
HAL Id: hal-01124802
https://hal.science/hal-01124802

Submitted on 26 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Missing Data in Hierarchical Classification of Variables,
a simulation study

Ana Lorga da Silva, Helena Bacelar-Nicolau, Gilbert Saporta

To cite this version:
Ana Lorga da Silva, Helena Bacelar-Nicolau, Gilbert Saporta. Missing Data in Hierarchical Classifica-
tion of Variables, a simulation study. IFCS 2002, International Federation of Classification Societies,
Jul 2002, Krakow, Poland. pp.121-128. �hal-01124802�

https://hal.science/hal-01124802
https://hal.archives-ouvertes.fr


Missing Data in Hierarchical Classification of
variables - a simulation study?

Ana Lorga da Silva1, Helena Bacelar-Nicolau2, and Gilbert Saporta3

1 Department of Mathematics, ISEG ,Tecnic University,
Lisbon,Portugal

2 FPCE LEAD - Lisbon University,
Lisbon,Portugal

3 Statistics Department,CNAM,
Paris, FRANCE

Abstract. Here we develop from a first work the effect of missing data in hierarchi-
cal classification of variables according to the following factors: amount of missing
data, imputation techniques, similarity coefficient, and aggregation criterion. We
have used two methods of imputation, a regression method using an OLS method
and an EM algorithm. For the similarity matrices we have used the basic affinity
coefficient and the Pearson’s correlation coefficient. As aggregation criteria we ap-
ply average linkage, single linkage and complete linkage methods. To compare the
structure of the hierarchical classifications the Spearman’s coefficient between the
associated ultrametrics has been used. We present here simulation experiments in
five multivariate normal cases.

1 Introduction

The missing data problem has been dealt in a large number of papers and
books where several methods to minimise missing data effect have been de-
veloped (Rubin(1974), Little and Rubin(1987), Dempster, Laird and Ru-
bin(1977), Orchard and Woodbury(1972), Beale and Little(1975) among oth-
ers).

When one wants to classify variables, for instance in marketing analysis
and social sciences, one frequently finds missing data. We are interested in
analysing the effect of missing data in some particular (originally complete)
hierarchical classification structures of variables, as well the results of impu-
tation methods in those cases. In the present work we consider hierarchical
clustering models based on two similarity coefficients - basic affinity, (Bacelar-
Nicolau(1981,1988,2000), Matusita(1955), Nicolau(1998) among others) and
Pearson’s correlation - and three classical aggregation criteria. We use two
types of imputation methods in simulation studies with different percentage
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of missing data at random. The data are issued from multinormal populations
(Saporta(1990)).

2 Hierarchical cluster analysis

In this work we are interested in the classification of variables. We use the
following hierarchical aggregation criteria:
Average linkage (AL): C (A,B) = 1

(#A)×(#B)

∑
c (Xj , Xj′), Xj ∈ A,Xj′ ∈ B

Single linkage (SL): C (A,B) = max { c (Xj , Xj′) , Xj ∈ A,Xj′ ∈ B } and
Complete linkage (CL): C (A,B) = min { c (Xj , Xj′) , Xj ∈ A,Xj′ ∈ B }
where A and B represent two clusters and c is a similarity coefficient between
two variables (Xj , Xj′are (n × 1) variables ) which can be one of the two
following:

The (unweighted) basic affinity coefficient
∑n

i=1

√
xij

x.j

xij′
x.j′

, where x.j =∑n
i=1 xij and x.j′ =

∑n
i=1 xij′ , as defined in Bacelar-Nicolau(2000).

The Bravais-Pearson correlation coefficient cp =
∑n

i=1(xij−xj)
(
xij′−xj′)

sxj s
xj′

and C is the respective extension to the clusters. In order to compare hierar-
chical classification models, we will use the Spearman’s coefficient-cs-between
the ultrametric matrices, based on pairs of observations with the usual cor-
rection for ties.

3 The missing data - MAR

The data are said that missing at random if its missingness does not depend
of the values assumed on the variables having missing values, but depends on
the values observed in other completely observed variables. The expression of
the general notion of MAR can be then written as: Prob(R|Xobs, Xmiss) =
Prob(R|Xobs), were Xobs represents the observed values of Xn×p, Xmiss the
missing values ofXn×p and R = [Rij ] is a missing data indicator,

Rij =
{

1, if xij observed
0, if xij missing

4 The imputation methods

An ordinary least square regression method (OLS) is used: is defined as usu-
ally, β1, β2 are estimated over the observed values of the dependent variable,Xobs =
β1 + β2X

′
obs(X

′
obs is a ”sample”of X corresponding to the observed values of

X - Xobs) and then the missing values of X (Xmiss) are imputed by the
regression on X ′

miss(those are observed values coresponding to the missing
dependent values of under the estimated model Xmiss = β1 + β2X

′
miss.

An EM algorithm has been used as follows:
At the E step of the algorithm (at the tth iteration),



xt
ij=

{
xij , if xij is observed
x̂ij , if xij is missing

”The E step imputes the best linear predictors of the missing values, us-
ing current estimates bof the parameters available so taht a suitable choice
can be made. It also calculates the adjustments cjk to the estimated covari-
ance matrix needed to allow for imputation of missing values” Little and
Rubin(1987) At the M step
µ(t+1) =

[
n−1

∑n
i=1 xij

]
,

σ
(t+1)
jk = (n−1)−1E (

∑n
i=1 xijxik|Xobs)−µt+1

j µt+1
k , j, k = 1, ...p. We consider

missing values over a dependent variable.

5 Numerical Experiments

In order to study the performance of the affinity and the Pearson’s correla-
tion coefficients as measures of similarity between variables, in hierarchical
classification and in presence of missing data, we use here the three classical
hierarchical clustering methods AL, SL and CL: in the cases of complete data;
in MAR case - 10%, 15% and 20% (over the total of the data - each 1000×5
matrices); and when the missing data are filled-in using the two imputation
methods as mentioned in 4..

One hundred samples have been generated of each type of simulated data
set, from five normal multivariate populations: Cases A, B, C, D and E, such
as: Xi˜N(µi, Σi), i = 1, ..., 5,and are 1000× 5 matrices(µ1 = µ2 = µ3 = µ4 =
µ5).
The values of the variance-covariance matrices have been chosen with the
aim of obtaining specific hierarchical structures:

Case A Case B

Case C Case D Case E

(order of variables:X1, X2, X3, X4, X5)

Note that cases C, D and E, have the same topology but they have dif-
ferent agreggation levels. In order to have missing data at random MAR we



have deleted (10%, 15% and 20%) values at random from variables X1 and
X2.

In the following we present the results of the simulations, respectively in
all the cases, by increasing order of the percentages of missing data (MD),
according to the similarity coefficients, the agglomerative methods and the
imputation methods. In each case we compare the ultrametrics associated to
the originally complete data with the ultrametric matrices associated to the
incomplete and the reconstructed data respectively( imputed data - ID).
The comparison between ultrametrics is obtained using a 5% Spearman’s bi-
lateral test (the critical value is c′s = 0, 684, see for instance Saporta (1990)).
In presence of MD, the classification is obtained by a listwise method i.e. we
have only considered for the analysis the complete rows (by eliminating the
rows with MD). In analysis of cases A,B,C,D and E,cs = 1,|cs| > c′s,|cs| < c′s
mean that:
cs = 1 the general “structure” of the two hierarchical classifications being
compared is the same, that is the two associated ultrametrics are “ordinal
equivalent” (each pair of ranked trees give the same “ordinal” structure).
|cs| > c′sthe two hierarchical classification structures are not the same, but
the two ultrametrics are ”significantly correlated” (at 5%).
|cs| < c′sthe two hierarchical classification structures are “significantly differ-
ent”
The percentages of cases and cs = 1 ,|cs| > c′s and |cs| < c′s are also indicated
in each cell of the tables.

All the simulated complete data reproduced the same general hierarchical
structure using both coefficients - Affinity and Pearson’s correlation - and the
three hierarchical methods, AL, SL and CL.

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 89%cs = 1 100%cs = 1

11%|cs| > c′
s

15% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 50%cs = 1 100%cs = 1
50%|cs| > c′

s

20% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 69%cs = 1 100%cs = 1
31%|cs| > c′

s

Table 1. describes the results in presence of MD - Case A

6 Conclusions

In all the studied cases the affinity coefficient performs better than Pearson’s
correlation coefficient in presence of data missing at random.



Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%cs = 1 69%cs = 1 100%cs = 1 99%cs = 1 92%cs = 1 99%cs = 1

31%|cs| > c′
s 1%|cs| > c′

s 8%|cs| > c′
s 1%|cs| > c′

s

15% 100%cs = 1 17%cs = 1 100%cs = 1 99%cs = 1 41%cs = 1 99%cs = 1
83%|cs| > c′

s 1%|cs| > c′
s 39%|cs| > c′

s 1%|cs| > c′
s

20% 79%cs = 1 3%cs = 1 97%cs = 1 12%cs = 1 3%cs = 1 12%cs = 1
21%|cs| > c′

s 97%|cs| > c′
s 17%|cs| > c′

s 88%|cs| > c′
s 97%|cs| > c′

s 88%|cs| > c′
s

Table 2. results after using OLS method - Case A

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 98%cs = 1 81%cs = 1 98%cs = 1 93%cs = 1 70%cs = 1 93%cs = 1

2%|cs| > c′
s 19%|cs| > c′

s 2%|cs| > c′
s 7%|cs| > c′

s 30%|cs| > c′
s 7%|cs| > c′

s

15% 58%cs = 1 14%cs = 1 95%cs = 1 91%cs = 1 49%cs = 1 94%cs = 1
42%|cs| > c′

s 86%|cs| > c′
s 5%|cs| > c′

s 9%|cs| > c′
s 51%|cs| > c′

s 6%|cs| > c′
s

20% 75%cs = 1 8%cs = 1 80%cs = 1 31%cs = 1 1%cs = 1 31%cs = 1
25%|cs| > c′

s 92%|cs| > c′
s 20%|cs| > c′

s 69%|cs| > c′
s 99%|cs| > c′

s 69%|cs| > c′
s

Table 3. results after using EM method - Case A

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1
15% 100%cs = 1 100%cs = 1 100%cs = 1 98%cs = 1 100%cs = 1 100%cs = 1

2%|cs| > c′
s

20% 100%cs = 1 99%cs = 1 100%cs = 1 94%cs = 1 97%cs = 1 81%cs = 1
1%|cs| > c′

s 6%|cs| > c′
s 3%|cs| > c′

s 18%|cs| > c′
s

1%|cs| < c′
s

Table 4. results in presence of MD - Case B

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 99%cs = 1 99%cs = 1 99%cs = 1 99%cs = 1 99%cs = 1 99%cs = 1

1%|cs| > c′
s 1%|cs| > c′

s 1%|cs| > c′
s 1%|cs| > c′

s 1%|cs| > c′
s 1%|cs| > c′

s

15% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1
20% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1

Table 5. results after using OLS method -Case B

Better results are obtained in presence of MD, than after the application
of both imputation methods.

When using the imputation methods in case C both imputation methods
gave the same results, and also that the affinity coefficient performs better
than the Pearson’s coefficient. In cases A, D and E the results are different
when using the two imputation methods, some times the least squares method
performs better, others, is with the EM algorithm that we obtain better
performance. We have obtained similar results in a study with Personality
development data, in presence of seven variables(Silva et al.(2001))



Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1
15% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1
20% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1

Table 6. results after using EM method - Case B

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%cs = 1 99%cs = 1 100%cs = 1 5%cs = 1 49%cs = 1 100%|cs| < c′

s
1%|cs| > c′

s 95%|cs| < c′
s 51%|cs| < c′

s

15% 100%cs = 1 96%cs = 1 99%cs = 1 5%cs = 1 41%cs = 1 100%cs < 1
4%|cs| > c′

s 1%|cs| > c′
s 95%|cs| < c′

s 59%|cs| < c′
s

20% 100%cs = 1 87%cs = 1 100%cs = 1 3%cs = 1 21%cs = 1 100%|cs| < c′
s

13%|cs| > c′
s 97%|cs| < c′

s 69%|cs| < c′
s

Table 7. results in presence of MD - Case C

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%cs = 1 100%cs = 1 100%cs = 1 98%cs = 1 100%cs = 1 98%cs = 1

2%|cs| < c′
s 2%|cs| < c′

s

15% 100%cs = 1 100%cs = 1 100%cs = 1 94%cs = 1 96%cs = 1 95%cs = 1
5%|cs| > c′

s 4%|cs| > c′
s 4%|cs| > c′

s
1%|cs| < c′

s 1%|cs| < c′
s

20% 94%cs = 1 94%cs = 1 94%cs = 1 21%cs = 1 21%cs = 1 21%cs = 1
2%|cs| > c′

s 2%|cs| > c′
s 2%|cs| > c′

s 58%|cs| > c′
s 58%|cs| > c′

s 58%|cs| > c′
s

4%|cs| < c′
s 4%|cs| < c′

s 4%|cs| < c′
s 21%|cs| < c′

s 21%|cs| < c′
s 21%|cs| < c′

s

Table 8. results after using both imputation methods - Case C

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 99%cs = 1 100%cs = 1 100%cs = 1 97%cs = 1 96%cs = 1 99%cs = 1

1%|cs| > c′
s 3%|cs| > c′

s 4%|cs| > c′
s 1%|cs| > c′

s

15% 98%cs = 1 99%cs = 1 99%cs = 1 95%cs = 1 90%cs = 1 95%cs = 1
1%|cs| > c′

s 1%|cs| > c′
s 1%|cs| > c′

s 5%|cs| < c′
s 10%|cs| > c′

s 5%|cs| > c′
s

1%|cs| < c′
s

20% 99%cs = 1 100%cs = 1 100%cs = 1 92%cs = 1 85%cs = 1 93%cs = 1
1%|cs| < c′

s 8%|cs| < c′
s 15%|cs| > c′

s 7%|cs| > c′
s

Table 9. results in presence of MD - Case D

The following developments of this work are related to other similarity co-
efficients and hierarchical structures, namely concerning a probabilistic clas-
sification approach,the use of the probabilistic weighted coefficient(without
ignore objects or impute the missing data) and different types of missing data
and imputation methods.



Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%|cs| > c′

s 99%cs = 1 96%cs = 1 59%cs = 1 47%cs = 1 60%cs = 1
1%|cs| > c′

s 4%|cs| > c′
s 40%|cs| > c′

s 63%|cs| > c′
s 40%|cs| > c′

s
1%|cs| < c′

s

15% 9%cs = 1 6%cs = 1 18%cs = 1 70%cs = 1 52%cs = 1 76%cs = 1
90%|cs| > c′

s 94%|cs| > c′
s 82%|cs| > c′

s 29%|cs| > c′
s 47%|cs| > c′

s 23%|cs| > c′
s

1%|cs| < c′
s 1%|cs| < c′

s

20% 99%|cs| > c′
s 100%|cs| > c′

s 100%|cs| > c′
s 31%cs = 1 18%cs = 1 68%cs = 1

1%|cs| < c′
s 68%|cs| > c′

s 82%|cs| > c′
s 32%|cs| > c′

s
1%|cs| < c′

s

Table 10. results after using OLS method - Case D

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 98%cs = 1 83%cs = 1 92%cs = 1 93%cs = 1 99%cs = 1 93%cs = 1

2%|cs| > c′
s 12%|cs| > c′

s 7%|cs| > c′
s 7%|cs| > c′

s 1%|cs| > c′
s 7%|cs| > c′

s
1%|cs| < c′

s 1%|cs| < c′
s

15% 58%cs = 1 21%cs = 1 87%cs = 1 91%cs = 1 80%cs = 1 93%cs = 1
42%|cs| > c′

s 79%|cs| > c′
s 1%|cs| > c′

s 9%|cs| > c′
s 19%|cs| > c′

s 6%|cs| > c′
s

12%|cs| < c′
s 1%|cs| < c′

s 1%|cs| < c′
s

20% 75%cs = 1 1%cs = 1 97%|cs| > c′
s 31%cs = 1 19%cs = 1 98%|cs| > c′

s
25%|cs| > c′

s 99%|cs| > c′
s 3%|cs| < c′

s 69%|cs| > c′
s 81%|cs| > c′

s 2%|cs| < c′
s

Table 11. results after using EM method - Case D

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1
15% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 97%cs = 1 98%cs = 1

3%|cs| < c′
s 2%|cs| < c′

s

20% 100%cs = 1 98%cs = 1 99%cs = 1 100%cs = 1 87%cs = 1 92%cs = 1
1%|cs| > c′

s 1%|cs| > c′
s 13%|cs| < c′

s 8%|cs| < c′
s

1%|cs| < c′
s

Table 12. results in presence of MD - Case E

Affinity coeficient Pearson’s coeficient
MD AL SL CL AL SL CL
10% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1
15% 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1 100%cs = 1
20% 99%cs = 1 99%cs = 1 99%cs = 1 73%cs = 1 73%cs = 1 73%cs = 1

1%|cs| > c′
s 1%|cs| > c′

s 1%|cs| > c′
s 25%|cs| > c′

s 25%|cs| > c′
s 25%|cs| > c′

s
2%|cs| < c′

s 2%|cs| < c′
s 2%|cs| < c′

s

Table 13. results after using OLS method - Case E
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