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Abstract. “Kernel Logistic PLS” (KL-PLS), a new tool for classification with
performances similar to the most powerful statistical methods is described in this
paper. KL-PLS is based on the principles of PLS generalized regression and learning
via kernel. The successions of simple regressions, simple logistic regression and
multiple logistic regressions on a small number of uncorrelated variables that are
computed within KL-PLS algorithm are convenient for the management of very
high dimensional data. The algorithm was applied to a variety of benchmark data
sets for classification and in all cases, KL-PLS demonstrates its competitiveness
with other state-of-art classification method. Furthermore, leaning on statistical
tests related to the logistic regression, KL-PLS allows the systematic detection of
data points close to “support vectors” of SVM and thus reduces the computational
charges of the SVM training algorithm without significant loss of accuracy.
Keywords: Classification, Kernel, PLS Generalized Regression.

1 Introduction

Given a set of labeled experiments
{
(xi, yi)

}

i=1,...,n
, xi ∈ R

p×1 and yi ∈

{−1, 1}, we would like to build a prediction rule which, based on the observa-
tions, allows a prediction of the label ynew of a new point xnew. The following
notation is used throughout this paper: each data point xi (respectively each
response yi) represents the ith row of the data matrix X (respectively the
ith row of the column vector Y ). In order to handle the “generally” high
dimensionality of the input space, we propose to exploit principles of the
Partial Least Square regression (PLS) [Wold et al., 1982, Tenenhaus, 1998].
PLS regression creates a set of orthogonal latent variables (PLS component)
t1, t2, . . . , tm, linear combinations of the original variables but, contrary to
principal component analysis (PCA), use the target Y for their determina-
tion. The PLS components th is obtained from the following constraints
(Tucker criteria):

max
th

cov2(th, Y ) = max
wh

cov2(Xh−1wh, Y )
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such that ‖wh‖ = 1 and th is orthogonal to t1, . . . , th−1,

where X0 = X and Xh−1 is the residual of the regression of X on t1, . . . , th−1.
A least square regression is then performed to relate Y to the PLS com-

ponents.
But PLS was not originally designed as a tool for classification. Thus,

based on the algorithmic structure of PLS regression, the PLS logistic re-
gression was proposed for classification task [Tenenhaus, 2002, Bastien et al.,
2004].

PLS regression is designed to operate with input data that are high-
dimensional and highly correlated (PLS is very popular in the chemometrics
field), such a situation encountered by the use of kernel function [Schölkopf
and Smola, 2002]. Based on kernel techniques, Rosipal and Trejo have pro-
posed a nonlinear extension of PLS regression, the Kernel PLS regression
(KPLS regression) [Rosipal and Trejo, 2001]. The approach was subsequently
extended to the kernel orthonormalized PLS for classification problems [Rosi-
pal et al., 2003] using Barker and Rayens approach [Barker and Rayens, 2003].

In this paper we present a non linear extension via kernel of the PLS
logistic regression: Kernel Logistic PLS (KL-PLS). Following Bennet and
Embrechts who demonstrated interest of directly exploit kernel within the
framework of PLS regression [Bennett and Embrechts, 2003] and noting the
close connection between KPLS and PLS regression of Y on the kernel K,
[Appendix 1], we propose an algorithm directly based on the factorization of
the kernel matrix.

Furthermore, thanks to the statistical tests related to logistic regression,
KL-PLS allows detecting points close to “support vectors” (points used by
the Support Vector Machines (SVM) to compute the decision boundary). It
is therefore possible to select a subset of the training set that is sufficient to
derive the SVM decision boundary.

2 Kernel Logistic PLS (KL-PLS)

2.1 Algorithm

Principle of KL-PLS is to compute orthogonal latent variables in the space
induced by the kernel matrix before performing logistic regression in the
derived feature space. Therefore, KL-PLS is a 3-step algorithm:

1. Computation of the kernel matrix
Let X be the matrix comprising the p explanatory variables xk, k =
1, . . . , p and Y a binary variable (the target) observed on n samples. Let
K be the kernel matrix associated to X . A usual kernel is given below:

Gaussian kernel: K(xi, xj) = exp

(

−
‖xi−xj‖

2

2σ2

)
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The dimension of the kernel matrix is n × n. Each cell kij is a measure
of similarity between the individuals i and j.

2. Computation of the KL-PLS components

2.1 Computation of the first KL-PLS component t1

Step 1: Compute the regression coefficient a1j of kj in the lo-
gistic regression of Y on kj , j = 1, . . . , n
Step 2: Normalize the column vector a1 made by a1j ’s: w1 =
a1/‖a1‖
Step 3: Compute the first KL-PLS component as t1 = Kw1

2.2 Computation of the hth KL-PLS component th

Let assume that in the previous steps, the KL-PLS components
t1, . . . , th−1 have been yielded. This block is designed to get variables
which, in addition to - and orthogonally to - t1, . . . , th−1, hold resid-
ual information on Y . The hth KL-PLS component is subsequently
computed from the residual of the regression of kj , j = 1, . . . , n on
t1, . . . , th−1.

Step 1: Compute the residual eh1, . . . , ehn from the multiple
regression of kj , j = 1, . . . , n on t1, . . . , th−1. Let Kh−1 be the
matrix comprising εh1, . . . , εhn.
Step 2: Compute the coefficients ahj of ehj in the logistic re-
gression of Y on t1, . . . , th−1 and ehj .
Step 3: Normalize the column vector ah made by ahj ’s: wh =
ah/‖ah‖.
Step 4: Compute the hth PLS component: th = Kh−1wh.
Step 5: Express the component th in terms of K as th = Kw∗

h.

3. Logistic regression of Y on the m retained KL-PLS components

P (Y = 1|K = k) =
eα0+

P

m
h=1

αhth

1 + eα0+
P

m
h=1

αhth
.

2.2 Remarks

2.3 Selection of the number of useful KL-PLS components

Computation of the KL-PLS component th may be simplified by setting non-
significant regression coefficients ahj to 0. Only variables that are significantly
related to Y contribute to the computation of th. The number m of KL-PLS
components to be retained may be chosen by cross-validation or by observing
that the component tm+1 is not significant because none of the coefficients
a(m+1)j is significantly different from 0.
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2.4 Expression of KL-PLS component in term of original
variables

Expression of PLS components in terms of original variables is a fundamental
step to analyze new data. Indeed, let Ktest be the new dataset. The matrix
product T test = Ktest × W ∗ allows to compute the values of the KL-PLS
components for the new dataset.

2.4.1 Computation of w
∗

h

a. The first KL-PLS component is already expressed in terms of original
variables : t1 = Kw1 and w∗

1 = w1.
b. The second KL-PLS component is expressed in terms of the residuals in

the regression of the original variables on t1. From K = t1p
′
1 + K1 and

t2 = K1w2 we get:

t2 = K1w2 = (K − t1p
′
1) = (K − Kw1p

′
1)w2 = K(I − w1p

′
1)w2

︸ ︷︷ ︸

w∗

2

= Kw∗
2 .

c. In a similar way, it can be shown that th is expressed in terms of the
original variables as:

th = Kh−1wh =

(

K −

h−1∑

i=1

tipi

)

· wh =

(

K −

h−1∑

i=1

Kw∗
i p′i

)

· wh

= K

(

I −

h−1∑

i=1

w∗
i p′i

)

· wh

︸ ︷︷ ︸

w∗

h

= Kw∗
h.

3 Kernel Logistic PLS and detection of support vectors

3.1 Preliminary considerations

SVM was designed to find the “optimal separating hyperplane” i.e. the hyper-
plane whose minimal distance to the training examples is maximum (fig. 1)
[Vapnik, 1998]. The optimal hyperplane is defined by a vector β and a scalar
β0 through the equation:

arg max
β,β0

min
{

‖x − xi‖ : x ∈ R
n, (xtβ + β0) = 0, i = 1, . . . , n

}

.

Points which “support” hyperplanes H1 and H2 are the “support vec-
tors”. Only support vectors take part in the construction of the SVM deci-
sion boundary. We propose an approach which is able to detect points, called
“ambiguous points” thereafter, close to support vectors. This procedure is
achieved by removing a subset of training examples with minimal impact on
the SVM decision boundary position.
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Fig. 1. Optimal separating hyperplane.

3.2 Detection of ambiguous points

During the construction of the first KL-PLS component, coefficients a1j of
kj in the logistic regression of Y on each kj , j = 1, . . . , n are computed.
If a point j is, on the average, closer to the points belonging to its own
group than to the points belonging to the other group, then kj has, on the
average, a larger value (in the case of Gaussian kernel) for the individuals
belonging to the group containing j than for the other individuals. We can
expect the regression coefficient a1j to be highly significant in this situation.
Consequently, it is proposed to label points associated to non-significant a1j

to the risk α (Wald test) as ambiguous.

The number of ambiguous points can, subsequently be controlled by in-
creasing the risk α.

4 Results

4.1 Banana data projection onto the two first components found
by KL-PLS

Banana data is a 2D dataset (two classes). 400× 2 training set is associated
to a 4,600× 2 testing set. Figure 2 depicts projection of the original training
and testing data onto the two first components found by KL-PLS (training
data). A nice linear separation of the two classes can be seen in the feature
space and logistic regression is adequate to achieve an efficient classification.
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Fig. 2. Banana data depict onto the two first components found by kernel logistic
PLS.

4.2 Benchmarks

The usefulness of KL-PLS was tested on several benchmark
data sets (two-class classification) used in [Mika et al., 1999]
and [Rätsch et al., 2001]. These datasets are available at
http://ida.first.gmd.de/̃raetsch/data/benchmarks.htm. Each dataset
consists of 100 different training and testing partitions. Several methods
(KFD, SVM, KPLS-SVC) have already been used and results are presented
in table 1. Baudat and Anouar have proposed a nonlinear extension of
the Fisher Discriminant Analysis via “Kernel Trick”: the Kernel Fisher
Discriminant analysis (KFD) [Baudat and Anouar, 2000]. The kernel
orthonormalized PLS + SVC (KPLS-SVC) is based on the kernel orthonor-
malized PLS method for dimensionality reduction followed by SVM on
retained PLS components for classification [Rosipal et al., 2003]. In all cases
the Gaussian kernel was used. KL-PLS efficiency relies on the value of width
of the Gaussian and the number of retained KL-PLS components Those
values are selected based on the minimum classification error observed after
five-fold cross validation on the first five training sets. Results of logistic
regression (LR) are also presented. Results achieved for the 11 benchmarks
demonstrate the efficiency of KL-PLS and its competitiveness with other
state-of-the-art classification methods.

4.3 Ambigous points and support vectors

4.3.1 Simulated checkerboard A 4 × 4 checkerboard is represented in
fig 3. Twenty-five uniformly points labeled according to checkerboard pattern
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Table 1. Comparison of the mean and standard deviation classification errors
(test set) for KFD [Mika et al., 1999], SVM [Rätsch et al., 2001], Kernel PLS-
SVC [Rosipal et al., 2003], Logistic Regression (LR) and KL-PLS. The last column
provides the width of the Gaussian kernel and the number of retained KL-PLS
components.

KL-PLS

Data set KFD SVM KPLS-SVC LR KL-PLS parameters

Banana 10.8± 0.5 11.5± 0.5 10.5± 0.4 47.0 ± 4.48 10.7 ± 0.5 (0.9, 10)
B. Cancer 25.8± 4.6 26.0± 4.7 25.1± 4.5 27.5 ± 4.7 25.8 ± 4.4 (50, 7)
Diabetis 23.2± 1.6 23.5± 1.7 23.0± 1.7 23.3 ± 1.8 23.0 ± 1.7 (60, 4)
German 23.7± 2.2 23.6± 2.1 23.5± 1.6 24.0 ± 2.1 23.2 ± 2.1 (20, 2)
Heart 16.1± 3.4 16.0± 3.3 16.5± 3.6 16.9 ± 2.9 16.0 ± 3.2 (20, 3)
Ringnorm 1.49± 0.12 1.66± 0.12 1.43± 0.10 25.3 ± 0.8 1.44 ± 0.09 (200, 2)
F. Solar 33.2± 1.7 32.4± 1.8 32.4± 1.8 34.6 ± 3.7 32.7 ± 1.8 (12, 1)
Thyroid 4.20± 2.07 4.80± 2.19 4.39± 2.1 10.3 ± 2.7 4.35 ± 1.99 (15, 6)
Titanic 23.2± 2.06 22.4± 1.0 22.4± 1.1 22.7 ± 1.1 22.4 ± 0.04 (300, 2)
Twonorm 2.61± 0.15 2.96± 0.23 2.34± 0.11 3.81 ± 0.53 2.37 ± 0.10 (40, 1)
Waveform 9.86± 0.44 9.88± 0.43 9.58± 0.36 13.48 ± 0.7 9.74 ± 0.46 (15, 4)

was generated within each square. Fig. 3 depicts the projection of the 4 × 4
checkerboard from both classes onto the two first components found by KL-
PLS. A nice separation of the two classes can be seen. Note that support
vectors and ambiguous (blue circles) are pretty close.
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Fig. 3. Comparison between Support Vectors and Ambiguous Points (blue circles).

4.3.2 Selection of ambiguous points (banana data) The SVM de-
cision boundary only depends on the support vectors. In order to evaluate
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Table 2. Confusion matrix between Support Vectors and ambiguous points.

Ambiguous Non ambiguous

points points Total

Support vector 112 36 148
Non support vector 23 229 252
Total 135 265 400

proximity between ambiguous points and support vectors, SVM was trained
on “α-selected” ambiguous points. Results were compared to those obtain
by SVM (full training set).
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Fig. 4. Efficiency of SVM classification as function of the size of the training set.
o - randomly selected points for the training set. + - points selected with respect
to their significant level (p).

The following operations were carried out:

i. We compute the mean test set classification error based on SVM trained
on full training set on the 100 partitions of banana data.

ii. For each α = {0.01, 0.02, . . . , 0.2}, KL-PLS was trained on the 100 par-
titions of banana data. It allows detection of ambiguous points for each
partition. Then, SVM is trained on ambiguous points for each partition.
We compute the mean test set classification error.

iii. For each α = {0.01, 0.02, . . . , 0.2}, SVM was trained on randomly se-
lected points in the same proportion as the ambiguous points related to
this value of α for each partition. We compute the mean test set classi-
fication error.
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SVM train on ambiguous point gives performances similar to SVM train
on full training set when the number of ambiguous points is close to the
number of support vectors. Syed et al. have shown that the discarding of even
a small proportion of the support vectors can lead to a severe reduction in
generalization performance [Syed et al., 1999]. They stated that this implies
that the support vector set chosen by SVM is a minimal set; this can explain
the behavior of the (blue - cross) curve (fig. 4) when considering low numbers
of ambiguous points.

5 Discussion and conclusion

Performances of KL-PLS are equivalent to the most powerful classification
methods such as SVM, KPLS-SVC or KFD. This algorithm is very simple
to implement since it is solely composed of ordinary least square and logistic
regressions. Furthermore, it is possible to compute KL-PLS components
only by considering individual column vectors of the kernel matrix. These
properties make possible to highlight 3 interests of KL-PLS:

a. KL-PLS does not require the full kernel matrix in memory but the
columns of the kernel individually.

b. Inversions of small dimension matrices (number of KL-PLS components
+1) take place in the algorithm.

c. The introduction of intercept when constructing the latent variables,
avoid the kernel centering method proposed by Wu et al. [Wu et al.,
1997].

⇒ KL-PLS allows management of very high dimensional data.
Furthermore, direct factorization of the kernel matrix offers 2 advantages:

a. K does not need to be square
b. K does not need defining a dot product in the feature space induced

by the “kernel trick”. The Mercer’s conditions (positive definite) are
subsequently not required.

⇒ K just need to contain similarity measures.
Moreover, Kernel-PCA is often used as a preliminary step for dimensional

reduction prior classification [Schölkopf et al., 1998]. A more powerful goal-
driven preprocessing is built in KL-PLS.

Lastly, leaning on Wald tests related to the logistic regression, it is pos-
sible to detect “ambiguous points” close to support vectors. This approach
specifically selects examples from the training set close to support vectors.
SVM computational charges are consequently reduced without jeopardizing
classification.

Works in progress comprise the extension of KL-PLS approach to the
multi-class classification problems, the study of the relationship between “am-
biguous points” and “Support Vectors” and the extension of Kernel Logistic
PLS to the kernel generalized PLS via generalized linear model.
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6 Appendix: KPLS and PLS regression of Y on K

6.1 Kernel PLS (KPLS)

Höskuldsson shows that the weights vector wPLS
1 corresponds to the eigenvec-

tor associated to the greatest eigenvalue of the matrix X ′Y Y ′X [Höskuldsson,
1988]. The first PLS component is then tPLS

1 = XwPLS
1 .

⇒ X ′Y Y ′XwPLS
1 = λwPLS

1

⇔ XX ′Y Y ′XwPLS
1

︸ ︷︷ ︸

tP LS
1

= λXwPLS
1

︸ ︷︷ ︸

tP LS
1

The first PLS component is the eigenvector associated to the greatest
eigenvalue of XX ′Y Y ′.

Within the framework of PLS 1: Y ∈ R
n.

⇒ Y ′XwPLS
1 is a scalar

⇒ tPLS
1 is proportional to XX ′Y and thus, we can rigorously be reduced

to the framework of the kernel trick, giving arise to Kernel PLS; and write
that tKPLS

1 = KY .

6.2 PLS regression of Y on K (DK-PLS)

In a similar way, the weight vector wDK−PLS
1 corresponds to the eigenvector

associated to the greatest eigenvalue of the matrix K ′Y Y ′K. The first DK-
PLS component is then tDK−PLS

1 = KwDK−PLS
1 .

⇒ K ′Y Y ′KwDK−PLS
1 = λwDK−PLS

1

⇔ KK ′Y Y ′KwDK−PLS
1

︸ ︷︷ ︸

t
DK−P LS
1

= λKwDK−PLS
1

︸ ︷︷ ︸

t
DK−P LS
1

.

The first DK-PLS component is the eigenvector associated to the greatest
eigenvalue of KK ′Y Y ′.

Within the framework of PLS 1: Y ∈ R
n.

⇒ Y ′KwDK−PLS
1 is a scalar

⇒ tDK−PLS
1 is proportional to KK ′Y being, by construction, symmetric

⇒ tDK−PLS
1 is proportional to K2Y .

In a similar way, tK−PLS
h = Kh−1Y and tDK−PLS

h = K2
h−1Y =

Kh−1w
DK−PLS
h where wDK−PLS

h = Kh−1Y and Kh−1 is the matrix com-
prising the p residual vector eh1, . . . , ehp of the ordinary least square of
kj , j = 1, . . . , p on t1, . . . , th−1. Let us notice that tK−PLS

h = wDK−PLS
h .


