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A Tactic Language for the System Coq

We propose a new tactic language for the system goq, which is intended to enrich the current tactic combinators (tacticals). This language is based on a functional core with recursors and matching operators for goq terms but also for proof contexts. It can be used directly in proof scripts or in toplevel denitions (tactic denitions). We show that the implementation of this language involves considerable changes in the interpretation of proof scripts, essentially due to the matching operators. We give some examples which solve small proof parts locally and some others which deal with non-trivial problems. Finally, we discuss the status of this meta-language with respect to the goq language and the implementation language of goq.

Introduction

In a proof 1 system, we can generally distinguish between two kinds of languages: a proof language, which corresponds to basic or more elaborate primitives and a tactic language, which allows the user to write his/her own proof schemes. In this paper, we do not deal with the rst kind of language which has been already extensively studied by, for example, John Harrison in a comparative way ( [START_REF] Harrison | Proof style[END_REF]), Don Syme with a declarative prover ( [START_REF] Syme | Declarative Theorem Proving for Operational Semantics[END_REF]) and Yann Coscoy with a "natural" translation of proofs ( [START_REF] Coscoy | A natural language explanation for formal proofs[END_REF]). Here, we focus on the tactic language which is essentially the criterion for assessing the power of automation of a system (to be distinguished from automation which is related to provided tactics). In some systems, the tactic language does not exist and the automation has to be quite powerful to compensate for this lack. For example, this is the case for ( [START_REF] Owre | PVS: A prototype verication system[END_REF]) where nothing is given to extend the system. Also, wizr ([12]), one of the oldest provers, is based on a unique tactic y and it is impossible to automate some parts of the proofs or more generally, some logic theories.

The tactic language must be Turing-complete, which is to say that we must be able to build proof strategies without any limitation imposed by the language itself. Indeed, in general, this language is nothing other than the implementation language of the prover. The choice of such a language has several consequences that must be taken into account: hvidFhelhyedinriFfr, httpXGGoqFinriFfrG£delhyeG. INRIA-Rocquencourt, domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France. 1 The word "proof" is rather overloaded and can be used in several ways. Here, we use "proof" for a script to be presented to a machine for checking.

the prover developers have to provide the means to prevent possible inconsistencies arising from user tactics. This can be done in various ways. For example, in vgp ( [START_REF] Gordon | Edinburgh LCF: a mechanised logic of computation[END_REF]) and in ryv ([5]), this is done by means of an abstract data type and only operations (which are supposed to be safe) given by this type can be used. In goq ( [START_REF] Barras | The Coq Proof Assistant Reference Manual Version 6[END_REF]), the tactics are not constrained, it is the typechecker which, as a Cerberus, veries that the term, built by the tactic, is of the theorem type we want to prove. the user has to learn another language which is, in general, quite dierent from the proof language. So, it is important to consider how much time the user is ready to spend on this task which may be rather dicult or at least, tedious. the language must have a complete debugger because nding errors in tactic code is much harder than in proof scripts developed in the proof language, where the system is supposed to assist in locating errors. the proof system must have a clear and a well documented code, especially for the proof machine part. The user must be able to easily and quickly identify the necessary primitives or he/she could easily get lost in all the les and simply give up.

Thus, we can notice that writing tactics in a full programmable language involves many constraints for developers and more especially for users. In fact, we must recognize that the procedure is not really easy but we have no alternative if we want to avoid restrictions on tactics. However, we can wonder if this method is suitable for every case. For example, if we want a tactic which can solve linear equations on an Abelian eld, it seems to be a non-trivial problem which requires a complete programming language. But, now suppose that we want to show that the set of natural numbers has more than two elements. This can be expressed as follows:

(∃x : N.∃y : N.∀z

: N.x = z ∨ y = z) → ⊥
To show this lemma, we introduce the left-hand member of the conclusion (say H) and eliminate it, then we introduce the witness (say a) and the instantiated hypothesis H (say H a ), nally, we eliminate H a to introduce the second witness (say b) and the instantiation of H a (say H b ). At this point, we have the following sequent:

..., H b : ∀z : N.a = z ∨ b = z ⊥
It remains to eliminate H b with any three natural numbers (say 0, 1 and 2). Finally, we have three equalities (that we introduce) with a or b as the lefthand member and 0, 1 or 2 as the right-hand member. To conclude in each case, it is simply necessary to apply the transitivity of the equality between two equations with the same left-hand member, then we obtain an equality between two distinct natural numbers which validates the contradiction (depending on the prover, this last step must be detailled or not).

Of course, the length of this proof depends on the automation of the prover used. For example, in , it may be imagined that applying the lemma of transitivity is quite useless and ssert would solve all the goals generated by the eliminations of H b . In goq, the proof would be done exactly in this way and we may want to automate the last part of the proof where we use the transitivity. Unfortunately, even if this automation seems to be quite easy to realize, the current tactic combinators (tacticals) are not powerful enough to make it. So, the user has two choices: to do the proof by hand or to write his/her own tactic, in yjetive gml 2 ([8]), which will be used only for this lemma.

Thus, it is clear that a large and complete programming language is not a good choice to automate small parts of proofs. This is essentially due to the fact that the interfacing is too heavy with respect to the result the user wants to obtain. Moreover, the need for small automations must not only be seen as a lack of automation of the prover because tactics are intended to solve general problems and sometimes, user problems are too specic to be covered by primitive tactics. Thus, it seems that there is a gap between the proof language and the language used for writing tactics.

Here, we want to propose, in the context of goq, the idea of an intermediate language, integrated in the prover and less powerful than the Turing-complete language for writing tactics, which is able to deal with small parts of proofs we may want to automate locally. This language is intended to be a kind of middleway where it is possible to better enjoy both the usual language of goq and some features of the full programmable language.

2 Presentation of the language 2.1 Denition Currently, the only way to combine the primitive tactics is to use predened operators called tacticals. These are listed in table 1.

As seen previously, no tactical given in table 1 seems to be suitable for automating our small proof. In fact, we would like to do some pattern matchings on terms and even better, on proof contexts. So, the idea is to provide a small functional core with recursion to have some high order structures and with pattern matching operators both for terms as well as for proof contexts to handle the proof process. The syntax of this language, we call L tac , is given, using a fxp-like notation, by the entry expr in table 2, where the entries nat, ident, term and primitive_tactic represent respectively the natural numbers, the authorized identicators, goq's terms and all the basic tactics. In term, there can be specic variables like cn, where n is a nat or c, which are metavariables for pattern matching. cn allows us to keep instantiations and to make constraints whereas c shows that we are not interested in what will be matched. We can also use this language in toplevel denitions (ti he(nition) for later calls. 

Semantics

We do not wish to give a formal semantic here. It is not our main aim and would be premature. We can just say that in the context of a reduction semantics (small steps), the interpretation is almost usual. This language can give expressions which are tactics (to apply to a goal) and others which represent terms, for example. Thus, we must evaluate the expressions in an optional environment which is a possible goal. This environment is used for wth gontext which makes non-linear rst order unication as well as wth. wth gontext has a very specic behavior. It tries to match the goal with a pattern (hypotheses are on the left of |E and conclusion is on the right) and if the right-hand member is a tactic expression which fails then it tries another matching with the same pattern. This mechanism allows powerful backtrackings and we will discuss an example of use below.

Typechecking

This language is not yet typechecked; although this might be useful in the future for at least two reasons. First, we have some ambiguities which must be solved by syntactic means and a consequence is the presence of a quote to mark the application of L tac (see table 2). Another reason for building a typechecker is that we want to detect statically the free variables in a proof script. Experience of proof maintainability shows that proofs are quite sensitive to naming conventions and the idea is mainly to watch the names of hypotheses. Thus, typechecking will be an interesting and original feature of the language and will allow robust scripts to be built.

Implementation

To implement L tac , we had to make some choices regarding the existing code. First, we decided to keep an interpreted language. We are not really convinced 

::= @A | nat | ident | term Table 2.
Denition of Ltac that we could save a signicant amount of time in the execution of compiled scripts, in general run once, especially if we consider the cost of compilation time.

Compared to the previous interpretation core 3 , we have made great changes in the main function which executes the tactics, by, for example, adding the new structures we saw previously (see table 2). Also, to be able to deal with substitutions coming from abstracted variables (pun) and metavariables (wth gontext, wth), we interpret the tactic arguments in the main function. The tactics now take already interpreted arguments rather than AST's (Abstract Syntax Trees) coming from syntactical analysis. To be extendable, it is possible to dynamically associate interpretation functions to specic AST nodes.

Examples

A rst natural example is the one we discussed in the introduction. We want to show that the set of natural numbers has more than two elements. With the current tactic language of goq, the proof could look like the script given in table 3. As can be seen, after the three inductions (ilim), we have eight cases which can be solved by eight very similar instructions which are possibly dierent in the equality we cut and the term used to apply transitivity. As we know that this equality, say xay, is such that there exist the equalities ax and ay in the hypotheses, it would be easy to automate this part provided that we can handle the proof context. This can be done by using L tac and especially, the wth gontext structure. Table 4 shows the corresponding script. We can notice that the proof is considerably shorter 4 and this is increasingly true when we add cases (with three, four , ... elements). Moreover, the work is much less tedious than in the case of the proof by hand and the script can be written without the help of the interactive toplevel loop. This results in a proof style which is much more batch mode like. Another example, a little less trivial, is the problem of list permutation on closed lists. Indeed, we may be faced with this problem when we want to show that a list is sorted and it is quite annoying to do the proof by hand when we know it can be done automatically. To use yjetive gml 5 is certainly quite excessive compared to the diculty of what we want to solve and L tac seems to be much more appropriate. To do this, rst, we dene the permutation predicate as shown in table 5, where ¢ represents the append operation on lists. Next, we can write naturally the tactic by using L tac and the result can be seen in table 6. We can notice that we use two toplevel denitions ermutrove and ermut. The function to be called is ermutrove which is intended to solve goals of the form FFF|E@permut lI lPA, where lI and lP are closed list expressions. ermutrove computes the lengths of the two lists and calls ermut with the length if the two lists have the same length. ermut works as expected. If the two lists are equal, it vemm rdntX £@i xXnt|@i yXnt|@zXntA@xazA\G@yazAAAF roofF edYsntro rF ilim rYsntros rF ilim rYsntros rF ilim @r @HAAYilim @r @IAAYilim @r @PAAYsntrosF gut @HAa@IAYhisriminte|epply trnsequl with YeutoF gut @HAa@IAYhisriminte|epply trnsequl with YeutoF gut @HAa@PAYhisriminte|epply trnsequl with YeutoF gut @IAa@PAYhisriminte|epply trnsequl with YeutoF gut @IAa@PAYhisriminte|epply trnsequl with YeutoF gut @HAa@PAYhisriminte|epply trnsequl with YeutoF gut @HAa@IAYhisriminte|epply trnsequl with YeutoF gut @HAa@IAYhisriminte|epply trnsequl with YeutoF veF Table 3. A proof on cardinality of natural numbers in goq concludes. Otherwise, if the lists have identical rst elements, it applies ermut on the tail of the lists. Finally, if the lists have dierent rst elements, it puts the rst element of one of the lists (here the second one which appears in the permut predicate) at the end if that is possible, i.e., if the new rst element has been at this place previously. To verify that all rotations have been done for a list, we use the length of the list as an argument for ermut and this length is decremented for each rotation down to, but not including, 1 because for a list of length n, we can make exactly n -1 rotations to generate at most n distinct lists. Here, it must be noticed that we use the natural numbers of goq for the rotation counter. In table 2, we can see that it is possible to use usual natural numbers but they are only used as arguments for primitive tactics and they cannot be handled, in particular, we cannot make computations with them. So, a natural choice is to use goq data structures so that goq makes the computations (reductions) by ivl gompute in and we can get the terms back by wth.

Beyond these small examples, we discovered that L tac is much more powerful than might have been expected and, even if it was not our initial aim, this language can deal with non-trivial problems. For example, we coded a tactic to decide intuitionnistic propositional logic, based on the contraction-free sequent calculi vtB of Roy Dyckho ([4]). There was already a tactic called uto and written in yjetive gml by César Muñoz ([9]). We observed several signicant dierences. First, with L tac , we obtained a drastic reduction in size with 40 lines of code compared with 2000 lines. This can be mainly explained by the complete backtracking provided by wth gontext. Moreover, we were very surprised to get a considerable increase in performance which can reach 95% in some examples. In fact, this is understandable since L tac is a proof-dedicated language and we can suppose that some algorithms (such as Dyckho's) may be coded very naturally. vemm rdntX £@i xXnt|@i yXnt|@zXntA@xazA\G@yazAAAF roofF edYsntro rF ilim rYsntros rF ilim rYsntros rF ilim @r @HAAYilim @r @IAAYilim @r @PAAYsntrosY wth gontext ith XcIacPYXcIacQ|Ec Eb gut cPacQYhisriminte|epply trnsequl with cIYeutoF veF Table 4. A proof on cardinality of natural numbers using Ltac etion ortF rile eXetF sndutive permutX@list eAEb@list eAEbropXa permutre)X@lX@list eAA@permut l lA |permutonsX @XeA@lHDlIX@list eAA@permut lH lIAEb@permut @ons lHA @ons lIAA |permutppendX@XeA@lX@list eAA@permut @ons lA @l¢@ons @nil eAAAA |permuttrnsX @lHDlIDlPX@list eAA@permut lH lIAEb@permut lI lPAEb@permut lH lPAF ind ortF Table 5. Denition of the permutation predicate Finally, readibility has been greatly improved so that maintainability has been made much easier (even if there is no debugger for L tac yet). We dealt with another important example which was to verify equalities between types and modulo isomorphisms. We chose to use the isomorphisms of the simply typed λ-calculus with Cartesian product and unit type (see, for example, [START_REF] Di | Isomorphisms of Types: from λ-calculus to information retrieval and language design[END_REF]). Again, the code, we wrote by using L tac , was quite short (about 80 lines with the axiomatization) and quite readable so that extensions to more elaborated λ-calculi can be easily integrated.

Conclusion

We have presented a language (L tac ) which is intended to make a real link between the primitive tactics and the implementation language (yjetive gml) used to write large tactics. In particular, it deals with small parts of proofs that ti he(nition ermut nXa wth gontext ith |E@permut c cI cIA Eb epply permutre) ||E@permut c @ons cI cPA @ons cI cQAA Eb vet newnaivl gompute in @length cPA sn epply permutonsY9@ermut newnA ||E@permut cI @ons cP cQA cRA Eb 9@wth ivl gompute in n ith @IA Eb pil | Eb vet lH9a@cQ¢@ons cP @nil cIAAA sn epply @permuttrns cI @ons cP cQA lH9 cRAY epply permutppend| gomputeY9@ermut @pred nAAAF ti he(nition ermutrove @AXa wth gontext ith |E@permut c cI cPA Eb 9@wth ivl gompute in @@length cIAa@length cPAA ith cIacI Eb 9@ermut cIAAF Table 6. Permutation tactic in Ltac are to be automated. It can be seen that this language has some interesting features:

it is in the toplevel of goq. We do not need a compiler or any specication of the implementation of goq to write tactics in this language. Moreover, to learn this small language would be certainly easier than tackling the manual of the implementation language. Of course, these remarks must be considered with regard to small tactics. the code length is, in general, quite short compared to the same proofs made by hand (see tables 3 and 4) and, even when solving non-trivial problems, we still have reductions in size, which are sometimes very impressive (as in the case of uto seen previously). Thus, the scripts are more compact and much simpler. the scripts are more readable. This is already the case with small proofs but even more so with large tactics (as with uto again). the scripts are more maintainable, as a direct consequence of the increase in readibility.

It is important to carefully dene the scope of L tac compared to yjeE tive gml. We must not be tempted to enrich L tac too much in order to write tactics which are more and more complex. Even if we can at present deal with some complex examples, this must be considered as a bonus and not as a goal. We must make sure that goq does not draw too much upon yjetive gml and, for the moment, we think that L tac is complete enough. However, we plan to enable yjetive gml to enjoy the advantages of L tac by a quotation or a syntax extension. With this system, we could use L tac in yjetive gml like a true Application Programming Interface (API for short) with specic calls, as seen previously, so that we could write tactics more easily and without any limitation.

From the user point of view, it could be a tricky problem to decide which language is the most appropriate to solve his/her problem. The user must know whether the problem in hand can be coded with L tac . There is no general rule but we can identify several criteria by which yjetive gml must be used rather than L tac . First, L tac is not suitable for tactics which handle the environment. For example, searching the global context is only possible by using yjetive gml and certain functions of goq's code. Another indicator that L tac is not suitable is the use of data structures. The more we use data structures, the more complex the problem is, as is the tactic to build. As shown previously with the example of list permutation (see tables 5 and 6), we can use data structures in L tac by means of goq's data structures 6 which can be handled by wth (and possibly wth gontext) and the number of data structures we need is a good indication of the diculty of the tactic we want to write. Moreover, if you are concerned about performances, it is better to use yjetive gml's data structures which are much more ecient than those of goq. Finally, there are more libraries implementing usual data structures in yjetive gml than in goq and this may be a decisive argument in some cases. Thus, in general, the use of data structures must be limited in L tac and the user must make choices. For example, the use of natural numbers in the previous example concerning list permutation seems to be quite reasonable and we may consider that this is also the case for other data structures such as booleans or lists.

This is the implementation language of goq.

Of the last release V6.3.1.

In this respect, we can see that the non-linear pattern matching solves the problem in one pattern instead of two successive patterns.

This is the full programmable language to write tactics in goq.