomposition cylindrique de Collins ([3]).

Toujours dans cette optique plus générale, on peut citer le travail du projet Fundamental Theorem of Algebra (Herman Geuvers, Freek Wiedijk, Jan Zwanenburg, Randy Pollack et Henk Barendregt), avec, dans le cadre d'une axiomatisation constructive des nombres réels en Coq, le codage de la tactique réexive Rational ([6]), traitant des égalités similaires à celles que nous nous proposons de résoudre. Notre approche se démarque essentiellement du fait de choix diérents dans la formalisation des nombres réels. Tout d'abord, le fait que la fonction inverse soit totale permet de faire une réexion totale des expressions de R ce qui n'est pas le cas dans Rational où tout inverse contient aussi la preuve que le dénominateur est non nul. La réexion doit donc aussi être partielle ce qui rend le processus plus complexe. Enn, nous considérons l'égalité de Leibniz, ce qui permet à l'utilisateur d'appliquer des tactiques de réécriture à n'importe quel prédicat alors que dans Rational, l'égalité est plus large (setoïde) et il est nécessaire de prouver des lemmes de compatibilité an de passer au contexte.

Implantation

Comme nous l'avons dit précédemment, l'implantation de cette procédure de décision sur les nombres réels, que nous avons appelée Field, a été réalisée dans la version V7 de Coq an de pouvoir proter des nouvelles possibilités du langage de tactiques. Bien que la version V7 de Coq soit encore très expérimentale et, de ce fait, non disponible, le code de ce développement peut être récupéré en ligne à l'adresse suivante : ftp ://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/Field/Field.v

À propos de la réexion

Pour coder Field, il y a globalement deux choix possibles. Un codage explicite en utilisant la réécriture ou un codage par réexion en utilisant la réduction. Le codage explicite (approche à la LCF) est très coûteux du fait de l'utilisation de la réécriture qui prend du temps mais aussi et surtout de la place dans le terme preuve [START_REF] Leroy | The Objective Caml system release 3.00[END_REF] . Le codage par réexion est une alternative complètement satisfaisante pour laquelle nous avons opté. En eet, les réécritures sont remplacées par des phases de réduction plus ecaces et la taille du terme preuve est de l'ordre de celle du but à résoudre. Par ailleurs, on peut formaliser clairement la correction globale de la tactique ainsi que sa complétude (même si nous ne l'avons pas fait ici) alors que dans l'approche explicite, c'est bien plus dicile, voire impossible.

Avant de donner une idée de l'implantation de Field, rappelons rapidement le principe d'une tactique codée par réexion. Soit un langage C des termes concrets (typiquement un type quelconque) et un langage A des termes abstraits (typiquement un type inductif). Comme on ne peut pas manipuler les termes du langage C comme on voudrait (on ne peut pas ltrer), l'idée est de le rééchir dans le langage A qui lui est isomorphe. Une première phase, appelée métaication par Samuel Boutin ([2]), consiste donc à traduire les termes de C vers les termes de A. Plus précisément, cela consiste, pour un terme c de C, à trouver le terme a de A tel que (f v a) = c, où f est la fonction d'interprétation de A vers C (codable dans Coq), v est une liste d'associations contenant les parties de C que l'on ne rééchit pas (atomes) et = est l'égalité de Leibniz. On peut se passer de la liste d'associations à condition que l'égalité sur les atomes soit décidable car on a généralement besoin de comparer les termes de A. La métaication s'assimile exactement à une phase d'analyse syntaxique comme on pourrait la trouver dans un langage de programmation.

Ensuite, on peut coder la fonction t de transformation des termes de A. Pour l'utiliser, il sut de prouver un lemme de correction [START_REF] Mayero | The Three Gap Theorem (Steinhauss Conjecture)[END_REF] de la forme :

∀a ∈ A.(f v (t a)) = (f v a)
Enn, après avoir appliqué ce lemme de correction, il sut de réduire totalement (Compute) pour transformer le terme abstrait (de A) et revenir à un terme concret (de C). Pour pousser l'analogie avec les langages de programmation, on pourrait voir ces deux étapes comme une phase d'évaluation suivie d'une phase de "pretty-print".

On peut résumer la situation au moyen du schéma suivant :

C - Métaication A ? Codage explicite C A f ? t

Réexion

Pour une description complète de la réexion, on pourra se reporter à [2] et [7].

Codage de la tactique

Nous allons maintenant entrer dans les détails de l'implantation de l'algorithme donné précédemment. Nous utiliserons une syntaxe spécique au langage Coq dont on pourra trouver une documentation complète dans [1]. Les seules spécicités de la version V7, que nous utiliserons, concernent le langage de tactiques. On pourra consulter [4] Les variables sont des expressions réelles quelconques pour lesquelles on ne peut clairement pas décider l'égalité. On les remplace donc par des indices entiers (nat) pour pouvoir décider l'égalité entre variables et on associe à un terme une liste d'associations entre les indices et les expressions de R.

Métaication

Pour traduire les expressions de R vers ExprR (métaication), il faut utiliser le métalangage de Coq. Jusqu'à la V7 exclue, le seul moyen était de coder cette traduction dans Objective Caml (le langage d'implantation et le métalangage de Coq, [10]) en utilisant un chier ML que l'on compilait avec le système et que l'on pouvait importer dans un toplevel bytecode de Coq. Ce protocole était un peu lourd à mettre en ÷uvre [START_REF] Tarski | A Decision Method for Elementary Algebra and Geometry[END_REF] où Assoc est une tactique qui donne l'indice correspondant à la variable réelle. À ce niveau là, on suppose que les constantes Rminus et Rdiv, à savoir respectivement les constantes du moins binaire et de division, ont déjà été dépliées.

Construction du multiplicateur

Ici, il s'agit de construire un produit de facteurs sans doublons inutiles (doublons qui apparaîtront entre monômes après distribution), constitué des inverses de l'égalité (on ne prend pas en compte les inverses dans les inverses qui seront traités dans d'autres passes de Field). Pour ce faire, on a le choix entre utiliser une fonction de Coq ou une tactique que l'on peut plus facilement écrire dans la V7. Pour des raisons d'aisance de programmation, nous avons opté pour une tactique puisque l'on est moins limité, entre autres, dans la récursivité. Le multiplicateur nous est donc donné par la tactique GiveMult utilisant la tactique RawGiveMult qui donne la liste des inverses : 13 En eet, le chargement dynamique de chiers bytecode dans un exécutable natif n'est pas encore très standard et le chargement dynamique de chiers natifs dans du natif n'est, quant à lui, clairement pas compris. La commande coqmktop permet de créer un toplevel "customisé" éventuellement en natif en indiquant une liste de chiers à inclure au moment de l'édition de liens. Toutefois, le processus est purement statique et on perd la possibilité d'appeler d'autres tactiques qui n'ont pas été "linkées" au moment du coqmktop. (e:ExprR)(lvar:(list (Sprod R nat))) (interp_ExprR lvar (assoc e))==(interp_ExprR lvar e).

Après avoir appliqué distrib et assoc, on obtient à gauche et à droite de l'égalité à prouver, deux termes qui sont des sommes de monômes associés à droite.

Multiplier les membres de l'égalité

Pour pouvoir eectuer la simplication des inverses, on multiplie ensuite par le multiplicateur qui a été construit précédemment (produit de tous les inverses excepté ceux qui sont dans d'autres inverses). Pour ce faire, il sut de montrer le lemme suivant sur les expressions de ExprR et qui a directement son équivalent dans R : Lemma mult_eq:

(e1,e2,a:ExprR)(lvar:(list (Sprod R nat))) ~((interp_ExprR lvar a)==R0)-> (interp_ExprR lvar (ERmult a e1))==(interp_ExprR lvar (ERmult a e2))-> (interp_ExprR lvar e1)==(interp_ExprR lvar e2).

Ce lemme permet de générer le but (que l'utilisateur devra prouver) que le multiplicateur doit être non nul. Ceci équivaut à dire que tous ses facteurs doivent être nuls ce qui est cohérent dans la mesure où l'on est sûr de devoir simplier ces expressions.

Une fois le produit eectué, on distribue ce produit sur les monômes sans réassocier à droite, ce qui est trivialement fait par une fonction Coq appelée multiply dont le lemme de correction est complètement similaire à ceux donnés précédemment pour la distributivité et l'associativité.

Élimination des inverses

L'élimination des inverses se fait monôme par monôme. À ce stade, un monôme est un produit du multiplicateur et d'une expression qui est un produit associé à droite (monôme obtenu après la phase de distributivité et d'associativité). Étant donné que la simplication doit se faire modulo permutation des membres du monôme (de manière à faire apparaître x.1/x), le plus simple consiste à manipuler des listes. On transforme donc le multiplicateur en une liste lp et le reste du monôme en une liste lm. Pour que les simplications soient correctes, il faut considérer une troisième liste ln qui est une liste d'expressions de ExprR non nulles (diérentes de ER0). Ainsi, l'algorithme de simplication consiste à parcourir lp et pour chaque élément de lp, s'il est dans ln et que son inverse est dans lm alors enlever l'inverse de lm sinon on rajoute cet élément à la n de lm. Finalement, on rend lm que l'on retransforme en monôme. Dans notre cas, on aura toujours lp = ln puisque les expressions du multiplicateur sont exactement les expressions que l'on va simplier. où list_of_monom et monom_of_list permettent respectivement de transformer un monôme en une liste de ses facteurs et une listes d'expressions en un monôme. remove_list réalise exactement l'algorithme que l'on vient de donner avec ln=l, lp=l1 et lm=l2. inverse est la fonction, qui étant donnée une expression, rend son inverse. Elle permet de tester si l'inverse d'un élément de l1 est bien dans l2.

Le lemme de correction d'élimination des inverses s'exprime comme suit :

Lemma inverse_correct: (e:ExprR)(l:(list ExprR))(lvar:(list (Sprod R nat)))(make_mult lvar l)-> (interp_ExprR lvar (inverse_simplif l e))==(interp_ExprR lvar e).

où make_mult génère la condition que l'interprétation du produit des expressions de l doit être non nulle (diérente de R0). Cette condition permet d'assurer la correction des simplications et ce pour tout l. Pour appliquer ce lemme et comme on l'a dit précédemment, on utilisera la liste des facteurs du multiplicateur pour l. La première ligne de Field (série d'Unfold) permet de déplier les moins binaires et les divisions. Ensuite, on crée la liste d'associations des variables (dans lvar) avec BuildVarList pour interpréter les deux membres de l'égalité, ce qui donne deux termes trm1 et trm2 de ExprR. Le multiplicateur mul est donné par GiveMult en prenant soin de sommer les deux termes pour tenir compte des inverses des deux membres de l'égalité. On transforme alors le multiplicateur en une liste de facteurs au moyen de list_of_mult, qui sera donnée au lemme de correction concernant l'élimination des inverses. Le Cut permet d'insérer les termes de ExprR dans le but à prouver. Par la suite, on peut leur appliquer les diérentes transformations dont nous avons parlé précédemment au moyen de tactiques. ApplyDistrib applique la distributivité, ApplyAssoc l'associativité, Multiply la multiplication par le multiplicateur à gauche et à droite de l'égalité, ApplyMultiply la distribution du multiplicateur et ApplyInverse l'élimination des inverses. ApplySimplif permet d'appliquer la tactique à gauche et à droite de l'égalité pour les tactiques qui travaillent sur un terme. On se débarrasse de l'hypothèse que l'interprétation du multiplicateur doit être non nulle au moyen de GrepMult, qui rend le nom de cette hypothèse pouvant être ainsi eacées (Clear). Enn, on teste s'il reste encore des inverses dans les termes de l'égalité grâce à la tactique InverseTest qui, soit ne fait rien s'il ne reste pas d'inverses permettant ainsi l'appel à Ring, soit échoue dans le cas contraire impliquant une nouvelle application de Field.

Exemples

Nous donnons ici quelques exemples, accompagnés du temps d'exécution. Ces exemples sont tirés de preuves faisant partie ou allant faire partie du développement14 des nombres réels où l'utilisation de cette tactique sera la bienvenue (autant par commodité que dans le but d'alléger les preuves).

Les tests sont eectués sur un Pentium III à 450Mhz sous Linux (RedHat 5.

Exemple 4

Nous nous intéressons ici aux preuves concernant les séries entières, utilisées pour dénir les fonctions transcendantes (en cours de développement) telles que exp , sin ou cos .

Considérons, par exemple, l'application du critère de d'Alembert à la fonction exponentielle. Rappelons, avant tout, les dénitions d'une série entière, de la fonction exponentielle ainsi que l'énoncé du critère de d'Alembert.

Une série entière réelle est une série de la forme : Après quelques tests rapides, nous avons éliminé des sources potentielles d'inecacité et isolé quelques causes probables. La perte de temps a lieu au sein des fonctions Coq et n'est donc pas due au métalangage. Les fonctions chargées de distribuer tous les termes (exponentielle en le nombre de noeuds de l'expression distribuée) an d'obtenir des monômes ainsi que la fonction de simplication des inverses semblent être les principales mises en cause. En particulier, l'algorithme de simplication des inverses, utilisant deux listes non triées, peut certainement être optimisé en eectuant un tri préalable. Néanmoins, des tests plus poussés doivent être eectués, car l'optimisation de ces deux fonctions ne réduirait, au maximum, le temps d'exécution que d'environ 30%.

Conclusion

Synthèse

La tactique Field contribue grandement au développement de la théorie des nombres réels en Coq. Elle permet une économie de temps précieux ainsi qu'un gain non négligeable de concision dans les scripts de preuves. Par ailleurs, étant intégralement réexive, elle permet la construction de termes preuves plus petits que dans l'approche directe en utilisant les réécritures. L'utilisateur peut maintenant se désintéresser de certaines parties de preuves comme il le ferait dans une preuve informelle. On peut voir ce travail comme s'inscrivant dans une optique plus globale qui est de créer, à terme, une tactique plus puissante capable de gérer aussi les inéquations comme le fait la tactique Omega pour les entiers naturels et relatifs. D'un point de vue plus technique, Field est un bon test pour le nouveau langage de tactiques de la V7, non pas en ce qui concerne l'implantation mais plutôt le type de situations où il peut être utile. En regardant le cas de Field, il semblerait que les tactiques réexives soient typiquement le genre de tactiques que l'on souhaite écrire à toplevel. En eet, seule la métaication nécessite l'utilisation, comme son nom l'indique, du métalangage. Étant particulièrement simple à concevoir et nécessitant du ltrage sur les termes Coq (d'un type non inductif), il est clair que la métaication

 , d'autant que le processus de métaication est extrêmement simple. Dans la V7, le langage de tactiques permet de se libérer de ce genre de contraintes au moyen d'un noyau fonctionnel et d'opérateurs de ltrage élaborés. Par ailleurs, un autre atout intéressant est, qu'étant intégré au toplevel de Coq, il est possible de faire tourner le code au moyen d'un toplevel compilé en natif sans perdre la modularité 13 du système. Dans Field, pour métaier, on utilise d'abord une tactique appelée BuildVarList qui construit la liste d'associations en évitant les doublons puis on appelle la fonction d'interprétation de R dans ExprR dénie de la manière suivante : Recursive Tactic Definition interp_R lvar trm := Match trm With | [R0] -> ER0 | [R1] -> ER1 | [(Rplus ?1 ?2)] -> Let e1 = (interp_R lvar ?1) And e2 = (interp_R lvar ?2) In '(ERplus e1 e2) | [(Rmult ?1 ?2)] -> Let e1 = (interp_R lvar ?1) And e2 = (interp_R lvar ?2) In '(ERmult e1 e2) | [(Ropp ?1)] -> Let e = (interp_R lvar ?1) In '(ERopp e) | [(Rinv ?1)] -> Let e = (interp_R lvar ?1) In '(ERinv e) | [?1] -> Let idx = (Assoc ?1 lvar) In '(ERvar idx).

 Concrètement, le travail est eectué par les fonctions Coq suivantes : Definition monom_simplif [l:(list ExprR);e:ExprR] : ExprR := Cases (list_of_monom e) of | (pairT l1 l2) => (monom_of_list (remove_list ExprR eqExprR inverse l l1 l2)) end. Fixpoint inverse_simplif [l:(list ExprR);e:ExprR] : ExprR := Cases e of | (ERplus e1 e2) => (ERplus (monom_simplif l e1) (inverse_simplif l e2)) | _ => (monom_simplif l e) end.

3. 2 . 7 .

 27 La tactique globale La tactique Field combine toutes les phases que nous venons de voir. Elle s'exprime directement dans le langage de tactiques de la V7 comme suit : Tactic Definition Field := Unfold Rminus;Unfold Rdiv; Match Context With | [|-?1== ?2] -> Let lvar = (BuildVarList '(Rplus ?1 ?2)) In Let trm1 = (interp_R lvar ?1) And trm2 = (interp_R lvar ?2) In Let mul = (GiveMult '(ERplus trm1 trm2)) In Let lmul = Eval Compute in (list_of_mult mul) In Cut (interp_ExprR lvar trm1)==(interp_ExprR lvar trm2); [Compute;Auto |(ApplySimplif ApplyDistrib);(ApplySimplif ApplyAssoc); (Multiply mul);[(ApplySimplif ApplyMultiply); (ApplySimplif (ApplyInverse lmul)); (Let id = (GrepMult ()) In Clear id);Compute; First [(InverseTest ());Ring|Field]|Idtac]].

2)

 2 et la version (V7) de Coq utilisée a été compilée en natif. En eet, comme nous l'avons dit précédemment, l'utilisation du langage de tactiques de Coq pour coder Field s'adapte parfaitement à la compilation native. L'appel à Ring ne pose aucun problème puisque le code ML correspondant est linké par défaut dans la version native.

4. 1 . Exemple 1 L

 11 'exemple que nous donnons ici appartient à une famille d'égalités que nous pouvons qualier de simples. Néanmoins, ce type d'égalités revient assez souvent dans les preuves et l'accumulation de toutes ces petites preuves devient rapidement fastidieuse et ni par produire un terme preuve plus important qu'il ne devrait. Pour cette raison, il est intéressant de pouvoir utiliser Field fréquemment, tout comme Ring an de minimiser le nombres de réécritures. Nous considérons, par exemple, les parties de preuves présentes de manière récurrente telles que : b = b a × a. Welcome to Coq 7.00 (December 1999) Coq < Goal (a,b:R)``b == b*(1/a)*a``. Unnamed_thm < Intros. Time Field. 1 subgoal a : R b : R ============================ ``a <> 0`F inished transaction in 0 secs (0.35u,0s)Sans aucune réécriture, il ne nous reste plus qu'à prouver que a = 0, propriété que nous devions impérativement prouver même dans le cas où nous procédions par réécritures.4.2. Exemple 2 Nous voulons prouver queε 2+2 + ε 2+2 = ε 2 .Cette opération est utilisée dans la preuve concernant la multiplication des limites (limit_mul). La preuve du but énoncé ci-dessous fait actuellement environ 25 lignes de Coq, alors qu'après l'application de Field, il nous reste à prouver uniquement que 2 + 2 et 2 sont non nuls. Coq < Goal (eps:R)``eps*1/(2+2)+eps*1/(2+2) == eps*1/2``. Unnamed_thm < Intro. Time Field. 1 subgoal eps : R ============================ ``(2+2)*2 <> 0`F inished transaction in 0 secs (0.51u,0s) Comme dit précédemment, pour pouvoir simplier par 2 + 2 et par 2, nous utilisons le fait que 2 + 2 = 0 et 2 = 0. Ces deux conditions sont générées sous la forme d'un unique sous-but traduisant ces deux propriétés : (2 + 2) × 2 = 0. En eet, si un produit est non nul alors chacun de ses facteurs est également non nul.

4. 3 .

 3 Exemple 3 Revenons sur l'exemple cité en introduction, tiré de la preuve concernant l'addition des dérivées : Coq < Goal (f,g:(R->R); x0,x1:R) ``((f x1)-(f x0))/(x1-x0)+((g x1)-(g x0))/(x1-x0) == ((f x1)+(g x1)-((f x0)+(g x0)))/(x1-x0)-x0 <> 0`F inished transaction in 2 secs (2.17u,0s) Il ne reste plus qu'à prouver que x1 -x0 = 0, ce qui est une hypothèse de notre lemme d'addition des dérivées.

 La fonction exp (x) peut se dénir ainsi : Une forme du critère de d'Alembert est : si an+1 an -----→ n → +∞ 0 alors ∃l t.q. +∞ i=0 an.x n → l Une manière de dénir l'exponentielle est donc d'appliquer le critère de d'Alembert avec an = 1 Dans ce but, nous pouvons montrer l'égalité suivante et l'appliquer ultérieurement dans la preuve avec a = (S n) et b = n! : Coq < Goal (a,b:R)``a <> 0``->``b <> 0``->``1/(a*b)/(1/b) == 1/a`: ``a*b*(1/b*a) <> 0`F inished transaction in 0 secs (0.79u,0s) Nous remarquons la génération de deux nouveaux sous-buts. Conformément à l'algorithme utilisé, la première passe génère le sous-but 2 tandis que la seconde génère le sous-but 1. En eet, la première passe commence par multiplier par a.b × 1 b × a et, après simplications, il reste alors un 1 b . La seconde passe multiplie donc par b. Cela équivaut alors à montrer a.b = 0, 1 b = 0, a = 0 et b = 0, ce qui se déduit des hypothèses.

4. 5 .

 5 Exemple 5 Enn, nous pouvons donner l'exemple de la section 2.2, qui n'a pas de sens particulier mais qui est un bon test pour Field : Coq < Goal (x,y:R)``x*(1/x+x/(x+y)) == -1/y*y*(-(x*x)/(x+y)-1)``. Unnamed_thm < Intros. Time Field. 1 subgoal x : R y : R ============================ ``x*((x+y)*y) <> 0`F inished transaction in 1 secs (0.95u,0s) 4.6. Observation À la vue de ces quelques exemples, la principale observation concerne le temps d'exécution de la tactique. En eet, sur certains exemples, nous pouvons constater des performances assez moyennes.

 nil, cons et app sont les constructeurs et la concaténation des listes polymorphes. Union est une tactique qui concatène deux listes en éliminant les doublons (éléments communs aux deux listes). mult_of_list est une fonction Coq qui rend un produit associé à droite à partir d'une liste d'expressions de ExprR. Le Eval Compute in utilisé dans RawGiveMult permet de réduire les app pour obtenir une liste canonique pouvant être correctement ltrée (par mult_of_list).3.2.4. Distributivité et associativitéIl s'agit maintenant de distribuer totalement (sauf dans les inverses) et d'associer à droite (par rapport à l'addition et à la multiplication) dans les membres de l'égalité. Ces deux fonctions se font obligatoirement dans Coq car l'idée est de passer du terme initial au terme transformé via la réduction de Coq et un lemme de correction à prouver pour chaque fonction.

	Recursive Tactic Definition RawGiveMult trm :=
	Match trm With
	| [(ERinv ?1)] -> '(cons ExprR ?1 (nil ExprR))
	| [(ERopp ?1)] -> (RawGiveMult ?1)
	| [(ERplus ?1 ?2)] ->
	Let l1 = (RawGiveMult ?1)
	And l2 = (RawGiveMult ?2) In
	(Union l1 l2)
	| [(ERmult ?1 ?2)] ->
	Let l1 = (RawGiveMult ?1)
	And l2 = (RawGiveMult ?2) In
	Eval Compute in (app ExprR l1 l2)
	| _ -> '(nil ExprR).
	Tactic Definition GiveMult trm :=
	Let ltrm = (RawGiveMult trm) In
	'(mult_of_list ltrm).
	Lemma distrib_correct:
	(e:ExprR)(lvar:(list (Sprod R nat)))
	(interp_ExprR lvar (distrib e))==(interp_ExprR lvar e).
	où interp_ExprR est la fonction d'interprétation de ExprR vers R (écrite en Coq) et lvar la
	fonction d'associations des variables.
	L'associativité ne pose pas de problèmes dans son codage moyennant quelques précautions. De
	même que pour distrib, nous ne donnerons pas le code de la fonction d'associativité, nommée
	assoc, et il nous a fallu prouver le lemme de correction suivant :
	Lemma assoc_correct:

où La distributivité ne peut pas être codée directement et facilement dans Coq. En eet, les conditions de garde assurant la normalisation forte obligent à découper le problème de manière à faire des appels récursifs respectant la décroissance de la mesure (ordre sous-terme). Les fonctions peuvent donc sembler un peu compliquées mais il s'agit surtout de respecter ces conditions syntaxiques. Pour distribuer, l'idée est de distribuer d'abord tous les moins unaires ERopp. Ensuite, on distribue totalement dans les sous-termes et, pour le cas de la multiplication ERmult, on distribue d'abord à gauche puis à droite. Nous ne donnerons pas ici les fonctions en question qui ne présentent pas un intérêt particulier. Le lecteur intéressé pourra se reporter au code source. Pour utiliser la fonction de distributivité distrib, on a prouvé le lemme de correction suivant :

Ce choix provient d'un souci non seulement de simplicité mais aussi de rapidité dans le développement de la théorie.

Une construction des nombres réels ne changerait pas ce phénomène car R ne serait pas non plus un type inductif sur lequel on pourrait calculer. Voir, par exemple,[START_REF] Harrison | Theorem Proving with the Real Numbers[END_REF] pour s'en rendre compte.

On appelle preuves ε, les preuves utilisant la dénition explicite de la limite sous la forme : ∀ε > 0.∃α..... Dans la littérature anglaise, ces preuves sont plutôt connues sous la dénomination de preuves ε/δ.

Il ne s'agit pas ici d'entamer le leitmotiv bien connu que les preuves formelles sont bien plus diciles que les preuves que l'on peut trouver dans les meilleurs ouvrages de mathématiques mais de mettre en évidence une lacune d'automatisation qui, si elle venait à être comblée, pourrait nous permettre certaines "imprécisions" dans le sens où l'utilisateur n'aurait plus à montrer, à la main, certaines propriétés considérées comme triviales.

Cette étape est clairement non nécessaire mais elle permet un gain d'ecacité en évitant un double appel récursif pour toutes les fonctions manipulant ces expressions.

Il n'est pas nécessaire ici de vérier que x = 0 car la condition a déjà été générée lors de la multiplication par le produit de tous les inverses.

On estime, en eet, que les expressions contenant des empilements d'inverses d'inverses seront plutôt rares.

Cet algorithme ne fonctionne qu'en logique classique ([START_REF] Gabbay | The Undecidability of Intuitionnistic Theories of Algebraically Closed Fields and Real Closed Fields[END_REF]) mais ce n'est pas gênant dans la mesure où il en est de même pour les nombres réels en Coq à cause de l'axiome d'ordre total.

Kreisel et Krivine se sont aussi intéressés à un algorithme dans d'autres structures telles que les corps algébriquement clos, les anneaux de Boole séparables, ...

La taille du terme preuve est un point auquel il faut être très sensible car il n'est pas rare de rencontrer des scripts de preuves corrects pour lesquels on ne peut pas construire le terme preuve, faute de mémoire susante.

Il est intéressant de voir ici que dans le processus de réexion, la tactique et la preuve de sa correction sont indissociables.

En eet, il faut se procurer Objective Caml, Camlp4, compiler les sources de Coq, coder la métaication en comprenant la structure abstraite des termes Coq et enn compiler le chier en question.

Plus précisément, deux chiers sont principalement concernés : Rlimit.v et Rderiv.v.

D'un point de vue technique, cette abstraction s'eectue au moyen du mécanisme de sections de Coq. Tout le code peut être encapsulé dans une section où l'ensemble support, les constantes et les opérateurs s'y rapportant sont des paramètres. Le langage de tactiques s'adapte très bien à cette généralisation dans la mesure où il est également possible de ltrer sur des paramètres.