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Multiple Correspondence Analysis (MCA) and log-linear modeling are two techniques for multi-way contingency table analysis having different approaches and fields of applications. Log-linear models are interesting when applied to a small number of variables. Multiple Correspondence Analysis is useful in large tables. This efficiency is balanced by the fact that MCA is not able to explicit the relations between more than two variables, as can be done through log-linear modeling. The two approaches are complementary. We present in this paper the distribution of eigenvalues in MCA when the data fit a known log-linear model, then we construct this model by successive applications of MCA. We also propose an empirical procedure, fitting progressively the log-linear model where the fitting criterion is based on eigenvalue diagrams. The procedure is validated on several sets of data used in the literature.

INTRODUCTION

Multiple Correspondence Analysis and log-linear modeling are two very different, but mutually beneficial approaches to analyzing multi-way contingency tables: log-linear models are profitably applied to a small number of variables. Multiple Correspondence Analysis is useful in large tables. This efficiency is balanced by the fact that MCA is not able to explicit relations between more than two variables, as can be done through log-linear modeling. The two approaches are complementary. After a short reminder on MCA and log-linear approaches, we study the distribution of eigenvalues in MCA under modeling hypotheses, especially in the case of independence. At the end we propose an algorithmic approach for fitting log-linear models where the fitting criterion is based on eigenvalues diagram.

A SHORT SURVEY OF MULTIPLE CORRESPONDENCE ANALYSIS AND LOG-LINEAR MODELS

root of the eigenvalues in the CA of the associated Burt table. MCA of X corresponds to the diagonalization of the matrix 1 p (D -1 X X) = 1 p (D -1 B) where D = Diag(X X) = Diag(B).

The structure of the eigenvalue diagram depends on the variable interactions. It is well known that in the case of pairwise independent variables, the q non-trivial eigenvalues are theoretically equal to to 1 p , where

p i=1 m ip .

Log-linear modeling

Log-linear modeling is a well-known method for studying structural relationships between categorical variables in a multiple contingency table when all the variables have no particular role. Relatively recent and not as well known in France as MCA, log-linear modeling has many classical references. After first works of Birch [START_REF] Birch | Maximum likelihood in three-way contingency tables[END_REF] in 1963 and Goodman [START_REF] Goodman | Simple models for the analysis of association in crossclassifications having ordered categories[END_REF], we must mention the basic books of Haberman [START_REF] Haberman | The Analysis of Frequency Data[END_REF], Bishop, Fienberg & Holland [START_REF] Bishop | Discrete Multivariate Analysis: Theory and Practice[END_REF], Fienberg [START_REF] Fienberg | The Analysis of Cross-Classified Categorical Data[END_REF].

More Recently, Dobson [START_REF] Dobson | An Introduction to Statistical Modelling[END_REF], Agresti [START_REF] Agresti | Categorical Data Analysis[END_REF], Christensen [START_REF] Christensen | Log-Linear Models[END_REF] have written syntheses on the subject supplemented with personal contributions.

Whittaker [START_REF] Whittaker | Graphical Models in Applied Multivariate Statistics[END_REF] devotes a large part of his book to log-linear models before defining associated graphical models.

Log-linear modeling in the binomial case

Let X = (X 1 , X 2 , ..., X p ) be a k-dimensional random vector, with values in {0, 1} k . The expression for the k-dimensional probability density of X is:

f k (X) = p(0, 0, ..., 0) (1-x 1 )(1-x 2 )•••(1-x k ) • p(1, 0, ..., 0) x 1 (1-x 2 )•••(1-x k )
• p(0, 1, ..., 0)

(1-x 1 )x 2 •••(1-x k ) ••• p(0, 0, ..., 1) (1-x 1 )(1-x 2 )•••x k ••• p(1, 1, ..., 0) x 1 x 2 •••(1-x k ) ••• p(1, 1, ..., 1) x 1 x 2 •••x k .
We can write the density function as a log-linear expansion:

log[f k (X)] = u o + k i=1 u i x i + k i,j=1, i =j u ij x i x j + k i,j, l=1, i =j =l u ijl x i x j x l + • • • + u 123...k x 1 x 2 • • • x k
where u o = log[p(0,0,...,0)], u i = log[ p(0,0,...,0,1,0,...0) p(0,0,...,0)

] and the u-terms u ij , ..., u 123...k are a log cross product ratio in the (k, k) probability table. The u-term u ij is set to zero when X i and X j are independent variables.

Log-linear modeling in the multinomial case

Let X = (X 1 , X 2 , ..., X k ) be a k-dimensional random vector, with values in {0, 1, ..., m 1 -1} × {0, 1, ..., m 2 -1} × ... × {0, 1, ..., m k -1} instead of in {0, 1} k as in the preceding case.

The generalisation to the k-dimensional cross-classified multinomial distribution is the log-linear expansion:

log[f k (X)] = u o + k i=1 u i (x) + k i,j=1, i =j u ij (x) + k i,j, l=1, i =j =l u ijl (x) + • • • + u 123...k (x) .
Each u-term is a coordinate projection function with the coordinates indicated by its index; and each u-term is constrained to be zero whenever one of its indicated coordinates is zero.

The importance of log-linear expansions rests with the fact that many interesting hypotheses can be generated by setting some u-terms to zero.

We are interested particularly in this paper with graphical and hierarchical log-linear models.

Graphical log-linear models

Let G = (K, E) be the independence graph of the k-dimensional random vector X, with k vertices in K = {1, 2, ..., k} and edge set E. G is the set of pairs (i, j) such that whenever (i, j) is not in E the variables X i and X j are independent conditionally on the other variables.

Given an independence graph G, the cross classified multinomial distribution for the random vector X is a graphical model for X, if the distribution of X is different from constraints of the form that for all pair of coordinates not in the edge set E of G, the u-terms constraining the selected coordinates are identically zero.

Hierarchical log-linear models

A graphical model satisfies constraints of the form that all u-terms 'above' a fixed point have to be zero to get conditional independence. A larger class of models, the hierarchical models, is obtained by allowing more flexibility in setting the u-terms to zero.

A log-linear model is hierarchical if, whenever one particular u-term is constrained to zero then all higher u-terms containing the same set of subscripts are also set to zero.

We note here that every distribution with a log-linear expansion has an interaction (or independence) graph, and a hierarchical log-linear model is graphical if and only if its maximal u-terms correspond to cliques in the independence graph.

When all the u-terms are non-zero, we have the saturated model.

In the case when only the u i are non-zero, the model is called the mutual independence model:

log[f k (X)] = u o (x) + k i=1 u i (x) .
When only u i and some of u ij are non-zero, the model is called a conditional independence model:

log[f k (X)] = u o (x) + k i=1 u i (x) + i,j u ij (x) .
These conditional independence models refer to simple interactions between some variables.

Parameters estimation and related tests

Theoretical frequencies are generally estimated using the maximum-likelihood method. Weighted regression, or iterative methods can be also used as well since log-linear models are particular cases of the generalized linear model. Usually the classical χ 2 or the G 2 tests (the likelihood ratio) are used to assess log-linear models. The values of the two statistics increase with the number of variables, and decrease with the number of interactions. The closer the statistics are to zero, the better the models.

Model selection becomes difficult when the number of variables grow: e.g. with four variables there are 167 different hierarchical models. To avoid the "combinatory explosion" we can use criterions based on the Kullback information like the Akaike criterion:

AIC = -2 log( L) + 2 k (An Information criterion) ,
or the Schwartz criterion:

BIC = -2 log( L) + k log(n) (Bayesian Information criterion) ,
where L is the maximum of the likelihood function (L), and k the number of parameters maximising L.

Multiple Correspondence Analysis and log-linear model as complementary tools of analysis

In this section, we present some works that show how CA (or MCA) and log-linear modeling can be related. This leads to a better understanding of CA, and to a combined use of both methods.

CA is often introduced without any reference to other methods of statistical treatment of categorical data with proven usefulness and flexibility.

A major difference between CA and most other techniques for categorical data analysis lies in the use of probability models. In log-linear analysis (LLA), for example, a distribution is assumed under which the data are collected, then a log-linear model for the data is hypothesized and estimations are made under the assumption that this probability model is true, and finally these estimates are compared with the observed frequencies to evaluate the log-linear model. In this way it is possible to make inferences about the population on the basis of the sample data.

In CA, it is claimed that no underlying distribution has to be assumed and no model has to be hypothesized, but a decomposition of the data is obtained to study the 'structure' in the data.

A vast literature has been devoted to the assessment of CA (or MCA) and LLA. We briefly report here some of that literature.

Several works compare CA or MCA and LLA. Daudin and Trecourt [START_REF] Daudin | Analyse factorielle des correspondances et modéle log-linéaire: comparaison des deux méthodes sur un exemple[END_REF] demonstrate empirically that LLA is better adapted to study global relationships between the variables, in the sense that marginal liaisons are eliminated in the computation of profiles.

Goodman [START_REF] Goodman | Simple models for the analysis of association in crossclassifications having ordered categories[END_REF], [START_REF] Goodman | Association models and the bivariate normal for contingency tables with ordered categories[END_REF], [START_REF] Goodman | Association models and canonical correlation in the analysis of cross-classifications having ordered categories[END_REF], [START_REF] Goodman | Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables (with comments)[END_REF], [START_REF] Goodman | Measures, models and graphical display in the analysis of cross-classified data[END_REF] defines two models belonging to the same family: the saturated row column correspondence analysis model as a generalization of MCA, and the row column association model as a generalization of LLA. He demonstrates, with illustrations by examples, that using these models is better than using the classical methods.

Baccini, Mathieu and Mondot [START_REF] Baccini | Comparaison sur un exemple, d'analyse des correspondances multiples et de modélisations[END_REF] use an example to compare the two methods. Jmel [START_REF] Jmel | Mode ĺes graphiques, analyse en composantes principales et analyse des correspondances multiples: comparaisons sur des exemples[END_REF], De Falguerolles, Jmel and Whittaker [START_REF] De Falguerolles | Un modèle graphique pour la sélection de variables qualitatives[END_REF], [START_REF] De Falguerolles | Correspondence analysis and association models constrained by a conditional independence graph[END_REF] use graphical models compared to MCA.

Other works use CA or MCA and LLA as a combined approach to contingency table analysis: Van der Heijden and de Leeuw [START_REF] Van Der Heijden | Correspondence analysis used complementary to log-linear analysis[END_REF], [START_REF] Van Der Heijden | Comment on "Correspondence analysis used complementary to log-linear Analysis[END_REF], [START_REF] Van Der Heijden | A combined approach to contingency table analysis using correspondence analysis and log-linear analysis (with discussion)[END_REF], Novak and Hoffman [START_REF] Novak | Residual scaling: an alternative to correspondence analysis for the graphical representation of residuals from log-linear models[END_REF] and others, use CA as a tool for the exploration of the residuals from log-linear models, and give an example of the procedure.

Worsley [START_REF] Worlsley | Un exemple d'identification d'un modèle log-linéaire grâce à une analyse des correspondances (avec discussion)[END_REF] shows that in certain cases CA leads directly to the appropriate log-linear model. [START_REF] Lauro | Correspondence analysis and log-linear models in multi-way contingency tables. Some remarks on experimental data[END_REF] used AC as a procedure for the identification of best log-linear models.

Lauro and Decarli

EIGENVALUES IN CORRESPONDENCE ANALYSIS

It is well known that MCA is an extension of CA, although we first present eigenvalues in CA, and some simple rules for the selection of the number of eigenvalues.

Asymptotic distribution of eigenvalues in Correspondence Analysis

Let N be a contingency table with m 1 rows and m 2 columns, and let us assume that N is the realization of a multinomial distribution M (n, p ij ) which is realistic. In this framework the observed eigenvalues µ i are estimators of the eigenvalues λ i of nP , where P is the table of unknown joint probabilities.

Lebart [START_REF] Lebart | The significance of eigenvalues issued from correspondence analysis[END_REF] and O'Neill [START_REF] O'neill | Asymptotic distributions of the canonical correlations from contingency tables[END_REF], [START_REF] O'neill | Distributional expansion for canonical correlations from contingency tables[END_REF], [START_REF] O'neill | A note on the canonical correlations from contingency tables[END_REF] proved the following result: if µ i = 0 then λ i has the same distribution as the corresponding eigenvalues of a (m 1 -1)(m 2 -1) degrees of freedom from the Wishart matrix:

W (m 1 -1)(m 2 -1) (r, l) where r = min(m 1 -1, m 2 -1).
If µ j = 0 then λ j is asymptotically normally distributed, but with parameters depending on the unknown p ij . Since it is difficult to test this hypothesis, some authors have proposed a bootstrap approach, which unfortunately is not valid: since the empirical eigenvalues, on which the replication is based, are generally not null, we cannot observe the distribution based on the Wishart matrix.

Malinvaud's test

Based upon the reconstitution formula, which is a weighted singular value decomposition of N :

n ij = (n i• n •j ) n     1 + k (a ik b ki ) √ λ k     ,
where a ik , b ik are the factorial components associated to the row and column profiles.

We may use a chi-square test comparing the observed n ij from a sample of size n to the expected frequencies under the null-hypothesis H k of only k non zeros. The µ i weighted least squares estimates of these expectations are precisely the n ij of the reconstitution formula with its first k terms. We then compute the classical chi-square goodness of fit statistic:

Q k = i j ( n ij -n ij ) 2 n ij . If k = 0 (independence), Q 0 is compared to a chi-square with (m 1 -1) (m 2 -1) degrees of freedom. Under H k , Q k is asymptotically distributed like a chi-square with (m 1 -k -1) (m 2 -k -1
) degrees of freedom. However Q k suffers from the following drawback: if n ij is small, n ij can be negative and the test statistic cannot be used. This is not the case for the modification proposed by E. Malinvaud [START_REF] Malinvaud | Data analysis in applied socio-economic statistics with special consideration of correspondence analysis[END_REF] who proposed to use

(n i• n •j ) n
instead of n ij for the denominator. Furthermore, this leads to a simple relation with the sum of the discarded eigenvalues:

Q k = i j ( n ij -n ij ) 2 (n i• n •j ) n = n (λ k+1 + λ k+2 + ... + λ r ) .
Q k is also asymptotically distributed like a chi-square with (pk -1) (qk -1) degrees of freedom.

BEHAVIOUR OF EIGENVALUES IN MCA UNDER MODELING HYPOTHESES

Let X = (X 1 |X 2 |...|X p ) be a disjunctive table of p categorical variables X i (with respectively m i modalities) observed on a sample of n individuals, and q the number of non trivial eigenvalues (as defined in § 2.1).

Multiple Correspondence Analysis is the CA of disjunctive table X.

The rank of X: rank(X) = min(q+1; n), so equals q+1 if n > q+1.

We suppose, without loss of generality, that n is large enough, which is the usual case. CA factors are the eigenvectors of the matrix 1 p D -1 B (where B and D are defined in § 2.1). So D -1 B is a diagonal unit matrix.

Its trace is: Tr

(D -1 B) = p i=1 m i and 1 p Tr(D -1 B) = 1 p p i=1 m i . Since q i=1 µ i = 1 p p i=1 m i -1, we can conclude that (2) 1 q q i=1 µ i = 1 p and (3) 
q i=1 (µ i ) 2 = 1 p 2 p i=1 (m i -1) + 1 p 2 i =j ϕ 2 ij
where ϕ 2 ij is the observed Pearson's ϕ 2 crossing of X i with X j , and

ϕ 2 = 1 n i j n ij - n i• n •j n 2 n i• n •j n = χ 2 n ,
(n i• and n •j are margin effectives).

Although MCA is an extension of CA, the results of § 3 are not valid and one cannot use Malinvaud's test: elements of X being 0 or 1 and not frequencies,

Q k and Q k do not follow a chi-square distribution.
However it is possible to get information about the dispersion of the q eigenvalues in particular cases [START_REF] Ben Ammou | Sur la normalité asymptotique des valeurs propres en ACM sous l'hypothèses d'indépendance des variables[END_REF].

Distribution of eigenvalues in MCA under independence hypothesis

Under the hypothesis of pairwise independence of the variables X i , all ϕ 2 ij = 0 and equation (3), becomes

q i=1 (µ i ) 2 = 1 p 2 p i=1 (m i -1) .
Using (2) we get

q i=1 (µ i ) 2 = 1 p 2 q ,
and finally:

q i=1 (µ i ) 2 = 1 p 2 = 1 q i (µ i ) 2 .
Since the mean of the squared µ i equals their squared means only if all the terms are equal, we can conclude that all the eigenvalues have the same value, so that:

µ i = 1 p , ∀ i .
We conclude that the theoretical MCA (i.e. for the population), under the hypothesis of pairwise independence of the variables X i leads to one q-multiple non-trivial non-zero eigenvalue λ = 1 p . And the eigenvalue diagram has the particular shape shown in Figure 1 : This result is not true when we have a finite sample, since sampling fluctuations make the observed ϕ 2 ij = 0. Although the trace of 1 p (D -1 B) and µ the mean of the observed non-trivial eigenvalues, are constants, we observe q different non-trivial eigenvalues µ i = 1 p , and the eigenvalue diagram takes the shape shown in Figure 2 : 

λ I Eigenvalues diagram λ 1 λ 2 λ 3 λ 4 λ 5 . . .
λ I Eigenvalues diagram λ 1 λ 2 λ 3 λ 4 λ 5 . . .

Dispersion of eigenvalues

Let S 2 µ be the measure of µ i around 1 p given by:

S 2 µ = 1 q q i=1 µ i - 1 p 2 = 1 q q i=1 (µ i ) 2 - 1 p 2 , which implies q i=1 (µ i ) 2 = q S 2 µ + 1 p 2 .
Using equations ( 1)&(3), we have:

q i=1 (µ i ) 2 = q p 2 + 1 p 2 i =j ϕ 2 ij = q p 2 + 1 n p 2 i =j χ 2 ij .
Under the hypothesis of pairwise independence of the variables, the χ 2 ij are realizations of χ 2 (m i -1)(m j -1) variables, so their expected values are (m i -1) (m j -1).

We can then easily compute E( q i=1 (µ i ) 2 ), and get:

E q i=1 (µ i ) 2 = q p 2 + 1 p 2 1 n i =j (m i -1) (m j -1)
.

Finally:

E(S 2 µ ) = 1 q E q i=1 (µ i ) 2 - 1 p 2
and we obtain:

E(S 2 µ ) = 1 p 2 1 n 1 q i =j (m i -1) (m j -1) . Now, since E(S 2 µ ) = σ 2
, we may assume that 1 p ± 2 σ contains roughly 95% of the eigenvalues. Moreover, since the kurtosis of the set of eigenvalues is lower than for a normal distribution, this proportion is actually probably larger then 95%.

Estimation of the Burt table

Let X be the disjunctive table associated to p categorical variables X i , with m i modalities respectively, observed on a sample of n individuals, where

X i = (X i1 , X i2 , ..., X im i ), X is a matrix made (of p-block) of p blocks X i X = (X 1 | X 2 | ... | X i | ... | X p ) .
Let (X j i1 , X j i2 , ..., X j ip ) be the observed value of X i on the j th individual.

We can write

X =        X 1 11 • • • X 1 1m 1 X 1 21 • • • X 1 2m 2 • • • X 1 p1 • • • X 1 pmp X 2 11 • • • X 2 1m 1 X 2 21 • • • X 2 2m 2 • • • X 2 p1 • • • X 2 pmp . . . . . . . . . . . . X n 11 • • • X n 1m 1 X n 21 • • • X n 2m 2 • • • X n p1 • • • X n pmp        . The Burt table of X is then B =       X 1 X 1 X 1 X 2 • • • X 1 X p X 2 X 1 X 2 X 2 • • • X 2 X p . . . . . . . . . . . . X p X 1 X p X 2 • • • X p X p       =       B 11 B 12 • • • B 1p B 21 B 22 • • • B 2p . . . . . . . . . . . . B p1 B p2 • • • B pp      
, where

B i = B ii = X i X i =                   n j=1 (X j 1i ) 2 n j=1 (X j 1i ) (X j 2i ) • • • n j=1 (X j 1i ) (X j m i i ) n j=1 (X j 2i ) (X j 1i ) n j=1 (X j 2i ) 2 • • • n j=1 (X j 2i ) (X j m i i ) . . . . . . . . . . . . n j=1 (X j m i i ) (X j 1i ) n j=1 (X j m i i ) (X j 2i ) • • • n j=1 (X j m i i ) 2                  
and

X j ki = 0 1 with m i k=1 X j ki = 1.
Since there is only one k in {1, ..., m i } such as X k ji = 1, all other being zero, we obtain:

n k=1 (X j ki ) 2 = n k=1 X j ki in {1, ..., n}, ∀ k ∈ {1, ..., m i } and n k=1 (X j ki ) (X k i j ) = 0 ∀ k, k ∈ {1, ..., m i } .
And so can conclude that ∀ i = 1, ..., p the diagonal sub-matrices of the Burt table are themselves diagonal matrices:

X i X i = B i =                n j=1 (X j 1i ) 2 0 . . . n j=1 (X j ki ) 2 . . . 0 n j=1 (X j m i i ) 2               
.

Furthermore, we know that

m i k=1 n j=1 X j ki = m i k=1 (n ki ) = n ,
where

n ki = n j=1 X j ki = n k i
is the number of individuals that have the k th modality of the i th variable (for 1 ≤ i ≤ p and 1 ≤ k ≤ m i ).

So the diagonal sub-matrices of the Burt table are:

B i = B ii =         n 1 i 0 . . . n k i . . . 0 n m i i        
where

m i k=1 n ki n = 1 ∀ i = 1, ..., p .
Consider now two independent variables X α and X β amongst the p variables having respectively m α and m β modalities.

Let B α be the (m α , m α ) square matrix B α = X α X α , and B αβ the (m α , m β ) rectangular matrix B αβ = X α X β .
We have

(B α ) ii = n k=1 X k iα = X α •i and (B α ) ij = 0 if i = j ,
and where

(B αβ ) ij = X k iα X k iβ ≤ n.
Under the hypothesis that X α and X β are independent

(B αβ ) ij = (B α ) ij (B β ) ij n = X α •i X β •i n . Since X α •i = n α i and X β •i = n β i , we can write (B αβ ) ij = n k=1 X α ki X β kj = X α •i X β •i n = n α i n β j n
and, more generally, we can conclude that

X i X j = B ij =              n i 1 n j 1 n n i 1 n j 2 n • • • n i 1 n j m j n n i 2 n j 1 n n i 2 n j 2 n • • • n i 2 n j m j n . . . . . . . . . n i m i n j 1 n n i m i n j 2 n • • • n i m i n j m j n             
if the p variables are mutually independent. Now consider a sample of p multinomial random variables X i . Let p k i = p ik be the probability that an individual be in the k th category of the i th variable, and p k ij be the probably that the j th individual be in the k th category of the i th variable.

The observed Burt table is:

B = X X =        X 1 X 1 X 1 X 2 • • • X 1 X p X 2 X 1 X 2 X 2 • • • X 2 X p . . . . . . . . . . . . X p X 1 X p X 2 • • • X p X p        , with X i X i = N i =                n j=1 (X 1 ij ) 2 0 . . . n j=1 (X j ki ) 2 . . . 0 n j=1 (X j m i i ) 2                = diag{n 1 i , ..., n m i i } . But n k i = n j=1 (X i ki ) 2 = np k i and m i k=1 p k i = 1, so that m i k=1 n k i = n m i k=1 p k i = n, ∀ i = 1, ..., p and X i X j =         n p 1 i 0 . . . n p k i . . . 0 n p m i i         . Since X i and X j are independent variables, X i X j = N ij and (N ij ) kk = (X i X j ) kk = n p k i p k j , which implies X i X j = N ij =         n p i 1 p j 1 n p i 1 p j 2 • • • n i 1 n j m j n p i 2 p j 1 n p i 2 p j 2 • • • n p i 2 p j m j . . . . . . . . . n p i m i p j 1 n p i m i p j 2 • • • n p i m i p j m j         . The maximum-likelihood estimator of p k i is pk i = n k i n , so Ni =         n 1 i 0 . . . n k i . . . 0 n m i i         = B ii and Nij =              n i 1 n j 1 n n i 1 n j 2 n • • • n i 1 n j m j n n i 2 n j 1 n n i 2 n j 2 n • • • n i 2 n j m j n . . . . . . . . . n i m i n j 1 n n i m i n j 2 n • • • n i m i n j m j n              = B ij .
We can conclude that the the maximum-likelihood estimator B of the theoretical Burt table is B the observed one. Using the invariance functional propriety we can affirm that the maximum-likelihood estimators of the eigenvalues of D -1 B are the eigenvalues of D -1 B, so that each µ i is the maximum-likelihood estimator of λ i = λ.

Maximum-likelihood estimators are asymptotically normal, and so, asymptotically, each µ i is normally distributed. But due to the fact that eigenvalues are ordered, the eigenvalues are not identically and independently distributed. However:

E(µ 1 ) > 1 p , E(µ q ) < 1 p but E(µ 1 ) -→ n→∞ 1 p and E(µ q ) -→ n→∞ 1 p .
Furthermore the eigenvalue variances are not the same. And from simulations of large samples of n observations (n = 100, ..., n = 10 000), we notice that the convergence of the eigenvalue distribution to a normal one is slow, especially for the extremes (µ 1 and µ q ), even for very large samples [START_REF] Ben Ammou | Comportement des valeurs propres en analyse des correspondances multiples sous certaines hypothèses de modéles[END_REF].

Distribution of eigenvalues in MCA under non-independence hypotheses

Distribution of the theoretical eigenvalues

Let µ be an eigenvalue of D -1 X X. Since µ can be also obtained by diagonalization of 1 p XD -1 X , µ is a solution of 1 p XD -1 X z = z, where z is an eigenvector associated to µ.

So

1 p p i=1 X i X i X i -1 X i z = µ z ⇐⇒ 1 p p i=1 P i z = µ z ,
where

P i = p i=1 X i (X i X i ) -1
X i is the orthogonal projector on the space spanned by linear combinations of the indicators of variables categories X i .

Let A i the centered projector associated to P i :

A i = P i - 1 m i m i n where 1 m i m i =   1 1 • • • 1 . . . . . . . . . 1 1 • • • 1   .
And so we get

A i z = µ z .

The Case of two-way interactions

Let us assume that among the p studied variables, there is a two-way interaction between X j and X k , and that the (p -2) reminding variables are mutually independent. Multiplying equation ( 4) by A j we get:

1 p A j A 1 0 + A j A 2 0 + • • • + A j A j Aj + • • • + A j A k + • • • + A j A p 0 z = µ A j z ,
since all variables are pairwise independent except X j , X k , and the A i are orthogonal projectors. Thus:

(5)

A j A k z = (p µ -1) A j z .
Similarly, multiplying (4) by A k , we get:

(6) A k A j z = (p µ -1) A k z .

Now let us multiply (5) by A k to get:

A k A j A k z = (p µ -1) A k A j z .
Using (6) we obtain

A k A j A k z z 1 = (p µ -1) 2 A k z z 1
.

With the notation λ = (p µ -1) 2 , we finally write:

(7) A k A j z 1 = λ z 1 .
Equation [START_REF] Birch | Maximum likelihood in three-way contingency tables[END_REF] implies that λ is an eigenvalue of the product of the centered projector A k A j associated to the eigenvector z 1 .

In general: ∀ j, k = 1, ..., p, if there is an interaction between X j and X k , the orthogonal projector

A j A k admits a non zero eigenvalue λ = (p µ -1) 2 . If λ = 0 ⇔ µ = 1
p , the trace of Burt table being constant, there is, at least, another eigenvalue not equal to 1 p .

Let n 0 be the number of eigenvalue non equal to 1 p , so that n 0 i=1 λ i = n 0 p .

Theoretically, (except for the particular case, where λ = 1, for which we have µ = 2 p and µ = 0), the number of non-trivial-eigenvalues greater than 1 p is equal to the number of non-trivial eigenvalues smaller than 1 p .

The eigenvalue diagram shape is shown on Figure 3 : The number n 0 depends on the number of categories of X j and X k , on the number of variables and on the number of dependent variables.
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Let n 1 be the multiplicity of 1 p , we will show that n 1 = q -2 min((m j -1); (m k -1)), when p > 2, and when there is only one two-way interaction between the variables.

This result can be shown as follows:

Let us consider equation ( 4), and suppose, without loss of generality, that X 1 and X 2 are dependant. So, upon multiplication by A 3 : 

1 p p i=1 A i z = µz becomes 1 p (A 3 A 1 + A 3 A 2 + A 3 A 3 + • • • + A 3 A P ) z = µ A 3 z,
   A 1 A 1 + A 1 A 2 + A 1 A 3 + • • • + A 1 A P z = p µA 1 z A 2 A 1 + A 2 A 2 + A 2 A 3 + • • • + A 2 A P z = p µA 2 z ⇐⇒ ⇐⇒ (A 1 + A 1 A 2 ) z = p µ A 1 z (A 2 A 1 + A 2 ) z = p µ A 2 z ⇐⇒ A 1 A 2 b = λ z A 2 A 1 b = λ z where λ = (p µ -1) 2 , a = A 1 z and b = A 2 z.
We recognize here the CA equations, so that the CA of Burt tables, when only two variables are dependent is equivalent to the CA of the contingency tables crossing the two dependent variables. It is well known that the number of eigenvalue in CA equals q -2 min((m j -1); (m k -1)), and for all non trivial λ i , there corresponds the values µ i and µ i such that:

µ i = 1 + √ λ i p and µ i = 1 - √ λ i p .
Finally, the CA of the Burt table may have 2 min((m j -1);(m k -1)) eigenvalues non trivial and not equal to 1 p , associated to the CA of the contingency table. So the number of supplementary eigenvalues equals q -2 min((m j -1); (m k -1)).

There is, in addition, one n 1 multiple eigenvalue, where n 1 is at least q -2 min((m j -1); (m k -1)).

The case of higher order interactions

Since the Burt table is constructed with pairwise cross products of variables, its observation cannot give us information about multiway interactions.

However the observation of the bi-dimensional theoretical Burt sub-tables, for all pairwise variable combinations, can provide us with all the two-way interactions.

The theoretical Burt table can reveal the existence of higher order interactions in the following case:

If B ij = B ii 1 m j m j B jj and B ik = B ii 1 m k m k B kk :
there may be a triple interaction between X i , X j and X k .

In general, a Burt table doesn't give either the order of the interactions, or supplementary information on the eigenvalue behavior.

Distribution of observed eigenvalues

Exceptionally, with a small number of interactions, we observe the particular shape of the eigenvalue diagram exhibited in Figure 4, where we can distinguish eigenvalues near 1 p (theoretically equal to 1 p ), and so we are able to recognize the existence of the independent variables in the analysis. When the number of interaction grows, we cannot distinguish eigenvalues theoretically equal to 1 p from the eigenvalues non equal to 1 p .
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To detect the existence or interactions, we can first check if the observed variables are mutually independent. In that case, the eigenvalues distribution diagram should have a particular shape (see § 4.1.), with more than 95% of the eigenvalues within the confidence interval 1 p ± 2 σ (see § 4.1.1).

If there is one or more eigenvalues out of the confidence interval, we can then assume the existence of one or more two-way interaction between variables.

AN EMPIRICAL PROCEDURE FOR FITTING LOG-LINEAR MODELS BASED ON THE MCA EIGENVALUE DIAGRAM

We propose an empirical procedure for progressively fitting a log-linear model where the fitting test at each step is based on the MCA eigenvalues diagram.

Let X i , X j and X k , three categorical variables, with respectively m i , m j and m k modalities, and let a cross variable with (m i ×m j ) modalities. We suppose that X ij and X k , have the same behavior if m k = m i × m j .

Under the hypothesis that two dependant variables X i and X j have the same behaviour as the variable X k with the same characteristics of the cross variable X ij , we propose here an empirical procedure for fitting progressively, with p steps, the log-linear model where the fitting criterion at each step is based on the MCA eigenvalue diagram. Distribution of observed eigenvalues

Description of the procedure steps

The first step of the procedure consist to test the pairwise independence hypothesis of the variables. To detect existence of interactions, we must first check if all variables are mutually independent. For that matter, we calculate the eigenvalues of MCA on all the p variables, and construct the related confidence interval: the eigenvalue distribution diagram should have a particular shape (cf.

§ 4.1.). If all the eigenvalues belong to the confidence interval 1 p ± 2 σ (cf. § 4.1.1), we can conclude that the p variables are mutually independent. The log-linear model associated to the variables is a simple additive one:

log[f p (X)] = u 0 (x) + p i=1 u i (x) ,
and the procedure is stopped.

If one or more eigenvalue are not in the confidence interval, we conclude that there is at least one double interaction between variables, and we go to the second step of the procedure.

In the second step, we look at all two-way interaction u-terms. We isolate one variable amongst the p variables that we note X p , without loss of generality, and so we obtain a set of (p -1) variables X i , and apply the first step to test pairwise independence of the (p-1) variables.

If the (p-1) variables are independent, we can conclude that the doubles interactions are amongst X p and at least one of the X i , so we construct correspondent cross variables X ip by using the first step to test independence between variables (X i , X p ) where i = 1, ..., p-1. The log-linear model associated to the variables is:

log[f p (X)] = u 0 (x) + p i=1 u i (x) + p-1 i=1 u ip (x) δ ip ,
and the procedure stopped, (with δ ip = 1 if the interaction between X p and X i exists, otherwise it is set to zero.) If the (p-1) variables are not independent, we can conclude that there is double interaction between X i and X j where i, j = 1, ..., p-1, and perhaps between X i and X p .

We can construct correspondent cross variables X ip and X ij by using the first step to test independence of variables (X i , X p ) and variables (X i , X j ) where i, j = 1, ..., p-1. The log-linear model associated to the variables is:

log[f p (X)] = u 0 (x) + p i=1 u i (x) + p-1 i=1
u ip (x) δ ip + terms due to the interaction between three or more variables and we go to the third step of the procedure In the third step, we look at three-way interaction u-terms, by testing the dependence of variables X i and cross variables X jk , where i, j, k = 1, ..., p and i, j, k are different, and construct cross variables X ijk . The independence test is based on the eigenvalue pattern of the related MCA as described in the first step.

Continuing this way, in the k th step, we look at k-way interaction u-terms, ... and in the least step we look at the p-way interaction u-term.

This algorithm is summarized in Figure 5.

An example for a graphical model

For this example we use a data set given by Haberman [START_REF] Haberman | The Analysis of Frequency Data[END_REF] that was used in Falguerolles et al. [START_REF] De Falguerolles | Correspondence analysis and association models constrained by a conditional independence graph[END_REF] to fit a graphical model. The data reports attitudes toward non therapeutic abortions among white subjects crossed with three categorical variables describing the subjects.

The data set is a contingency table observed for 3181 individuals, crossing four three modality variables X 1 , X 2 , X 3 and X 4 , defined in Table 1.

The first step of the procedure consists of testing the pairwise independence hypothesis of the variables. We first transform the contingency table in a complete disjunctive table, then calculate the parameters (defined in § 2.1 and § 4.1.1) needed for the test (Table 2).

MCA on the four variables gives the eigenvalues diagram of Figure 6.

The shape of eigenvalues diagram refers clearly to the existence of dependent variables.

Eigenvalues λ 1 , λ 7 and λ 8 are not in the interval I c , so there is at least two dependent variables: there is one or more two-way interactions between variables. The second step consists of the detection of two-way interactions. In a first time, we use our first step with only three variables X 1 , X 2 and X 3 .

With the values of n and m i (for i = 1, ..., 3) still the same, the other parameters become (Table 3 ): We get the following eigenvalue diagram (Figure 7 ): λ 1 and λ 5 are not in interval I c , so there is one or more two-way interaction between X 1 , X 2 and X 3 , as also as interactions between X 4 and others.

In a second step we look at the interactions between X 4 and X i (i = 1, 2, 3). For i = 1 to i = 3 we look at the eigenvalues of the MCA of X 4 with X i , and calculate their variances and intervals I c . Crossing X 1 with X 4 we get (Table 4 ): Crossing X 2 with X 4 we get (Table 5 ): Crossing X 3 with X 4 we get (Table 6 ):

Table 6: MCA on X 3 and X 4 (parameters and eigenvalues).

q m σ I c λ 1 λ 2 λ 3 λ 4
4 0.5 0.0125 [0.4750, 0.5250] 0.6112 0.5041 0.4959 0.3979

In the three cases, λ 1 and λ 4 are not in the intervals I c , so there is a twoway interaction between X 1 and X 4 , X 2 and X 4 and between X 3 and X 4 , so we can construct cross variables X 4i having 9 modalities (i = 1, 2, 3). Now, we use the first step with only two variables X 1 and X 2 , after we look for interactions between X 3 and X i (i = 1, 2).

Crossing X 1 with X 2 we get (Table 7 ):

Table 7: MCA on X 1 and X 2 (parameters and eigenvalues). All the eigenvalues are in the confidence interval, so X 1 and X 2 are independent conditionally on the other, and there is no cross variable X 12 . The corresponding u-term u 12 equals to zero.

q m σ I c λ 1 λ 2 λ 3 λ 4 4 
Let us now look, when i = 1 and i = 2, at the eigenvalues of the MCA of X 3 with X i , with their variances and intervals I c : Crossing X 1 with X 3 we get (Table 8 ): All the eigenvalues are in the confidence interval I c , so X 1 and X 3 are independent conditionally on the other, and there is no cross variable X 13 : the corresponding u-term u 13 equals to zero.

Crossing now X 2 with X 3 we get (Table 9 ): Here, λ 1 and λ 4 are not in the interval I c , so there is a two-way interaction between X 2 and X 3 , u 23 is not set to zero, and we can add the cross variable X 32 (as well as X 23 ) with 9 modalities to the model.

The third step consists of the detection of triple interactions between variables, that is to two-way interactions between the variables X i and the cross variables X jk .

We first put the cross variables (X 41 , X 42 , X 43 , X 32 ) with the initial variables that were deemed non dependent in the second step of the procedure, i.e. X 1 and X 2 , and then we use the first step of the procedure with the set of obtained variables.

So we get the following results (Table 10 and Figure 8 ): The first six eigenvalues are not in I c : there is one or more two-way interaction between the initial variables X i , and the crossed ones X ik , so there exists a triple interaction between simple variables.

We drop X 32 and use the first step with the five other variables to get the following results (Table 11 and Figure 9 ): The first six eigenvalues are not in I c , so there is at least one two-way interaction between the variables. We know that simple variables X 1 , X 2 and the crossed variables X 41 , X 42 , X 43 are dependent so we have to test dependence between X 1 and X 32 only. Crossing X 1 and X 32 we get the following results (Table 12): Eigenvalues λ 1 and λ 10 are not in the interval I c , the u-term u 14 is equal to zero, X 1 and X 42 are dependent, and the u-term u 124 is set to zero.

Finally, variables X 1 and X 41 are dependent by construction.

The procedure stops here because we can't have more than triple interactions in a hierarchical model when all the two-way interactions are not present. We obtain the following model (see Figure 10 for the associated graph): 

[f 4 (X)] = u 0 + u 1 x 1 + u 2 x 2 + u 3 x 3 + u 4 x 4 + u 32 x 2 x 3 + u 41 x 4 x 1 + u 42 x 4 x 2 + u 43 x 4 x 3 + u 432 x 4 x 3 x 2 .

An example for a saturated model

Here we use a data set given by Israëls [START_REF] Israëls | Eigenvalue Techniques for Qualitative Data[END_REF] that was also used by Van der Heijden et al. [START_REF] Van Der Heijden | A combined approach to contingency table analysis using correspondence analysis and log-linear analysis (with discussion)[END_REF] about 'shop-lifting' habits.

Table 16 is a contingency table crossing three variables: sex (2 modalities), age (9 modalities) and type of goods (13 modalities: Clothing (C), Clothing accessories (Ca), Provision-Tobacco (PT), Writing materials (Wm), Books (B), Records (R), Household goods (Hg), Sweets (S), Toys (T), Jewellery (J), Perfume (P), Hobbies tools(Ht), and Others(O)) observed over 33 101 individuals.

In the first step, we test the pairwise independence of variables X 1 , X 2 and X 3 . We first transform the contingency table in a complete disjunctive table, then compute the parameters (defined in § 2.2 & § 4.1.1) needed for the test to get (Table 17 ).

A MCA on the three variables gives the eigenvalue diagram of Figure 11.

The eigenvalue diagram shows clearly that the variables are not independent: only 8 eigenvalues (λ 7 , ..., λ 15 ) are in the confidence interval.

Using the second step of the procedure, we get the two-way interactions. MCA of X 1 and X 3 gives the following results (Table 18 and Figure 12 ): The first and the last eigenvalues are not in the confidence interval so the u-term u 13 is not set to zero.

We notice here the peculiar form of the eigenvalues diagram, due to the fact that multiple eigenvalue λ = 1 2 that have a multiplicity 11 = m 3m 1 is an artificial one (cf. § 4.2.1.1). MCA of X 2 and X 3 gives the following results (Table 19 and Figure 13 ): The 8 first and the 8 last eigenvalues are not in the confidence interval so the u-term u 23 is not set to zero. MCA of X 1 and X 2 gives the following eigenvalue results (Table 20, Figure 14 ): The first and the last eigenvalues are not in the confidence interval so the u-term u 12 is not set to zero. At the end of the second step, we obtain all three The MCA on the four variables gives the following results (Table 22 and Figure 15 ): The eigenvalue diagram shows clearly that variables are not independent, only λ 2 and λ 3 are in the confidence interval.

Let's drop X 4 and use the second step of the procedure. MCA on the three remaining variables gives the following results (Table 23 and Figure 16 ): The eigenvalue diagram shows clearly that variables are independent, since all the eigenvalues are in the confidence interval, so there is surely one or more interaction X 4 and X i , i = 1, ..., 3.

The MCA on X 4 and X i gives the following results (Table 24 and Figure 17 ): It's clear that there exists only an interaction between X 4 and X 2 , X 1 and X 3 are non dependent of X 4 , then u 14 = u 13 = 0 and u 24 = 0 and we build the crossed variable X 24 .

The MCA of X 1 , X 3 and X 24 gives the following results (Table 25 and Figure 18 ): The eigenvalue diagram shows that the variables are independent, all the eigenvalues being within the confidence interval, and there is no triple interaction between variables.

We finally obtain the same model as Andersen: log[f 4 (X)] = u 0 + u 1 x 1 + u 2 x 2 + u 3 x 3 + u 4 x 4 + x 24 x 4 x 2 .

CONCLUSION

Log-linear modeling and MCA are two complementary techniques for the analysis of categorical data. In this framework, we propose a method for fitting progressively log-linear models, using the eigenvalue shape of MCA.

We show that, in MCA, under the independence hypothesis for the variables, each observed eigenvalue is asymptotically normally distributed. These distributions have the same mean, different variances and converge to normal distributions. In this case, the eigenvalue diagram takes a peculiar shape. This shape is different if there is one or more interactions between variables, and we can recognize the log-linear model fitted for the data in some special cases.

Then, based on these results, we propose a simple procedure for progressively fitting log-linear models, where the fitting criterion is based on MCA eigenvalue diagrams: the chosen model is constructed by successive utilizations of MCA (non constrained by the variables number). Finally, we validate this procedure on three sets of data drawn from the literature.
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 4115 Figure 15: MCA on X 1 , X 2 , X 3 and X 4 (eigenvalues diagram, first step of the example for a mutual independence model).
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 16 Figure 16: MCA on X 1 , X 2 and X 3 (eigenvalues diagram).
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 123117 Figure 17: Eigenvalues diagram for MCA on X 4 and X 1 ,MCA on X 4 and X 2 and MCA on X 4 and X 3 .
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 18 Figure 18: Eigenvalues diagram for MCA on X 1 , X 3 and X 24 .

Table 1 :

 1 Attitudes toward non therapeutic abortions among white.

	Year	Religion:	Education		Attitude: X 4
	X 1	X 2	in years: X 3 positive mixed negative
	1972 northern Protestant	≤ 8 9-12	09 85	16 52	41 105
		southern Protestant	≥ 13 ≤ 8 9-12	77 08 35	30 08 29	38 46 54
		Catholic	≥ 13 ≤ 8 9-12	37 11 47	15 14 35	22 38 115
	1973 northern Protestant	≥ 13 ≤ 8 9-12	25 17 102	12 17 38	42 42 84
		southern Protestant	≥ 13 ≤ 8 9-12	88 14 61	15 11 30	31 34 59
		Catholic	≥ 13 ≤ 8 9-12	49 06 60	11 16 29	19 26 108
	1974 northern Protestant	≥ 13 ≤ 8 9-12	31 23 106	18 13 50	50 32 88
		southern Protestant	≥ 13 ≤ 8 9-12	79 05 38	21 15 39	31 37 54
		Catholic	≥ 13 ≤ 8 9-12	52 08 65	12 10 39	32 24 89
			≥ 13	37	18	43

Table 2 :

 2 Parameters needed for the test (first step of the example for a graphical model).

Table 3 :

 3 Parameters for the test (second step of the example for a graphical model).

	q	m	σ	I c
	6 0.33333 0.0118 [0.3097, 0.3569]

Table 4 :

 4 MCA on X 1 and X 4 (parameters and eigenvalues).

	q m	σ	I c	λ 1	λ 2	λ 3	λ 4
	4 0.5 0.0125 [0.4750, 0.5250] 0.5389 0.5156 0.4644 0.4611

Table 5 :

 5 MCA on X 2 and X 4 (parameters and eigenvalues).

	q m	σ	I c	λ 1	λ 2	λ 3	λ 4
	4 0.5 0.0125 [0.4750, 0.5250] 0.5741 0.5076 0.4924 0.4259

Table 8 :

 8 MCA on X 1 and X 3 (parameters and eigenvalues).

	q m	σ	I c	λ 1	λ 2	λ 3	λ 4
	4 0.5 0.0125 [0.4750, 0.5250] 0.5134 0.5023 0.4978 0.4866

Table 9 :

 9 MCA on X 2 and X 3 (parameters and eigenvalues).

	q m	σ	I c	λ 1	λ 2	λ 3	λ 4
	4 0.5 0.0125 [0.4750, 0.5250] 0.5401 0.5128 0.4872 0.4599

Table 10 :

 10 MCA on X 1 , X 2 , X 41 , X 42 , X 43 and X 32 (parameters third step of the example for a graphical model).

Table 11 :

 11 MCA on X 1 , X 2 , X 41 , X 42 and X 43 (parameters for the test). MCA on X 1 , X 2 , X 41 , X 42 and X 43 (eigenvalues diagram, third step of the example for a graphical model).

	q	m	σ	I c
	28 0.2 0.0162 [0.1671, 0.2324]
	λ 1 = 0.6105		
	λ 2 = 0.6006		
	λ 3 = 0.4143		
	λ 4 = 0.4028		
	λ 5 = 0.3982		
	λ 6 = 0.3831		
	λ 7 = 0.2262		
	λ 8 = 0.2220		
	λ 9 = 0.2162		
	λ 10 = 0.2083		
	λ 11 = 0.2054		
	λ 12 = 0.2017		
	λ 13 = 0.1952		
	λ 14 = 0.1986		
	λ 15 = 0.1952		
	λ 16 = 0.1928		
	λ 17 = 0.1878		
	λ 18 = 0.1837		
	λ 19 = 0.1815		
	λ 20 = 0.1711		
	Figure 9:			

Table 12 :

 12 MCA on X 1 and X 32 (parameters and eigenvalues).

	q	m	σ	Ic						
	10	0.5	0.0159 [0.4682, 0.5318]					
	λ1	λ2	λ3	λ4	λ5	λ6	λ7	λ8	λ9	λ10
	0.5287 0.5194 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4806 0.4713

Table 16 :

 16 Multicontingency table for the shop-lifting data.

	Sex:	Age:						Goods: X3				
	X1	X2	C	Ca PT Wm	B	R	Hg	S	T	J	P	Ht	O
		≤ 11	81	66 150	667	67	24	47 430 743 132	32 197 209
		12-14	138 204 340 1409 259 272 117 637 684 408	57 547 550
		15-17	304 193 229	527 258 368	98 246 116 298	61 402 454
		18-20	384 149 151	84 146 141	61	40	13	71	52 138 252
	Male	21-29	942 297 313	92 251 167 193	30	16 130 111 280 624
		30-39	359 109 136	36	96	67	75	11	16	31	54 200 195
		40-49	178	53 121	36	48	29	50	5	6	14	41 152	88
		50-64	137	68 171	37	56	27	55	17	3	11	50 211	90
		≥ 65	45	28 145	17	41	7	29	28	8	10	28 111	34
		≤ 11	71	19	59	224	19	7	22 137 113 162	70	15	24
		12-14	241	98 111	463	60	32	29 240	98 138 178	29	58
		15-17	477 114	58	91	50	27	41	80	14 548 141	9	72
		18-20	436 108	76	18	32	12	32	12	10 303	70	14	67
	Female 21-29 1180 207 132	30	61	21	65	16	12	74 104	30 157
		30-39 1009 165 121	27	43	9	74	14	31 100	81	36 107
		40-49	517 102	93	23	31	7	51	10	8	48	46	24	66
		50-64	488 127 214	27	57	13	79	23	17	22	69	35	64
		≥ 65	173	64 215	13	44	0	39	42	6	12	41	11	55

Table 17 :

 17 Parameters needed for the test (first step of the example for a satured model).

	n	p m 1 m 2 m 3	q	m	σ	I c
	33101 3	2	9	13 21 0.3333 0.0061 [0.3211, 0.3455]
	λ 1 = 0.5759				
	λ 2 = 0.4256				
	λ 3 = 0.3966				
	λ 4 = 0.3899				
	λ 5 = 0.3542				
	λ 6 = 0.3494				
	λ 7 = 0.3407				
	λ 8 = 0.3384				
	λ 9 = 0.3344				
	λ 10 = 0.3333				
	λ 11 = 0.3333				
	λ 12 = 0.3333				
	λ 13 = 0.3322				
	λ 14 = 0.3271				
	λ 15 = 0.3260				
	λ 16 = 0.3177				
	λ 17 = 0.3103				
	λ 18 = 0.2802				
	λ 19 = 0.2632				
	λ 20 = 0.1925				
	λ 21 = 0.1423				

Table 18 :

 18 MCA on X 1 and X 3 (parameters).

Table 19 :

 19 MCA on X 2 and X 3 (parameters).

	n	p q	m	σ	I c
	33101 2 20 0.5 0.0001 [0.4998, 0.5002]

Table 20 :

 20 MCA on X 1 and X 2 (parameters).

Table 22 :

 22 Parameters needed for the test (first step of the example for a mutual independence model).

Table 23 :

 23 MCA on X 1 , X 2 and X 3 (parameters).

Table 24 :

 24 MCA on X 4 , X i (parameters).

Table 25 :

 25 MCA on X 1 , X 3 and X 24 (parameters).

All the eigenvalues are in the confidence interval I c , so X 1 and X 32 are independent conditionally on the other, and there is no cross variable X 132 . The corresponding u-term u 123 equals zero. Now we can drop the cross variable X 43 . The remaining variables X 1 , X 2 , X 41 , X 42 are dependent by construction. We have only to test for dependence between X 1 and X 43 .

Crossing X 1 with X 43 , we get the same parameter as the crossing of X 1 and X 32 , and the following eigenvalues (Table 13 ): We remark that λ 1 and λ 10 are not in the interval I c , so X 1 and X 43 seem to be dependent. But we have to fit a graphical model, that is a particular case of hierarchical models (as defined in § 2.2.2.2, a log-linear models is hierarchical if, whenever one particular u-term is constrained to zero then all higher u-terms containing the same set of subscripts are also set to zero).

Here the u-term u 13 is set to zero, so the u-term u 134 is also set to zero.

Crossing X 2 with X 43 , we get the same parameter as the crossing of X 1 and X 32 , and the following eigenvalues (Table 14 ): Eigenvalues λ 1 , λ 2 , λ 9 and λ 10 are not in the interval I c , the u-terms u 23 and u 24 are not set to zero, and since X 2 and X 43 are not dependent the u-term u 234 is not set to zero.

Crossing X 1 with X 42 (or equivalently X 2 with X 41 ) we get the same parameter as the crossing of X 1 and X 32 , and the following eigenvalues: MCA of X 32 with X 1 gives the following eigenvalues: The first and the last eigenvalues are not in the confidence interval so the u-term u 123 is not set to zero.

At the end we get the following saturated model:

An example for a mutual independence model

Here we use a data set given by Andersen [START_REF] Andersen | The Statistical Analysis of Categorical Data[END_REF] as a contingency table crossing four variables observed over 299 individuals corresponding to a retrospective study of ovary cancer, defined in Table 21: In the first step of procedure, we test for the pairwise independence of variables X 1 , X 2 , X 3 and X 4 . We first transform the contingency table in a complete disjunctive table, then compute the parameters (see § 4.1.1) needed for the test.