
HAL Id: hal-01124809
https://hal.science/hal-01124809v1

Submitted on 26 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A control chart approach to select eigenvalues in
principal component and correspondence analysis

Gilbert Saporta

To cite this version:
Gilbert Saporta. A control chart approach to select eigenvalues in principal component and corre-
spondence analysis. 54th Session of the International Statistical Institute, International Statistical
Institute, Aug 2003, Berlin, Germany. �hal-01124809�

https://hal.science/hal-01124809v1
https://hal.archives-ouvertes.fr


A control chart approach to select eigenvalues in 
Principal Component and Correspondence Analysis 

Gilbert Saporta 

CNAM, Chaire de statistique Appliquée & CEDRIC 

292 rue Saint Martin 

75141 Paris cedex 03, France 

saporta@cnam.fr 

1. Introduction 

A vast literature (Cattell, Horn, Velicer) has been devoted to the assessment of the proper 

number of eigenvalues that have to be retained in Principal Components Analysis. Most of the 

publications are based on either (non-realistic) distributional assumptions for the underlying 

populations or on empirical criteria. Techniques that are based on bootstrap or cross-validation have 

been proposed (Diana, Krzanowski ,Wold) but requires a lot of computation. For Multiple 

Correspondence Analysis, the problem is similar, but there are few publications. In this paper a 

simple technique based on a control chart approach is proposed for selecting the number of 

principal components to retain for the analysis.  

 

2. A new rule for PCA 

In PCA with p standardised variables the most common rule is the Kaiser’s criterion, which 

selects components that correspond to eigenvalues larger than 1. This rule if often supplemented by 

the consideration of the confidence interval based on Anderson’s asymptotic result which states that 

with .95 confidence level the true eigenvalue  i  is such that 
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Forgetting about the fact that the  i  are an ordered sample of non independent variables, we 

may notice that they have a mean equal to 1 and that  i ij
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R2 between two independent variables is (n-1)-1 (exact for normal distributions and approximately 
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. Like in control charts, we may assume that an eigenvalue is 

significantly greater than 1 if  i
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. This method is thus a modification of Kaiser’s rule. 

 

3. The case of Multiple Correspondence Analysis 

Let X X X .. . X1 2 p e jbe the disjunctive table (indicator matrix) of p categorical variables . 

Then the number of non trivial eigenvalues is q m pi
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. When 

variables are pairwise independent n ij 2  is distributed as  ( )( )m mi j 1 1

2  which has an expectation equal 
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    (cf. Saporta & Ben Ammou). 

Like in PCA we may assume that the 
1

 2
p

 interval should contain about 95% of the 

eigenvalues. Since the kurtosis of the set of eigenvalues is lower than for a normal distribution, the 

actual proportion is larger than 95%. The modification of Kaiser’s rule consists here in retaining the 

eigenvalues greater than 
1

2
p

 . 

 

4. Discussion 

The proposed technique is distribution free since it uses only properties of the mean and of the 

dispersion of eigenvalues. In a recent paper (Karlis and al.), we have shown with extensive 

simulations that the method works better than other existing methodologies for PCA and it is 

conservative in the sense that it may reject eigenvalues that are larger than one but very close to one 

(such components are usually of little interest).  
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RÉSUMÉ 

Le calcul de la dispersion des valeurs propres permet de modifier la règle classique de Kaiser 

de retenir les valeurs propres plus grandes que leur valeur moyenne (qui vaut 1 en ACP ou 1/p en 

ACM). En adoptant comme dans les cartes de contrôle une limite supérieure égale à la moyenne 

plus deux fois l’espérance de l’écart-type on a une règle simple et efficace, indépendante de la 

distribution des observations. 


