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A control chart approach to select eigenvalues in Principal Component and Correspondence Analysis

Introduction

A vast literature (Cattell, Horn, Velicer) has been devoted to the assessment of the proper number of eigenvalues that have to be retained in Principal Components Analysis. Most of the publications are based on either (non-realistic) distributional assumptions for the underlying populations or on empirical criteria. Techniques that are based on bootstrap or cross-validation have been proposed (Diana, Krzanowski ,Wold) but requires a lot of computation. For Multiple Correspondence Analysis, the problem is similar, but there are few publications. In this paper a simple technique based on a control chart approach is proposed for selecting the number of principal components to retain for the analysis.

A new rule for PCA

In PCA with p standardised variables the most common rule is the Kaiser's criterion, which selects components that correspond to eigenvalues larger than 1. This rule if often supplemented by the consideration of the confidence interval based on Anderson's asymptotic result which states that with

. Forgetting about the fact that the   i are an ordered sample of non independent variables, we may notice that they have a mean equal to 1 and that

  i ij i j p r 2 2 2      .
Since the expectation of R 2 between two independent variables is (n-1) -1 (exact for normal distributions and approximately true in other cases), we have

E p p p n i (  ) ( )  2 1 1     
and the variance of the set of the p   i has thus an expectation equal to

p n   1 1
. Like in control charts, we may assume that an eigenvalue is

significantly greater than 1 if   i p n     1 2 1 1
. This method is thus a modification of Kaiser's rule.

The case of Multiple Correspondence Analysis

Let X X X ... X 1 2 p  e j be the disjunctive table (indicator matrix) of p categorical variables .

Then the number of non trivial eigenvalues is q m

p i i p     1
and it is well known that :

 i i q i i p p m       1 1 1 1 and   i i q i i p ij i j p m p 2 1 2 1 2 2 1 1 1           ) ( Let S q i p i q   2 1 1 1 2     ( )     1 1 2 1 2 q p i i q  and denote  2 = E S q E p i i q ( ) ( )   2 2 1 2 1 1     . When variables are pairwise independent n ij  2 is distributed as  ( )( ) m m i j   1 1 2
which has an expectation equal to (mi-1)(mj-1). Hence 
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Discussion

The proposed technique is distribution free since it uses only properties of the mean and of the dispersion of eigenvalues. In a recent paper (Karlis and al.), we have shown with extensive simulations that the method works better than other existing methodologies for PCA and it is conservative in the sense that it may reject eigenvalues that are larger than one but very close to one (such components are usually of little interest).