N

N

The Distributed Virtual Orchestra Project
Remy Bonafous, Nicolas Bouillot, Hans-Nikolas Locher, Joel Berthelin,

Francois Dechelle, Eric Gressier-Soudan

» To cite this version:

Remy Bonafous, Nicolas Bouillot, Hans-Nikolas Locher, Joel Berthelin, Frangois Dechelle, et al.. The
Distributed Virtual Orchestra Project. 2003. hal-01124821

HAL Id: hal-01124821
https://hal.science/hal-01124821v1

Preprint submitted on 28 Jun 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01124821v1
https://hal.archives-ouvertes.fr

The Distributed Virtual Orchestra Project

Remy Bonafous!, Nicolas Bouillot!, Hans-Nikolas Locher!, Joel Berthelin?,
Francois Dechelle?, and Eric Gressier-Soudan®

! CEDRIC Laboratory, CNAM,

292 rue St Martin,
75 141 Paris Cedex 03, France

{bonafo_r, bouillot, locher_h, jb, gressier}@cnam.fr
2 Opensource team, IRCAM,
1 place Igor Stravinsky,

75 004 Paris, France

francois.dechelle@ircam.fr

Abstract. This paper describes our distributed orchestra project and
its current status. The aim of the project is to allow musicians to play
across the Internet. The full Internet is too wide, and internetworking is
limited to LANs, and MAN. The application based on jMax/FTS sound
devices use multicast IP. The monitoring of the application is built over
a real-time data service over CORBA. The music play is based on a
constant latency obtained according to a self-synchronization algorithm.
Each section describes the current results from experiments. The end of
the paper concludes on the project and presents future works.

1 Introduction

Several experiments of real-time multimedia performances on Internet have al-
ready be tested. Most of them use the MIDI (Musical Instrument Digital Inter-
face) standard. In [1], latency between the production and the consumption of
sounds is not designed to be constant, so variations can be heard. In the context
of piano lessons [2], a single musician is teaching while the pupils around Internet
are listening. In this case, there is no need to play in a synchronized way. The
team of Masataka Goto developed VirJa[3,4], a tool of virtual session of Jazz in
which someone can play music with two processors, but there is no mechanism
of synchronization of audio streams specified. An experiment of remote music
was born thanks to protocol RMCP used in VirJa. Open RemoteGIG [5] allows
to play with remote musicians with MIDI streams and constant delays aligned
on the tempo and the metric of the musical piece. In this system, the musicians
from various places will not hear the same thing, indeed the return of what is
played locally does not about latency. The example describes in [4] shows us
this shift: the player improvises while listening to other player’s performance
that are delayed for the constant period of the repetitive chord progression (for
example, a 12-bar blues chord progression). Because the progression is repeti-
tive, the delayed performance can fit the chords. Despite the interest that such



2 Virtual Orchestra Team

performances represent, the MIDI protocol alleviates some constraints of PCM
(Pulse Code Modulation) audio streams transmission. The descriptive format
of the note in MIDI preserves bandwidth. But it also decreases the field of the
transported sounds. Thus, it is difficult to make a direct analogy with the con-
straints raised by PCM audio streams.

The transport in real time of PCM audio streams has been tested in [6,7].
The authors used a recording studio to sample a performance that takes place in
different countries. Two experiments were tested with physically distant musi-
cians with the Global Visual Music project [8]. The first one(Lemma 1), has been
made on a local area network with two interacting musicians but at the same
place. At the time of Lemma 2, the musicians were distant physically but did
not hear and see each other in a synchronized way, “the piano and the percus-
sions were analyzed on each location in order to make the information emerges
in various ways at the other site”. For example in the form of abstract image
indicating aspects of the playing of the distant musician, such as the swiftness.
This project is a cooperation between the opensource team of IRCAM, and the
distributed system for multimedia research team from CNAM-CEDRIC. The
aim of our distributed orchestra project is to provide means to musicians to play
across the Internet in real-time. The full Internet is too wide, and internetwork-
ing is limited to LANs, and MAN, nation wide Internet will be tried in a second
phase. Musicians exchange PCM audio streams. This is a constraint stated by
IRCAM, and then eliminated the use of MIDI audio. Musicians multicast the
music they play to each other. Latencies between musicians are kept constant.
Each musician hears himself after a constant latency. They play together in a
synchronized way: the constant latencies, brought by a self-synchronization al-
gorithm, allow them to hear all sounds played by the distributed orchestra but
with a constant late. This synchronization mechanism is developed as a com-
ponent of the jMax[9, 10]. jMax is a visual programming environment for real
time musical and multimedia applications. The overall application is monitored
using an object oriented real-time data service. These features in a context of
high and real-time interactivity promote this work as brand new project. As far
as we know, there is no equivalent project at this time. Two enhancements will
be added in a next phase. To provide a virtual concert, the public will be able to
receive the concert through Internet over an ADSL network. To allow the public
to hear the concert, a sound engineer will collect audio streams to perform a
spatial and a traditional mixing. Spatial mixing consists in placing sources on
a three dimensional space. In this way, the sound is multi-channel. Mixing will
be done by remote control of audio devices or by sound processing after reception.

The paper is organized as follow. Section two describes the musicians’ envi-
ronment: jMax/FTS and self-synchronization. Section three presents the mon-
itoring service. Section four shows the main features of our networking envi-
ronment based on IP multicast. The last section concludes and presents future
works.



The Distributed Virtual Orchestra Project 3

2 Musicians in the Virtual Distributed Orchestra

2.1 jMax/FTS, the software sound processor

jMax principles and interface jMax is a visual programming environment
dedicated to interactive real-time music and multimedia applications [11]. jMax
is an implementation of a programming paradigm that exists in a large number
of audio and music software. It can be seen as an extension of the patchable mod-
ular analog synthetizer [11]. The user builds ”patches” by connecting modules
together with ”patch cords”. Via the connections, control messages or signals are
sent between the modules. These modules generally represent processing units,
from simple arithmetic computations to complex transformations; they also can
represent data containers like signal buffers or matrices as well as system inputs
and outputs like for PCM and MIDI audio. Modules can be either primitives,
called "objects”, or patchers themselves, thus giving to patches a hierarchical
structure. Some objects have graphical interactive behavior and are used as con-
trollers, to change values in a patch, or as viewers, to display values computed
by the patch. Figure 1 shows an example of a patch. This simple patch generates
a wave using the well-known frequency modulation algorithm. In this patch, sev-
eral types of object appear: control objects (for instance, the ”mtof” box), signal
objects (for instance, the "osc ” boxes), a viewer object (the lower oscilloscope)
and a graphic controller (the upper right slider).

jMax architecture jMax architecture can be depicted as a client/server ar-
chitecture and separates the graphical user interface from the real-time sound
processing engine [12,11]. This engine, known as FTS (for "Faster Than Sound’),
is implemented in C and provides a number of services that will be detailed later.
The graphical user interface that is shown in figure 1 is written in Java. This
architectural choice has been driven by obvious portability and modularity con-
siderations, but also allows to run the engine without a graphical user interface,
for instance in plug-ins environments. The communication between the graphi-
cal user interface and FTS uses a very simple ad-hoc message passing protocol
[13]. The transport layer can be any byte stream; current implementation uses
either a Unix pipe or a TCP/IP socket (which allows to run the client and the
server on different machines). An interesting consequence of this architecture is
that FTS can be used with different graphical front-ends as long as they comply
with the communication protocol. A client library provides a higher level access
to the communication protocol. This library exists in several implementations,
namely C++, Java and Python. The programmer has a maximum flexibility in
the choice of the implementation language and the graphical toolkit when writ-
ing client applications. A consequence of this portability is that jMax runs on all
standard platforms, namely Linux (using the ALSA audio and MIDI drivers),
MacOS X and Windows. jMax is extensible: FTS public API allows the pro-
grammer to develop libraries of objects that will be dynamically loaded in FTS
or in the Java graphical user interface [12].



4 Virtual Orchestra Team

File it Text Project Windows Help
sl s U : ol =esth
o =] ] e o = <

Slider controlling frequency|

/) b))

MIDN-> frequency
conversion

A simple patch
doing FM
synthesis

Carrier oscillator| Generated
waveform

Modulation

rtof
part =

i

Fig. 1. Screenshot of a jMaz patch

FTS services The FTS engine is organized around a simple object system
[12]. The operators that appear in a patch are objects in the meaning of OOP:
the connections end-points are message emission and receiving ports. Message
receive triggers the call of a method of the receiving object class. One major
simplification of this object system is that it does not provide inheritance.

A patch is then nothing more that a graph of objects, each object generating
messages toward the object nodes to which it is connected in the graph. The
emission of a message can be driven by a user action in the graphical user
interface, the reception of a value (a MIDI note for instance) on an input object
or by timed-tagged messages. The core of the FTS execution engine is then
naturally a scheduler [12] that activates at each tick (a time ”quantum”) a
number of sub-tasks that are: 1) the message interpreter 2) the timed-tagged
messages execution 3) the computation of signal objects.

The computation of signal objects (objects that process or generates streams of
audio samples) is optimized by a pre-compilation of the graph using a simple
graph traversing and topological sort algorithm. This graph serializing produces
a flat list of function calls, each function operating on vectors of samples (the
typical length of this vector is 64 samples).

jMax applications jMax is used mainly by musicians for live performance.
Using the built-in libraries that provide an extensive range of control and sig-
nal processing elements, jMax allows to build easily real-time sound generators
and effects that can be controlled by standard MIDI equipments or by acoustic



The Distributed Virtual Orchestra Project 5

instruments using score following techniques [14]. The separation of the FTS en-
gine and the graphical front-end allows new range of applications using specific
front-ends dedicated to an application together with its integration into virtual
reality environments [15].

2.2 The distributed self-synchronization of audio streams
2.3 Motivation

In the context of live music, the musical interaction is done by the various visual
signs and conventions predetermined on the piece of music played (for example
a set of chords with a theme for a piece of Jazz). At the same time, the musical
contents added by each musician inform the others on the possible evolution of
the piece. For example, groups of percussions sometime use rhythmic sentences
to call each other to change rythms. All these interactions are possible because
the musicians are in the same environment (the scene, the part...). This environ-
ment enables them to ear each other at the same time in a synchronized way.
In our context of distributed live music where musicians are remote, there is no
help technology, networks and operating systems, are asynchronous Thus it is
mandatory to add a mechanism that enables consistent listening.

To synchronize PCM audio streams, we choose to minimize the latency be-
tween the musicians and to compensate the jitter introduced by the network.
Un-synchronized streams would have a terrible effect on the interactivity in an
audio performance. In the case of Internet, we have a best effort asynchronous
network without resource reservation. It is thus necessary to provision a sig-
nificant amount of sounds for each musician (of a few milliseconds at several
seconds) to compensate latency and jitter. Provisioning depends also on the
load of the network and on the loss ratio. Some authors [16,17] state that these
variable latencies remain too significant to allow interactive distributed audio
performances. Despite these difficulties, we believe to be able to allow an inter-
action between the various musicians. Let us recall that some kinds of musicians
are able to read a partition with several measurements away of the time they are
just playing. The example of reverberating acoustics of the cathedrals imposed
on the Middle Ages constraints of tempo: the Gregorian songs had to be com-
posed of long notes in order to make the texts comprehensible. Also let us recall
that in a symphony orchestra, the orchestra conductor is always in advance with
respect to the musicians.

In our synchronization framework for PCM audio streams, we targeted to
minimize the latency between the musicians and to compensate the jitter intro-
duced by the network. Un-synchronized streams would have a terrible effect on
the interactivity in an audio performance. In the case of Internet, we have a best
effort asynchronous network without resource reservation. It is thus necessary
to provision a significant amount of sound samples for each musician (from few
milliseconds to several seconds) to compensate latency and jitter. Provisioning



6 Virtual Orchestra Team

depends also on the load of the network and on the loss ratio. Some authors
[16,17] state that variable latencies remain too significant to allow interactive
distributed audio performances. Despite these difficulties, we believe to be able
to provide an interaction framework between the various musicians. Let us recall
that some kinds of musicians are able to read a partition with several measure-
ments in advance from the time they are just playing. The example of reverber-
ating acoustics of the cathedrals imposed tempo constraints during the Middle
Ages: the Gregorian songs had to be composed of long notes in order to make
texts understandable. Also let us recall that in a symphonic orchestra, the con-
ductor is always in advance with respect to the musicians. Then, playing/hearing
late is not an impossible thing for musicians but latency should be kept constant.

Considering these arguments, we think that we are able to provide a tool for
the real time interaction of remote musicians. This tool will be associated to a
dedicated mode of musical interaction, because of latencies perceived for each
stream. By minimizing the latencies from beginning to end with a consistent
listening, we aim to provide an interaction closest to the traditional one, e.g.
musiciens in the same room. Notice that other interactions are possible, for ex-
ample with latency getting allong allong with the tempo of the music. In order
to make the leasting consistent beetwen each musician, we synchronise streams
before playing them out, as described in [18]. In the streams, we stamp PCM
units. All listener can calculate relative difference beetwen the different stamp
played at the same time. After exchanging these values, each listener can adjust
the playout of each streams, according to the worth receiver. At this point, all
musiciens hear the same music and can play in a synchronised way.

2.4 Implementation

Distributed audio synchronization was deployed in the prototype of the dis-
tributed virtual orchestra. The reception of audio streams is done with the rtpin
object developed in jMax. Audio stream transmission is implemented in the rt-
pout object. The sound samples are produced at a constant rate of 44100Hz and
are consumed by the rtpin objects (at the same rate). The transport of audio
streams is done using the RTP protocol [19]. We used the RTP library called
UCL Common Code Library version 1.2.8 developed by the computer science
department of University London college. Each rtpout object stamps the samples
which it produces in the field timestamp of RTP. This field is incremented with
each sample. The use of RTP allows the identification of the source of music
(the field ssrc) of RTP. Each rtpin object consumes simultaneously a sample
resulting from each rtpout object.

We tested the following configurations:

— two remote musicians out of two stations with a third machine sending com-
puted sound. Only two rtpin objects allowed the hearing of the piece, one
for each musician. This test has been made on local area network 100Mb/s



The Distributed Virtual Orchestra Project

7

and the streams were PCM 44100Hz 16 bits streams. As the test took place
on a local area network, we considered any packet losses. In this test, the

two musicians were playing with the third machine in a synchronized way.

— Four sound automata, exchanging multicasts streams throw a multicast tun-

nel.

oot62
oot61

o015
00159
o018

00157

A
—

T T T T T T T T 1
16700 16720 16740 16760 16780 16800 16620 16840 16860

00184

00183

00182

o011

0018

00159

Wayd!

o018

16320

T T 1
16370 16420 16470 16520

(a) the LAN test: round trip time
from first machine to first machine

(b) the LAN test: round trip time
from thrid machine to first machine

(d) the multicast test: round trip
time calculate for the oceanoniz
stream

(c) the multicast test: round trip
time calculate for the chomol-
ungma stream

Fig. 2. round trip time

On the figure 2(b) and 2(a), we can see various measurements (in seconds) of
tround trip times during the first experiment. The continuous line indicates the
average value of the latency (16ms) measured on the machines (16ms). Note
that we measured figure 2(a) the round trip time between the first machine
and the first machine, as each musician have to hear his own feedback after the
distributed audio streams synchronization. Some peaks and hollows appear in
spite of the favorable conditions. Three streams 44100Hz in 16bits correspond
to a load approximately 2,04Mbs with the RTP headers (those accounting for
approximately 1,3% of stream load). This load is low considering the 100Mb/s
throughput of the CNAM local area network. These great variations can be
caused either by the real jitter of the network or by the non real-time scheduling
of the operating systems (SuSE 7.1 and 8.0).



8 Virtual Orchestra Team

These measurements show that it is possible (considering delays) to play music
on a local area network as if musicians were physically together. Indeed, the
human ear does not perceive the shifts lower than 20ms, therefore higher than
half of the round trip time measured (approximately 16ms on average). In the
same configuration, we measured 6ms as the maximum shift introduced by the
distributed audio synchronization. The tests between two musicians on the same
network could confirm that human beings cannot ear the delay on a LAN. That
let us consider the use of a such networkin recording studios, for example facili-
tating wiring.

On the figure 2(c) and 2(d), the round trip time exceed the 20ms that human be-
ing can perceive. The different lines represent the round trip time mesured with
the RTP receiver report from 1lmi31, oceanonix and ppcl. Imi31 is the worst re-
ceiver, latencies might be higher when the streams is encapsulated in a multicast
tunnel. The distributed self-synchronization of audio streams is here important
to make musicians playing in a synchronised way.

3 Monitoring the Distributed Virtual Orchestra

3.1 Design Principles

The monitoring of the distributed virtual orchestra application is achieved us-
ing a real-time object oriented data service over CORBA. This service inherits
from previous works on the IEC TASE.2 standard [20]. The main interesting
properties for our concern are the virtual device abstraction, the data manage-
ment model and the corresponding services. It defines a client role, the remote
monitor, and a server role, the monitored device. As an application protocol
in the OSI-ISO world, it can be extracted form the ISO stack as a functional
specification of a real-time data exchange service. The specification has been
used to implement TASE.2 over CORBA. The translation from an ISO stack
toward CORBA is quite natural. This translation is limited to a subset of the
TASE.2 services, basically: periodic data exchanges, and condition-based data
exchanges. To provide an object oriented real time data service, we decided to
adapt the TASE.2 services described previously over CORBA. ISO confirmed
services become synchronous method invocations. ISO unconfirmed services be-
come oneway method invocations or synchronous method invocations without
result parameters (in our case, the two choices are allowed, it depends of speci-
fied QoS parameters in the Data Set Transfer Set).

In the distributed virtual orchestra application, the virtual device models a
jMax/FTS sound automata and its associated resources. The real-time data
service defines ”Data Value” objects and ”"Data Set” objects managed by the
server and subscribed by the clients. Data Value and Data Set management func-
tions allow creation, destruction, configuration, read, write, etc of objects. Data
values reference measurement points, indication points. They contain status in-
formation, analog values, and attributes. Indication points can have attributes



The Distributed Virtual Orchestra Project 9

like timestamp, quality class, change of value counter... The real-time data ser-
vice defines also Data Set Transfer Sets. They describe the way Transfer Reports
must be pushed from the producer, the virtual device, toward the consumer, the
remote monitor. They contain parameters defining under which conditions Data
Values referencing indication points related to Data Sets are transmitted. The
remote control and monitoring of sound automates use all these abstractions
and their corresponding services over CORBA.

3.2 The Prototype

The CORBA server object on the server side supports the virtual device in-
terface. The corresponding methods are classical invocation methods, thus they
return results. The other abstractions (Data Set, Data Value, Data Set Transfer
Set) are supported by the virtual device as objects implemented with the pro-
gramming language, C++ in our case. The virtual device interface inherits from
all basic objects interface. Local communications between the virtual device and
the FTS sound processor use sockets and a library of callbacks. These mapping
functions provide write operations from the virtual device to the jMax/FTS en-
gine and vice versa. There is a CORBA server object on the remote monitor side,
it supports the Transfer Report services. A generic real-time object oriented data
service is specified using the CORBA IDL (which is the most popular one). This
specification is freely available [21]. Figure 4. presents a short piece of the IDL
specification. that deals with the Data Value object method interface. We called
openTAZ[21, 22] prototype of our C++ CORBA based object oriented real-time
data service over MICO. MICO [23]. Figure 7. hereafter gives an overview of the
design of opentTAZ.

However, this real-time data service could be extended in a way that a producer
provides the same data toward n subscribers if IP multicast and UDP (and also
RTP/RTCP) were used. In a same way a client could trigger more than one
server. Such extensions could be very useful to monitor the distributed virtual
orchestra but need a special version of the underlying CORBA platform, that is
not the case of the one we used.

The monitoring service has been used for different purposes : jMax/FTS
engine activation for each entity (player based or computer based), the sound
level, rtpin and rtpout objects initialization, and the "bang” of the orchestra
(namely the start of the application) that means the transmission and reception
of sound samples across the network. The monitoring service has been a useful
tool. We plan to extend its use as the support of the metronome function, to learn
the latency in the network, to initialize the parameters of the self-synchronization
algorithm.

4 Multicast Networking

The whole set of musicians defines a group, naturally, it maps on an IP multi-
cast group. All the musicians of the orchestra transmit and receive audio streams



10 Virtual Orchestra Team

typedef string DataValueNameType;
typedef sequence < DataValueNameType >
DataValueNameSeqType;
exception UnknownDataTypeXType { };
interface DataValueManagement {
DataValueType
getDataValue (in DataValueNameType name)
raises (UnknownDataValueNameXType) ;
void
setDataValue (in DataValueNameType name,
in DataValueType val)
raises (UnknownDataValueNameXType) ;
DataValueNameSeqType
getDataValueNames () ;
DataValueType
getValueType (in DataValueNameType name)
raises (UnknownDataNameXType) ;

Fig. 8. IDL specification of Data Value Objects Interface

on the same IP multicast address. IP multicast networking provides many ad-
vantages: 1 datagram for n receivers, factorizing traffic. We have seen that it
allows also to implement self-synchronization easily. But IP multicast implies
UDP, and there is no reliability nor ordering of datagrams that contain sound
samples. RTP/RTCP bring the information needed to order samples, and audio
allows also some losses. This section focuses on IP multicast used for the project.

4.1 IP Multicast routing for the distributed virtual orchestra

The first key issue was to choose an IP multicast routing protocol for the project.
We use PCs that run Linux. This eased some decisions. For LAN and campus
communications we were completely free of our choice. We took into account the
following requirements: ? Knowing that campus routers were not able to support
native IP multicast, the elected multicast routing protocol should run on Linux
hosts and should use tunnels.

? According to the grouping of musicians, the group is naturally sparse. This
eliminated routing protocols like DVMRP (mrouted), and also PIM-DM, or MO-
SPF.

? The selected multicast routing protocol must be compatible with the choice of
our ISP, the french national research network RENATER.

These requirements led to the PIM-SM family. It is also the multicast routing
protocol considered by RENATER in the context of native multicast deploy-
ment. Linux allows to run PIM-SDM. PIM-SDM can adapt the routing tree to
the topology of multicast leaves. This feature is mandatory when we will con-
sider the public where final users will be able to connect and disconnect more



The Distributed Virtual Orchestra Project 11

EI’_DataServi(_:e» Virtual Device

iabl

CORBA Opject

Remote monitor JMax/FTS engine

implementation

Monitored
variables issued
from patches

CORBAObject
4

Transfer Reports

Client Host Server Host

ﬁ

Fig. 4. OpenTAZ : a CORBA based object oriented real-time data service implementa-
tion

dynamically than musicians. The choice of PIM-SM implies the use of a shared
tree to support multicast datagrams. It can be noticed that, in the case of a con-
cert (orchestra and public), two shared multicast trees: one for the musician, the
other for the public. For this last one, the root is clearly identified: the mixing
host.

Indeed, contrary to DVMRP (where the packages are sent on many bonds
not leading neither to a transmitter, nor with a member of the group), the scat-
tered mode of PIM uses a mechanics of appointment between transmitter and
member of the group. The messages are sent only in the event of attachment to
the group. A dense mode, if the members of the group are close, was added: This
mode is to be able to be easily carried in the scattered mode. Indeed, DVRMP
has problems of conversion of metric with PIM SM

In our situation, our participants are grouped on geographical spot being
able to be distant.

It is necessary thus that we can use the 2 modes of management of group: -
on the level of a site, dense mode - between the sites, the scattered mode Con-
trary to DVMRP, PIM allow two operating modes (PIM DM and PIM SM) as
well as an easy conversion between these 2 modes. Moreover, it is the protocol
used on our 2 sites like on RENATER.

—— To set up our service multicast, two possibilities are presented:



12 Virtual Orchestra Team

— IRCAM and CNAM are currently connected to the MBONE: a service of
the French research network RENATER, until now experimental. Managed
by an external company (CSSI), this service is specialized for the transport
of flow multicast.

— To create a tunnel connecting our two sites.

The origin of the MBONE in France goes up at the end of the year 1993
thanks to the experimentation of Aristote. This association gave place to the
creation of RENATER (FMBONE). From 1998 to 2000, traffic multicast of the
FMBONE consists of a network of tunnel IP unicast in which traffic multicast is
encapsulated. Today, a service of native transport multicast is deployed between
the Regional Node of Distribution of RENATER. It is based on an infrastructure
of private network (VPN ATM of 4Mb/s). The heart of the MBONE is made up
routers multicast in the establishing NRD of the bonds by using protocols PIM
SM, MBGP, MSDP. The FMBONE is implemented by a private operator (CSSI).

If we wish to connect an establishment other than those connected to MBONE,
we must use an ISP having access to service multicast of RENATER by the ter-
minal point of traffic Internet SFINX (www.SFINX.tm.fr). Today, little ISP is
connected to this terminal point. Moreover, it is not obvious that a site connected
to the MBONE deployed this service multicast in its internal infrastructure.

The establishment of a tunnel of site to site appears to be a better adapted
solution. The installation of roads linux enables us to see a greater versatility.
Thus we can carry out VPN to be able to accept musicians who would not have
an easy access to the MBONE. The interest in this remote concert also comes
from the accessibility of our service and the low costs of its installation.

The tunnel, enables us to create our own service: a bond multicast of quality
with few intermediate interlocutors. Knowing our interlocutors, we thus have a
minimum of not controled constraints. We can add a certain number of tools
all to length of traverses our flow multicast to solve a blocking quickly. The
measurements raised by these tools will make it possible to understand how the
network reacts to the time constraints.

The solution brought by RENATER, through MBONE is however not has to
draw aside. In an immediate future, the MBONE will be in exploitation. We will
be able to use the MBONE with respect to the sites connected to RENATER,
of the tunnels to supplement existing it and the vpn to connect users to their
residence.

3/ Problems of routing multicast

5 Conclusion and Future Works

The distributed virtual orchestra is a work in progress. Musicians can play on
an IP multicast network that spans a LAN or a campus network. The aim of



The Distributed Virtual Orchestra Project 13

our project is to scale to MAN networks with a tenth of musicians. We also plan
trials across France between Lyon and Paris. These challenges will improve our
prototype: self-synchronization, monitoring, and IP multicast. The guarantee of
constant latency between the musicians is statistical by nature. In the future, it
will be necessary to take into account the losses and to choose a strategy as in-
terleaving or media specific Forward Error Correction [24]. During the test with
the multicast tunnel, the application mesured 2,2% of loss in the tunnel. Also, a
skew exists between the clocks of the different sound boards [25,26]. Therefore,
it will be necessary to solve this problem.

Our monitoring service runs correctly but it is not sufficiently flexible. We are
able to monitor predetermined variables, but not user defined variables. We have
to cover this lack, because musicians should be able to define what they want
to be monitored. A long term goal is to connect our monitoring service to the
numeric mixing device of a sound engineer.

Native multicast is a challenge by itself. We expect to deal with RENATER, the
ISP of french academic research. But, we need also bandwidth provisioning, and
it is a more complex task. If we use Linux based routers with GRE tunnels, we
are able to handle QoS properly with iproute []. If we should use native QoS
mechanisms in RENATER’s routers, we will need to deal with a QoS broker not
directly manageable by us. This is an open issue.

The current results enable to consider our platform in different use cases: a cheap
recording studio, or a music school in order to automate the training of the mu-
sical interaction between instrumentalists. The automation of the training of
elementary musical gestures is also possible.

References

1. Elins, A., van Welie, M., van Ossenbruggen, J., Schnhage, B.: Jamming (on) the
web. In: Proceedings of WWW6. (1997)

2. Young, J., Fujinaga, I.: Piano master classes via the internet. In: Proceedings of
the International Computer Music Conference. (1999)

3. Goto, M., Hidaka, 1., Matsumoto, H., Muraoka, Y.K.Y.: A jazz session system for
interplay among all players. In: ICMC Proceedings. (1996)

4. Goto, M., Neyama, R., Muraoka, Y.: RMCP: Remote music control protocol,
design and applications. In: ICMC Proceedings. (1997)

5. Goto, M., Neyama, R.: Open RemoteGIG:an open-to-the-public distributed ses-
sion system overcoming network latency. IPSJ JOURNAL 43 (2002) 299-309 (en
japonais).

6. Xu, A., Cooperstock, J.: Real-time streaming of multichannel audio data over
internet. In: AES 108th convension, Paris (2000)

7. Cooperstock, J.R., Spackman, S.P.: The recording studio that spanned a continent.
In: IEEE International Conference on Web Delivering of Music, WEDELMUSIC,
Florence, Italie (2001)

8. Puckette, M., Danks, M., Steiger, R.., Sorensen, V.:
http://visualmusic.org/gvm.htm (1999)



14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

Virtual Orchestra Team

Dchelle, F., Borghesi, R., Cecco, M.D., Maggi, E., Rovan, B., Schnell, N.: jmax: an
environment for real-time musical applications. ComputerMusic Journal 23 (1999)
50-58

Dchelle, F.: jmax: un environnement pour la ralisation d’applications musicales
temps rel sous linux. Actes des journes d’Informatique Musicale (2000)

Dchelle, F., Borghesi, R., de Cecco, M., Maggi, E., Rovan, J., Schnell, N.: jmax :
An environment for real-time musical applications. In: Computer Music Journal.
Volume 23-3. (1999) 50-58

Dchelle, F., de Cecco, M.: The ircam real-time platform and applications. In:
ICMC : International Computer Music Conference, Banff (1995)

Dchelle, F., Borghesi, R., Orio, N., Schnell, N.: The jmax environment : an overview
of new features. In: ICMC : International Computer Music Conference. (2000)
Orio, N., Dchelle, F.: Score following using spectral analysis and hidden markov
models. In: ICMC : International Computer Music Conference, La Havane (2001)
Bargar, R., Dchelle, F., Choi, I., Betts, A., Goudeseune, C., Schnell, N., Warusfel,
O.: Coney island : combining jmax, spat and vss for acoustic integration of spatial
and temporal models in a virtual reality installation. In: International Computer
Music Conference, San Francisco (2000)

Kon, F., Iazzetta, F.: Internet music: Dream or (virtual) reality. In: Proceedings of
the 5th Brazilian Symposium on Computer Music, Belo Horizonte, Brazil (1998)
Bargar, R., Church, S., Fukuda, A., Grunke, J., Keislar, D., Moses, B., Novak,
B., Pennycook, B., Settel, Z., Strawn, J., Wiser, P., Woszczyk, W.: Aes white
paper: Networking audio and music using internet2 and next-generation internet
capabilities. Technical report, AES: Audio Engineering Society (1998)

Bouillot, N.: Un algorithme d’auto synchronisation distribue de flux audio dans
le concert virtuel rparti. Confrence Franaise sur les Systmes d’Exploitation (2003)
CFSE 3. la Colle sur Loup, France. IN PROPOSAL.

Schulzrinne, Casner, Frederick, Jacobson: RTP: A transport protocol for real-time
applications. RFC 1889 (1998)

Group, U.C.S.W.: TASE.2 services and protocol. version 1996-08. iccp inter-control
centre communication protocol version 6.1. Technical Report IEC 870-6-503, IEC
(1996)

Becquet, E., Abdallah, M., Gressier-Soudan, E., Horn, F., Bacon, L.: Object ori-
ented timed messaging service for industrial ethernet: a fieldbus like architecture
for power plant control and factory automation. In proceeding Fieldbus Technology
(FeT’2001) (2001) IFAC. Nancy, France.

Becquet, E.: Opentaz home page (2003)

Rmer, K., Puder, A., Repository, 1., Pilhofer, F., Schultz, A., Kersting, A., Gardas,
K., Ltd, O.: Mico (2003)

Perkins, C., Hodson, O., Hardman, V.: A survey of packet-loss recovery techniques
for streaming audio. IEEE Network Magazine (1998)

Orion, Hodson, Colin: Skew detection and compensation for internet audio appli-
cations (2000)

Fober, D., Orlarey, Y., Letz, S.: Clock skew compensation over a high latency net-
work. In ICMA, ed.: Proceedings of the International Computer Music Conference.
(2002) 548-552



