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1. Introduction

A vast literature (Cattell, Horn, Velicer) has been devoted to the assessment of the proper
number of eigenvalues that have to be retained in Principal Components Analysis. Most of the
publications are based on either (non-realistic) distributional assumptions for the underlying
populations or on empirical criteria. Techniques that are based on bootstrap or cross-validation have
been proposed (Diana, Krzanowski ,Wold) but requires a lot of computation. For Multiple
Correspondence Analysis, the problem is similar, but there are few publications. In this paper a
simple technique based on a control chart approach is proposed for selecting the number of
principal components to retain for the analysis.

2. A new rule for PCA

In PCA with p standardised variables the most common rule is the Kaiser’s criterion, which
selects components that correspond to eigenvalues larger than 1. This rule if often supplemented by
the consideration of the confidence interval based on Anderson’s asymptotic result which states that

with .95 confidence level the true eigenvalue , is such that
ﬂ,exp( -2 / )<ﬂ<lexp(2 / ) Hence one should have A >exp(2 / ) =1+2 /
for large n

Forgetting about the fact that the /A”ti are an ordered sample of non independent variables, we
may notice that they have a mean equal to 1 and that Zﬁf, =p+ 22 rij2 . Since the expectation of
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R? between two independent variables is (n-1)? (exact for normal distributions and approximately
p(p-1)
n-1

true in other cases), we have E(Zfﬁ) =p+ and the variance of the set of the p /A”ti has
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P . Like in control charts, we may assume that an eigenvalue is

thus an expectation equal to )
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significantly greater than 1 if ﬂ, >1+2,| rrl) i' This method is thus a modification of Kaiser’s rule.
3. The case of Multiple Correspondence Analysis
Let X= (X1|X2|...‘Xp)be the disjunctive table (indicator matrix) of p categorical variables .
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Then the number of non trivial eigenvalues is q:Zmi—p and it is well known that :
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Let S? = 1Z(/l. —1)2 = EZﬂﬁ —iz and denote 6?=E(S?) = 1 E(ifi) —iz . When
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variables are pairwise independent ng? is distributed as mei_l)(mj_l) which has an expectation equal
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o’ = WE > 2(m; =1)(m; —1) (cf. Saporta & Ben Ammou).
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Like in PCA we may assume that the li 20 interval should contain about 95% of the
P

eigenvalues. Since the kurtosis of the set of eigenvalues is lower than for a normal distribution, the
actual proportion is larger than 95%. The modification of Kaiser’s rule consists here in retaining the

. 1
eigenvalues greater than —+ 2o .
P

4. Discussion

The proposed technique is distribution free since it uses only properties of the mean and of the
dispersion of eigenvalues. In a recent paper (Karlis and al.), we have shown with extensive
simulations that the method works better than other existing methodologies for PCA and it is
conservative in the sense that it may reject eigenvalues that are larger than one but very close to one
(such components are usually of little interest).
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RESUME

Le calcul de la dispersion des valeurs propres permet de modifier la régle classique de Kaiser
de retenir les valeurs propres plus grandes que leur valeur moyenne (qui vaut 1 en ACP ou 1/p en
ACM). En adoptant comme dans les cartes de contrble une limite supérieure égale a la moyenne
plus deux fois I’espérance de [’écart-type on a une régle simple et efficace, indépendante de la
distribution des observations.



