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Summary

Linear discriminant analysis is studied when the predictors are data of func-
tional type (curves). Due to the infinite dimension of the predictor space,
discriminant coefficient functions cannot be derived as in the classical set-
ting. Partial least squares approach is then used in this context. Results of
an application to kneading data are presented.
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1 Introduction

Statistical methods for data representing functions or curves have received
much attention in recent years and classical tools from the finite multivariate
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data analysis are adapted to functional data (see [Ramsay and Silverman, 2002]).

Examples of functional data can be found in several application domains such
as medicine, economics, chemometrics and many others (for an overview, see
[Ramsay and Silverman, 2002]). A well accepted model for this kind of data
is to consider it as paths of a stochastic process X = {X;};cr taking values
in a Hilbert space H of functions on some set T. For example, a second
order stochastic process X = {X;};c[0,1], L2—continuous with sample paths
in Ly([0, 1]) can be used as model for kneading curves describing the resistance
of dough during the kneading process (Figure 1).

dough resistance

Figure 1: Functional data example: resistance of dough during the kneading
process (observed on 480 seconds)

A major interest when dealing with functional data is to develop regres-
sion models. One of the difficulties with such data when used as predictor
is his multicolinearity feature (the X;’s are highly correlated), the covari-
ance operator being, in general, degenerated. Also, from practical point
of view, the number of observations is in general less than the number of
predictors (which is theoretically infinite) situation which leads to inconsis-
tency of the estimated model. Depending on the nature of the response
variable, several models are developed in literature. Thus, generalized lin-
ear regression models are developed in [James, 2002] and more recently by
[Cardot and Sarda, 2005]. Different linear approaches based on decomposi-
tion of the underlying stochastic process are proposed : principal component
regression ([Aguilera et al., 1997], [Cardot et al., 1999]), partial least squares
regression (PLS)([Preda and Saporta, 2002]). [Ferraty and Vieu, 2004] and
[Preda, 2005] propose non-parametric models for regression on functional
data using classical kernel estimators both for scalar and categorical response.

In this paper we are interested in linear discrimination analysis when the
predictor X is data of functional type (generally, curves or real functions
of time) and the response is a categorical variable Y with K modalities.
As an extension of the classical multivariate approach, the aim of linear
discriminant analysis (LDA) for functional data is to find linear combinations

d(X) = fOT X:B(t)dt, B € La(]0,T]) such that the between class variance is
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maximized with respect to the total variance, i.e.

L VEEX)Y)) "
peLolo. 7] V(®(X))
Let {(xi, ;) }i=1,...n be n observations of random variables (X,Y") with z; =
{z;(t),t € [0,T]} and y; € {1,...,K}, i =1,...,n. Due to infinite dimen-
sion of the predictor, the estimation of /3 is in general an ill-posed problem.
For K = 2 is well known that the optimization problem (1) is equivalent
to find the regression coefficients of Y (after a convenient encoding) on the
stochastic process X under the least-squares criterion. [Cardot et al., 1999],
[Preda and Saporta, 2002] point out the inconsistency of such a criterion
for functional data and propose solutions to overcome this difficulty. Non-
parametric approaches for functional discriminant analysis are proposed in
[Ferraty and Vieu, 2003] and [Biau et al., 2004]. Logistic regression for func-
tional data using the projection method is given in [Escabias et al., 2005].
Several applications on real date measure the importance of these mod-
els : [Ratcliffe et al., 2002] develops functional regression models for foetal
heart data in order to predict the probability of high risk birth outcome,
[Ferraty and Vieu, 2003] are interested in classification curves from spectro-
metric data, [Escabias et al., 2005] develop logistic models for environmental
data, etc.

We propose to use PLS regression approach [Preda and Saporta, 2002] in
the context of linear discriminant analysis on functional data. The paper is
organized as follows. In section 2 we recall some results on PLS regression on
functional data. The relationship between linear discriminant analysis (LDA)
for binary response and linear regression as well as the PLS methodology in
the general case is presented in section 3. An application of PLS classification
approach to kneading data is realized in section 4. The aim of this application
is to predict, for a given flour, the quality of cookies from a curve recorded
during the kneading process (see [Lévéder et al., 2004] for other classification
approaches used on the same data).

2 PLS regression on functional data

Let X = {X}+c[0,1) be a second order stochastic process Lp-continuous with
sample paths in L»[0,1] and Y a real random variable. Without loss of
generality we assume also that E(X;) =0, V¢ € [0,1] and E(Y') = 0.

The partial least squares (PLS) approach offers a good alternative to linear re-
gression on principal components (PCR) by replacing the least squares crite-
rion with that of maximal covariance between (X¢):¢jo,17 and Y ([Preda and Saporta, 2002]).

The PLS regression is an iterative method. Let Xy, = X, V¢t € [0,1] and
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Yo =Y. At step ¢, ¢ > 1, of the PLS regression of Y on X, we define the
qth PLS component, t,, by the eigenvector associated to the largest eigen-
value of the operator WX, W), where WX, respectively W) _,, are the
Escoufier’s operators ([Saporta, 1981]) associated to X, respectively to Y,_;.
The PLS step is completed by the ordinary linear regression of X, ;; and
Y,—1 ont,. Let X,;,t € [0,1] and Y; be the random variables which represent
the residual of these regressions : X, = Xy_1,—py(t)t; and Yy = Y1 —c4tq.
Then, for each ¢ > 1, {t,},>1 forms an orthogonal system in Ly(X) and the
PLS approximation of Y by {X¢},cp0,1] at step ¢, ¢ > 1, is given by :

1
YPLS(q) =citr + ...+ ety = / ,BPLS(Q) (t)Xtdt. (2)
0

In practice, the number of PLS components used for regression is determined
by cross-validation ([Tenenhaus, 2002]).

3 LDA and PLS regression for functional data

3.1 The discriminant coefficient function

Let us denote by

pO:P(YZO)a Y41 :]-_pOZP(Y:]-)a
po(t) = E(X¢ [Y =0), i (t) = E(X[Y =1),¢ € [0,1].

Since E(X;) = 0, it follows that pouo(t) + p1p(t) =0, Vt € [0, 1].
Let also denote by C the covariance operator associated to the process X
1
defined on Ly[0,1] by f N g, g(t) = / E(X; X;)f(s)ds, and by B the
0
1
operator on L»[0, 1] defined by f 2 g, g(t) = / B(t, s)f(s)ds, where

B(t,s) = popo(t)po(s) + p1p(s)p (t) = popi (po(t) —Oul(t))(uo(S) — p1(s))-
Denoting by ¢ = /pop1 (1o — p11), it follows that

B=9¢®0¢,

where ¢ ® (b(g) = ¢<¢7 g>L2[071]7 g€ L2[07 ]-]

As in the classical setting, the discriminant coefficient function, 8 € L»[0, 1],
which satisfies the criterion given in (1), corresponds to the largest A, A € R,
such that

B = ACB, with (8,CB)L,0n = 1. (3)
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Without loss of generality, let us recode Y by : 0 ~~ g—; and 1~ —, /i—?. If

B is a solution of (9) then A = (¢, B>%2[0,1] and 3 is solution of the Wiener-
Hopf equation

B Z) = [ BZZ)86)ds, (4)

where Z; = (¢, 8)r,10,11X¢, t € [0,1]. The function § given by equation
(10) is the regression coefficient function of the linear regression of ¥ on
Z = {Zi}tepo,1)- Equation (4) has an unique solution under conditions of
convergence of series implying the eigenvalues and eigenvectors of the covari-
ance operator of the process X [Saporta, 1981]. These conditions are rarely
satisfied. Thus, in practice, the problem to find 3 is generally an ill-posed
problem.

However, if the aim is to find the discriminant variable (scores), then one
can use the above relationship between LDA and linear regression. The PLS
approach proposed in Section 2 can be used to compute the discriminant
score for a new observation for which one has only the observation of X.

3.2 PLS classification methodology

Let us consider two cases :

Case 1. K =2. Let Y € {0,1}. Then, the discriminant function 3 is the
coefficient function of the linear regression of Y on X = {X;}s¢cjo,1, where Y/
is encoded by 0 ~ \/2:; and 1 ~ — g—‘;, with (po,p1) the probability distri-
bution of Y. The PLS1 regression of Y on X provides an approximation for
the discriminant variable (score) given by ®prs(X) = a + fOT X, Bprs(t)dt,
where @ = — [ Bprs(t)u(t)dt and p(t) = E(X;),t € [0,T).

Case 2. K > 2. Let Y € {0,...,K} and {Y;}i=1,. k-1 be the dummy
variables associated to Y, Y; € {0,1}. We propose to perform linear dis-
criminant analysis of ¥ and X using the PLS components {t;};=1,. 4 of
the PLS2 regression of the vector Y = {Yi,...,Yx_1} on X, where ¢ is
determined by cross validation. The j** PLS component is the eigenvec-
tor associated to the largest eigenvalues of the operator WX WY]fl, where
WX and WYi-1 are the Escoufier operators of X, respectively of Y7~!,
the residual of Y at the j — 1 iteration of the PLS2 regression on X (see
[Preda and Saporta, 2002]). One obtains, for each category i of Y, the co-
efficient discriminant function 8%; ¢ which allow to compute the associated

score, @b, o(X) = o + [ XiBby g(t)dt, with a; € Ryi =1,..., K.

Therefore, given a new observation of X, prediction for Y is made in the
classical way. The predictive capacity of the method is then measured on a
test sample using either the misclassification rate or the area under the ROC
curve (for K = 2).
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4 Application

PLS approach is applied to predict the quality of cookies from the knead-
ing curve representing the resistance (density) of dough observed during the
kneading process. For a given flour, the kneading process is observed during
480 seconds. Since we have 115 different flours we have 115 curves (func-
tions of time), which represent a set of sample paths of the stochastic process
X = {Xi,t € [0,480]}. Each curve is observed in a finite number of points
corresponding to a discretization of [0,480] into 240 equispaced instants of
time (the same for all flours). Thus, a kneading curve is represented by the
set of 241 points {(t;, X¢,),i = 0,...,240}. After kneading, the dough is pro-
cessed to obtain cookies. For each flour we have the quality (Y') of cookies
which can be Good, Adjustable and Bad. Our sample contains 50 observations
for Y = Good, 25 observations for Y = Adjustable and 40 for Y = Bad.

Due to measuring errors, each curve is smoothed using cubic B-spline func-
tions with the following 16 knots in the interval [0, 480] ([Lévéder et al., 2004]) :
{10,42,84,88,108, 134, 148, 200, 216, 284, 286, 328, 334, 380, 388,478}.

Let us consider Y € {Good, Bad}. The sample of 90 flours is randomly
divided into a learning sample of size 60 and a test sample of size 30. In the
test sample the two classes have the same number of observations.

Table 1 presents the error classification rates averaged over 100 test samples
using linear discriminant analysis on principal components (LDA_FPCR)
respectively the PLS approach (LDA_FPLS) for which we developed soft-
ware. The number of PLS and PC' R components is given by cross validation
using the leave-one-out procedure.

Model Test error rate |
LDA_FPCR 0.142
LDA_FPLS 0.112

Table 1: Error rate averaged over 100 test samples.

It is of interest to study the set of observations for which Y = Adjustable be-
cause, with a small effort, certain of these flours could be adjusted to become
Good. Therefore, it is important to say if a flour with quality Adjustable
is closer to Good flours or to Bad ones. For this, we consider the set of
Adjustable flours as ’test sample’ and predict their closeness to Good and
Bad categories using the discriminant coefficient function (Figure 2) given
by the PLS approach on the 90 flours (observations form Good and Bad
classes). The discriminant score is ®(X) = —1.46 + f0480 X,Bprs(t)dt. For a

given z, if ®(z) > 0 then Y = Good, else Y = Bad.

One obtains for the 25 Adjustable flours, 12 for which the predictions give
them closer to class Good and 13 closer to class Bad.
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Beta PLS discrimnant coefficient function

2e-004]

—3e-004|

—ae-00 . . . r tinme
100 200 300 400 500

Figure 2: Discriminant coefficient function B pLs given by PLS approach

For Y € {Good, Adjustable, Bad}, the results given by the multivariate PLS
discrimination model (see section 3.1, Case 2) are presented in Table 2.

We compare these results with those obtained by linear discrimination on

the principal components (LDA_FPCR) and on the original smoothed data
(LDA) as well as with the K-NN procedure with 13 neighbors ([Lévéder et al., 2004].
Using the 115 flours, the comparison criterion is we averaged error classifica-

tion rate over 100 test samples of size 35.

Model LDA_FPLS | K-NN (13) | LDA_FPCR | LDA
Misclassified rate 0.258 0.245 0.262 0.282

Table 2: Misclassified rate for three categories : average over 100 test samples.

5 Conclusion

PLS regression on functional data is used for linear discriminant analysis
with binary response. It is a simple and interesting alternative to classical
linear methods based on principal components of predictors and his efficiency
is confirmed by an example on kneading data.

References

[Aguilera et al., 1997] A. M. Aguilera, F. Ocana, and M.J. Valderama. An
approximated principal component prediction model for continuous-time
stochastic process. Applied Stochastic Models and Data Analysis, pages
61-72, 1997.

[Biau et al., 2004] G. Biau, F. Bunea, and M. Wegkamp. Function classifi-
cation in Hilbert spaces. Submitted, 2004.



C. Preda, G. Saporta, C. Lévéder PLS classification of functional data

[Cardot and Sarda, 2005] H. Cardot and P. Sarda. Estimation in general-
ized linear models for functional data via penalized likelihood. Journal of
Multivariate Analysis, pages 24-41, 2005.

[Cardot et al., 1999] H. Cardot, F. Ferraty, and P. Sarda. Functional linear
model. Statist. Probab. Lett., pages 11-22, 1999.

[Escabias et al., 2005] M. Escabias, A.M. Aguilera, and M.J. Valderrama.
Modeling environmental data by functional principal component logistic
regression. Environmetrics, pages 95-107, 2005.

[Ferraty and Vieu, 2003] F. Ferraty and P. Vieu. Curves discrimination: a
nonparametric approach. Computational Statistics €& Data Analysis, pages
161-173, 2003.

[Ferraty and Vieu, 2004] F. Ferraty and P. Vieu. Nonparametric models for
functional data with application in regression, time series prediction and
curve discrimination. Journal of Nonparametric Statistics, pages 111-125,
2004.

[James, 2002] G. M. James. Generalized linear models with functional pre-
dictors. Journal of the Royal Statistical Society, Series B, pages 411-432,
2002.

[Lévéder et al., 2004] C. Lévéder, C. Abraham, P. A. Cornillon, E. Matzner-
Lober, and N. Molinari. Discrimination de courbes de pétrissage.
Chimiométrie 2004, Paris, pages 37—43, 2004.

[Preda and Saporta, 2002] C. Preda and G. Saporta. Régression PLS sur un
processus stochastique. Revue de Statistique Appliquée, pages 27-45, 2002.

[Preda, 2005] C. Preda. Regression models for functional data by reproduc-
ing kernel hilbert spaces methods. Journal of Statistical Planning and
Inference, 2005.

[Ramsay and Silverman, 2002] J. O. Ramsay and B.W. Silverman. Applied
Functional Data Analysis : Methods and Case Studies. Springer, 2002.

[Ratcliffe et al., 2002] S. J. Ratcliffe, L.R. Leader, and Heller G.Z. Functional
data analysis with application to periodically stimulated foetal heart rate
data. ii : Functional logistic regression. Statistics and Medicine, pages
1115-1127, 2002.

[Saporta, 1981] G. Saporta. Méthodes exploratoires d’analyse de données
temporelles. Cahiers du B.U.R.QO, Université Pierre et Marie Curie, Paris,
1981.

[Tenenhaus, 2002] M. Tenenhaus. La régression PLS. Théorie et pratique.
Editions Technip, 2002.



