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ABSTRACT

Context. The INTEGRAL/SPI, X/γ-ray spectrometer (20 keV–8 MeV) is an instrument for which recovering source intensity varia-
tions is not straightforward and can constitute a difficulty for data analysis. In most cases, determining the source intensity changes
between exposures is largely based on a priori information.
Aims. We propose techniques that help to overcome the difficulty related to source intensity variations, which make this step more
rational. In addition, the constructed “synthetic” light curves should permit us to obtain a sky model that describes the data better and
optimizes the source signal-to-noise ratios.
Methods. For this purpose, the time intensity variation of each source was modeled as a combination of piecewise segments of time
during which a given source exhibits a constant intensity. To optimize the signal-to-noise ratios, the number of segments was mini-
mized. We present a first method that takes advantage of previous time series that can be obtained from another instrument on-board
the INTEGRAL observatory. A data segmentation algorithm was then used to synthesize the time series into segments. The second
method no longer needs external light curves, but solely SPI raw data. For this, we developed a specific algorithm that involves the
SPI transfer function.
Results. The time segmentation algorithms that were developed solve a difficulty inherent to the SPI instrument, which is the intensity
variations of sources between exposures, and it allows us to obtain more information about the sources’ behavior.

Key words. methods: data analysis – methods: numerical – techniques: miscellaneous – techniques: imaging spectroscopy –
methods: statistical – gamma rays: general

1. Introduction

The SPI X/γ-ray spectrometer, on-board the INTEGRAL
observatory is dedicated to the analysis of both point-sources
and diffuse emission (Vedrenne et al. 2003). The sky imaging is
indirect and relies on a coded-mask aperture associated to a spe-
cific observation strategy that is based on a dithering procedure.
Dithering is needed since a single exposure does not always pro-
vide enough information or data to reconstruct the sky region
viewed through the ∼30◦ field-of-view (FoV), which may con-
tain hundreds of sources for the most crowded regions. It con-
sists of small shifts in the pointing direction between exposures,
the grouping of which allows us to increase the amount of avail-
able information on a given sky target through a growing set of
“non-redundant” data. The standard data analysis consists of ad-
justing a model of the sky convolvedwith the instrument transfer
function plus instrumental background to the data.

⋆ Based on observations with INTEGRAL, an ESA project with in-
struments and science data centre funded by ESA member states (es-
pecially the PI countries: Denmark, France, Germany, Italy, Spain, and
Switzerland), Czech Republic and Poland with participation of Russia
and the USA.

However, source intensities vary between exposures. Thus,
a reliable modeling of source variability, at least of the most in-
tense ones, is needed to accurately model the data and intensity
measurement of the sources. In addition, ignoring these intensity
variations can prevent the detection of the weakest sources.

Ideally, the system of equations that connects the data to the
sky model (unknowns) should be solved for intensities as well
as for the variability timescales of sources and background. We
propose methods based on data segmentation to fulfill these re-
quirements as best as possible and we report in detail on the
improved description and treatment of source variability during
the data reduction process.

2. Functioning of SPI: necessity of modeling

the intensity variations of sources

2.1. Instrument

SPI is a spectrometer provided with an imaging system sen-
sitive to both point-sources and extended source/diffuse emis-
sion. The instrumental characteristics and performance are de-
scribed in Vedrenne et al. (2003) and Roques et al. (2003). Data
are collected between 20 keV and 8 MeV using 19 high-purity
Ge detectors illuminated by the sky through a coded mask. The



resulting FoV is ∼30◦. The instrument can locate intense sources
with an accuracy of a few arc minutes (Dubath et al. 2005).

2.2. SPI imaging specifics and necessity of dithering

A single exposure provides only 19 data values (one per Ge de-
tector), which is not enough to correctly sample the sky image.
Indeed, dividing the sky into ∼2◦ pixels (the instrumental angu-
lar resolution) yields about 225 unknowns for a 30◦ FoV (i.e.,
(30◦/2◦)2). Hence, reconstructing the complete sky image en-
closed in the FoV is not possible from a single exposure because
the related system of equations is undetermined. From these
19 data values, and the parameters describing the instrumental
backgroundwe can, at best, determine the intensity of only a few
sources. This is sufficient for sparsely populated sky regions and
for obtaining a related coarse image (the intensities of the few
pixels corresponding to the source positions). However, some of
the observed sky regions are crowded (the Galactic center re-
gion, for example, contains hundreds of sources) and obtaining
more data is mandatory for determining all parameters of the sky
model. The dithering technique (Sect. 2.3) allows to obtain this
larger set of data through multiple exposures.

2.3. Dithering

By introducing multiple exposures of the same field of the sky
that are shifted by an offset that is small compared to the FoV
size, the number of data related to this sky region is increased.
In the dithering strategy used for INTEGRAL, the spacecraft
continuously follows a dithering pattern throughout an obser-
vation (Jensen et al. 2003). In general, the exposure direction
varies around the pointed target by steps of 2◦ within a five-by-
five square or a seven-point hexagonal pattern. An exposure lasts
between 30 min and 1 h.

Through grouping of exposures related to a given sky re-
gion, the dithering technique allows one to increase the number
of “non-redundant” data points1 without significantly increas-
ing the size of the FoV that is spanned by these exposures. This
provides enough data to recover the source intensity by solving
the related system of equations. The source intensity variations
within an exposure do not constitute a problem with the coded
mask imaging system. The difficulty comes from the intensity
variations between exposures. Hence, in our case, sources are
variable on various timescales, ranging from an hour (roughly
the duration of an exposure) to years. This information should
be included in the system of equations to be solved.

2.4. Handling source intensity variation

We chose to model the intensity variation of a source as a suc-
cession of piecewise constant segments of time. In each of the
segments (also called “time bins”), the intensity of the source is
supposed to be stable. The higher energy bands (E >∼ 100 keV)
contain a few emitting/detectable sources. Their intensities are
rather stable with time according to the statistics and only a few
piecewise constant segments of time or “time bins” are needed
to model source intensity variations.

1 The measurements correspond to data points that are not completely
independent, if one considers that the shadow (of the mask projected
onto the camera by a source) just moves as a function of the pointing
direction of the exposure. Dithering is also used to extend the FoV and
to separate the background from the source emission. It does not always
provide a better coding of the sky.

At lower energies (E <∼ 100 keV), the source intensity
varies more rapidly. When inappropriate timescales are used
for the sources contained in the resulting large FoV (>30◦) and
for the background, the model does not fit the data satisfacto-
rily (the chi-squares of the corresponding least-squares problem
(Appendix A) can be relatively high). Moreover, allowing all
sources to vary on the timescale of an exposure is an inappropri-
ate strategy because, for crowded regions of the sky the problems
to be solved are again undetermined in most cases. Generally, to
estimate the source variability timescale, a crude and straightfor-
ward technique consists of testing several mean timescale values
until the reduced chi-square of the associated least-squares prob-
lem is about 1 or does not decrease anymore. Unfortunately, this
method is rapidly limited. Including variability in the system of
equations always increases the number of unknowns that need to
be determined (Appendix A) since the intensity in each segment
of time (“time bins”) is to be determined. Using too many “time
bins” will increase the solution variance and does not necessar-
ily produce the best solution. Similarly, it is better to limit the
number of “time bins” to the strict necessary minimum to set up
a well-conditioned system of equations.

When one manually defines the “time bins”, one might soon
be overwhelmed by the many timescales to be tested and the
number of sources. It is difficult to simultaneously search for the
variability of all sources contained in the instrument FoV and to
test the various combinations of “time bins” (not necessarily the
same length or duration, location in time). As a consequence,
constructing light curves turns out to be rather subjective and
tedious, and relies most of the time on some a priori knowledge.
To make this step more rational, we propose methods based on
a partition of the data into segments, to model source intensity
variations between exposures.

3. Material

The objective is to find the “time bins” or segment sizes and
locations corresponding to some data. This is related to the par-
tition of an interval of time into segments. We propose two meth-
ods. The first one, called “image space”, relies on some already
available light curves (or equivalently on a time series)2. In our
application the time series come mainly from INTEGRAL/IBIS
and from Swift/BAT (Barthelmy et al. 2005). The purpose is to
simplify an original light curve to maximize the source signal-
to-noise ratio (S/N), hence to reduce the number of “time bins”
through minimizing of the number of time segments3. These
“time bins” are used to set up the SPI system of equations. This
partitioning is made for all sources in the FoV. This algorithm is
not completely controlled by SPI data, but at least it allows one
to obtain a reasonable agreement (quantified by the chi-square
value) between the data and the sky model.

The second method, called “data space”, starts from the
SPI data and uses the instrument transfer function. In contrast
to the “image-space” method where the segmentation is made
for a single source only, the “data-space” method performs the

2 In some cases it is also possible to use SPI light curves directly, for
example when the FoV contains only a few sources. A first analysis
exposure-by-exposure provides a light curve.
3 The number of naturally defined “time bins” using for exam-
ple the IBIS “imager”, is the number of exposures (hence, exposure
timescales), which can exceed the number of SPI data if we have more
than 19 sources (which corresponds to the number of detectors) in
the FoV varying on the exposure timescale), leading to an undeter-
mined system of equations. In short, these light curves on the exposure
timescale cannot be used directly.



Table 1. Index of mathematical symbols.

np number of exposures
nd number of detectors (data) per exposure
N number of parameters (to determine)
L number of data points in a time series

M number of data points M =
∑np

i=1
nd(i)

Dp data recorded during the exposure (pointing) p

Dp is a vector of length nd(p)
y data sorted in sequential order (vector of length M)

y ≡ (D1,D2, . . . ,Dnp ) where Dp are the data points

accumulated during exposure p.
x solution of the equation Hx = y (vector of length N).

Also time series (“image space”) x ≡ x1:L = (x1 , . . . , xL)
where xi are supposed sequentially ordered in time

H real rectangular matrix of size M × N

H(J) the submatrix (columns of H) related to source named or

numbered J, such that H ≡ [H(1), · · · ,H(N)]

A square real symmetric matrix of order N (A = HTH)
ε measurement errors on x (time series vector of length L)

assumed to have zero mean, to be independent and normally

distributed with a known variance Σ ( ǫi ∼ N(0, [σ2
i
]) )

T ti is the time where the data point xi is measured with
measurement error ǫi. T = (t1, . . . , tL).

f (ti) the model of a series, this is a piecewise constant function.
m number of change points that defined the m + 1 segments such

that f (t) is constant between two successive change points
nseg(J) number of segments to describe source named or numbered J

τ change points such that τ0 = min(T ) and τm+1 = max(T )
or in point number units, τ0 = 1 and τm+1 = L + 1
(τ0 < τ1 < . . . < τm+1).τ

∗ denotes the last found change point
s sk is the value of the model f (t) for the segment defined by

τk−1 ≤ t < τk (vector of length m + 1)
F(τ) recursive function to be minimized with respect to τ
β penalty to prevent overfitting
x(τi−1+1):τi subset of the vector x, x(τi−1+1):τi = (xτi−1+1, . . . , xτi )
C(x(τi−1+1):τi ) Cost function or effective fitness for the

vector x subset x(τi−1+1):τi
n Iteration number which corresponds to time tn

Notes. Initial state is denoted with the upper subscript 0: (H0,N0, . . .).
The temporary state, with the upper subscript ∗: (H∗, x∗, N∗, n∗seg , . . .).
The time t is sometimes replaced by the iteration number n.

time interval partitioning simultaneously for all sources in the
FoV and is used to separate their individual contributions to the
data. While this is more complex, the great advantage is that it is
based solely on SPI data (Sect. 5).

4. Theory and calculation

4.1. The “image-space” algorithm – partition of a time series

The partition of an interval into segments is closely related to the
topic of change points, which is widely discussed in the litera-
ture. There is a variety of efficient ways to analyze a time series
if the parameters associated with each segment are independent
(Fearnhead 2006; Hutter 2007, and references therein). Scargle
(1998) proposed an algorithm for best data partitioningwithin an
interval based on Bayesian statistics. Applications to astronomi-
cal time series (BATSE bursts characterization) can be found in
Scargle (1998).

4.2. Problem formulation

A list of notations used throughout this paper is given in Table 1.
We consider the time series x ≡ x1:L = (x1, . . . , xL), comprising
L sequential elements, following the model

xi ≡ f (ti) + ǫi i = 1, 2, . . . , L, (1)

where xi are the measured data and ǫi their measurement errors.
The data are assumed to be ordered in time, although they may
be spaced irregularly, meaning that each xi is associated with a
time ti and contained in a time interval T = (t1, . . . , tL). f (ti) is
the model to be determined.We chose to model the time series as
a combination of piecewise constant segments of time or blocks.
This set of non-overlapping blocks that add up to form the whole
interval forms a partition of the interval T . Hence there are, m
change points τ1:m = (τ1, . . . , τm), which define m + 1 segments,
such that the function f (t) is constant between two successive
change points,

f =

m+1
∑

k=1

skIk with

{

Ik = 1 if t ∈ [τk−1, τk[

Ik = 0 otherwise.
(2)

Here τ0 = min(T ) and τm+1 = max(T ) or, equivalently, in point
number units, τ0 = 1 and τm+1 = L + 1 (τ0 < τ1 < . . . <
τm+1). Since these data are always corrupted by observational
errors, the aim is to distinguish statistically significant variations
through the unavoidable random noise fluctuations. Hence, the
problem is fitting a function through a noisy one-dimensional
series, where the function f to be recovered is assumed to be a
piecewise constant function of unknown segment numbers and
locations (see Appendix A).

4.3. Algorithm

Yao (1984) and Jackson et al. (2005) proposed a dynamic pro-
graming algorithm to explore these partitions. The algorithm de-
scribed in Jackson et al. (2005) finds the exact global optimum
for any block additive fitness function (additive independent seg-
ments) and determines the number and location of the necessary
segments. For L data points, there are 2L−1 possible partitions.
In short, these authors proposed a search method that aims at
minimizing the following function (see also Killick et al. 2012):

min
τ















m+1
∑

i=1

[C(x(τi−1+1):τi
) + β

]















, (3)

where C represents some cost function. The ith segment con-
tains the data block x(τi−1+1):τi

= (xτi−1+1, . . . , xτi
) (in point num-

ber units), and the cost function or effective fitness for this data
block is C(x(τi−1+1):τi

). The negative log-likelihood, for example
the chi-square, is a commonly used cost function in the change
point literature, but other cost functions can be used instead (e.g.
Killick et al. 2012, and references therein). β is a penalty to pre-
vent overfitting. Jackson et al. (2005, but see also Killick et al.
2012) proposed a convenient recursive expression to build the
partition in L passes,

F(n) = min
τ∗

{

F(τ∗) + C(x(τ∗+1):n) + β
}

n = 1, . . . , L. (4)

This enables calculating the global best segmentation using best
segmentations on subsets of the data. Once the best segmentation
for the data subset x1:τ∗ has been identified, it is used to infer the
best segmentation for data x1:τ∗+1.

At each step of the recursion, the best segmentation up to τ∗

is stored; for that, the position of the last change point τ∗ is
recorded in a vector (Jackson et al. 2005). By backtracking this
vector, the positions of all change points that constitute the best
segmentation at a given time or iteration number can be recov-
ered. Figure 1 shows a flowchart of the algorithm. Our imple-
mentation is essentially the same as that of Jackson et al. (2005),
but see also Killick et al. (2012). The best partition of the data is
found in O(L2) evaluations of the cost function.



 !"#"$%"&$#"'!

 !"#$%&' () % *+," - ," ./0-"1 0

23,"#$%&'() % ," 435+  . -6305+ ! 10",

7() % 1"+43"1 08 "19+ - /0"+4

7 ( &:

7(7;$

(')*+#,

<#1'( !"#1=$';> ,"#?@

1

A@

1;$

ABBBA@

7

C'; . 4 1($ABBBA7 #DEB F'

G !"#7'A 23,"#7'H(910#<#$%7'' % 91019/9 I32/+

30J 1", 2 -3"1 0

 !*+#-

. % 0/9*+4  . J3"3 ! 10",

/#$%&' % J3"3 ! 10",

% !+032"K !3439+"+4

0+#*+# 1 21032 -6305+ ! 10", -!"#$%9'(3!

4

56665! 7

>6305+ ! 10", 34+ *3-L"43-L+J /,105 "6+ 3443K 23,"M

N 93"23*=21L+ - J+ . 4 "63" 1,

10J+@(23,"#&'

-!"(GH O D9!"K I+-" 4

P612+ #10J+@ Q $'

-!"(G10J+@ -!"H

10J+@(23,"#10J+@=$'

+0JP612+

R 

Fig. 1. Flowchart of the “image-space” algorithm (pseudo-code in
Appendix F.1). The vector last gives the starting point of individual
segments of the best partition in the following way; let τm=last(L),
τm−1=last(τm − 1) and so on. The last segment contains cells (data
points) τm, τm + 1, . . . , n, the next-to-last contains cells τm−1, τm−1 +
1, . . . , τm − 1, and so on.

5. “Data-space” algorithm

The SPI data contain the variable signals of several sources. The
contribution of each of the sources to the data through a trans-
fer function is to be retrieved. As in Sect. 4.1 and for each of
the sources, the number and positions of segments are the pa-
rameters to be estimated, but this time, the estimates are interde-
pendent because of the nature of the instrument coding. While
many algorithms exist to analyze models where the parameters
associated with each segment are independent of those linked
to the other segments, there are only a few approaches, not of
general applicability, where the parameters are dependent from
one segment to another (Punskaya et al. 2002; Fearnhead & Liu
2011, and references therein). However, our problem involves a
transfer function, which requires a specific treatment.

5.1. Contribution of the sources to the data

The elements related to source J are denoted with the upper sub-
script (J). The variable signal of the source numbered J is rep-
resented by nseg(J) (= m(J) + 1) piecewise constant segments

(“time bins”) delimited by 0 ≤ m(J) ≤ np − 1 change points

(Sect. 4.2). The response H0(1 : M, J) , which corresponds to a
constant source intensity, is a vector of length M (=

∑np

i=1
nd(i)).

This vector is expanded into a submatrix with nseg(J) orthogonal
columns. The signal can be written (see also Eq. (2))

x0(J) → f (J)(t) =

m(J)+1
∑

k=1

s
(J)

k
I(J)

k
(t) with

{

I(J)

k
(t) = 1 if t ∈ [τ

(J)

k−1, τ
(J)

k
[

I(J)

k
(t) = 0 otherwise.

The corresponding predicted contribution to the data, at time t
(in units of exposure number), is

nseg(J)
∑

k=1

H(J)(t, k)s
(J)

k
t = 1, . . . , np.

The submatrices H(J)(t, k) of dimension nd(t)×nseg(J) are derived

from the response vector H0(1 : M, J) as follows:

H(J)(t, k)=















H0(i, J) if
∑τ

(J)

k−1
q=1

nd(q) + 1 ≤ i ≤ ∑τ
(J)

k

q=1
nd(q)

0 otherwise.

The response associated with the N0 sources is obtained by
grouping subarrays H(J) of all sources,

H ≡
[

H(1), · · · ,H(N0)
]

. (5)

Matrix H has size M × N with N =
∑N0

J=1 nseg(J). Therefore, the

predicted contribution of the N0 variable sources to the data is

N
∑

j=1

H(i, j)x( j) i = 1, . . . ,M,

where x = (s
(1)

1:nseg(1)
, . . . , s

(N0)

1:nseg(N0)
) is the flux in the N “time bins”

(see also Appendix A).

5.2. Algorithm

The search path or the number of possible partitions for

N0 sources and the np exposures is (2np−1)N0

. An exhaustive
search is not feasible for our application. In addition, comput-
ing the cost function for a particular partition implicitly involves
solving a system of equations (computing the cost function),
which renders the search even more inefficient. We essentially
make a simplification or approximation that reduces the compu-
tation time, allows significant optimizations, and hence makes
the problem tractable.

Instead of searching for the exact change points, we can
settle for reliable segments and hence derive an algorithm that
aims at significantly reducing the search path. Rather than ex-
ploring the space for all sources simultaneously, we explore the
reduced space associated to a single source at a time. The al-
gorithm closely follows the pattern of Eq. (4). It is an iterative
construction of time segments that processes the sources sequen-
tially and independently. In practice, the best set of change points
using the data recorded up to time t − 1 is stored. The nd(t) new
data points obtained at time t are added to the dataset. The pro-
cedure starts for the best change points recorded so far. For a
given source, an additional change point is added at the various
possible positions. Its best position is recorded along with the
best new cost function. The operation is repeated for all sources.
The best change point (and cost function value) of all sources
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Fig. 2. Flowchart of the “data-space” algorithm (pseudo-code in
Appendix F.2). The cost function calculation, here the shaded box, is
detailed in Fig. 3.

is kept (location and source number) and added to the growing
set of change points. This procedure is repeated several times,
for instance Niter (≤N0 subiteration) times, until no more change
points are detected or until the cost function cannot be improved
any further. Then, another iteration at t + 1 can start. Figure 2
schematically shows the resulting procedure.

This experimental approach is exact when the columns of the
transfer matrix are orthogonal. Although there is no mathemati-
cal proof that this holds for a matrix that does not have this prop-
erty, it is efficient on SPI transfer function and data (Sect. 6.3).

5.3. Cost function calculation

The computation of the cost function, used to adjust the data to
the model, is detailed in Appendix B. The derived expression in-
volves the minimization of the chi-square function. Indeed, the
cost function must be computed many times, each time that a
new partition is tested. This is by far the most time-consuming

part of the algorithm. Fortunately, these calculations can be
optimized.

At iteration n, for a subiteration, we have to solve about
n×N0 systems of equations to compute the cost functions corre-
sponding to the different change-point positions. Instead of solv-
ing all these systems, it is possible to solve only a few of them
and/or reduce the number of arithmetic operations by relying on
the structure of the matrices4.

The matrix H of size M×N using the change points obtained
at iteration n−1 is the starting point. To search for the best parti-
tion for source J, we have to replace only the submatrix H(J) by
its updated version H∗(J). The corresponding transfer matrix H∗

(of dimension M × N∗) can be written (Eq. (5)) as

H∗(1 : M, 1 : N∗) ≡
[

H(1), · · · ,H(J−1),H∗(J),H(J+1), · · · ,H(N0)
]

.

The dimension of the submatrix H∗(J) corresponding to the new
data partition is M×n∗seg(J). Here n∗seg(J) is the resulting number
of segments for source J. It varies from 1, which corresponds
to a single segment for the source J, to the nmax

seg (J) + 1, where
nmax
seg (J) is the highest number of segments obtained so far for

source J for iteration up to n−1. In most cases, only the few last
columns of the matrix H∗(J) are not identical to those of H(J),

since the very first columns tend to be frozen (Sect. 5.4). If n
keep
seg

is the number of consecutive identical columns, then

H∗(J) ≡
[

H(J)(1 : M, 1 : n
keep
seg ),Hadd(1 : M, 1 : Nadd)

]

.

Here Hadd is the modified part of H(J). Let kmin(J) =
∑J−1

k=1 nseg(k)

and kmax(J) =
∑J

k=1 nseg(k). Then, the columns, from kmin(J) +

n
keep
seg +1 to kmax(J) are deleted in the matrix H and Nadd columns

are added at position kmin(J)+ n
keep
seg + 1 to kmin(J)+ n

keep
seg + Nadd.

Therefore, it is not necessary to compute the full matrix H∗ from
scratch each time a new change point is tested (position and
source number), but simply to update some columns of the ma-
trix H. This construction of the transfer function significantly
saves on run time and provides clues to further optimization.

However, in our application, we solve a least-squares sys-
tem, and hence the matrix A = HTH (A∗ = H∗TH∗) is
to be implicitly inverted. We use an expression based on the
Sherman-Morrison-Woodbury formula and the matrix partition
lemma (E) to obtain A∗ from A after subtracting Nsub and added
Nadd columns to H (Appendix E). With this optimization, we
need only one matrix decomposition (A = LtL where L is a
lower triangular matrix) of a symmetric sparse matrix5 A of or-
der N per iteration and solve the system (Ax = HTy) (store fac-
tors and solution). Then, for each tested change-point position
tested, only one system of equations is to be solved (using the
matrix decomposition stored previously), other operations are
relatively inexpensive. To compute the cost function, it can be
necessary for our application, depending on the expression of
the cost function, to compute a determinant. However, in our
application, only the ratio of the determinant of the created ma-
trix (A∗) of rank N∗ = N + Nadd − Nsub to matrix A of rank N
matters. This ratio is very stable because it involves only matri-
ces of small rank. In addition, as a cross-product of the update
of A, it is inexpensive to compute.

4 In our implementation, the matrices are sparse and the estimated
search path number and cost in arithmetic operations are lower than
those given in this section, which correspond to full matrices.
5 We used the MUMPS (MUltifrontal Massively Parallel Solver) pack-
age (http://mumps.enseeiht.fr/ or http://graal.ens-lyon.
fr/MUMPS). The software provides stable and reliable factors and can
process indefinite symmetric matrices. We used a sequential implemen-
tation of MUMPS.
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Fig. 3. Flowchart of the calculation of the cost function for the
“data-space” algorithm.

5.4. “Limited memory” version

The number of possible partitions, and hence possible change-
point positions, increases with the number of exposures
(Sect. 5.2). This makes the problem difficult to solve in terms
of computing time for data sets containing a large number of ex-
posures. The positions of the change points are not necessarily
fixed until the last iteration. In the worst case, there can be no
common change points (hence segments) between two succes-
sive iterations. In practice, it turns out that they become more or
less frozen once a few successive change points have been lo-
cated. Then, for each source, instead of exploring the n possible
positions of the change point, we consider only the data accu-
mulated between iteration n0 > 1 and n (The “full” algorithm
starts at n0 = 1). This defines a smaller exploration window size,
which further reduces the number of cost function evaluations
(in the shaded box of Fig. 3, the loop on change-point positions
starts at i = n0 > 1). The number of change-point positions to
test is nearly stable as a function of the number of accumulated
exposures. Section 6.3.4) compares the “limited memory” and
“full” version.

5.5. Parallelization

The algorithm sequentially divides each source interval into seg-
ments. Hence, it is straightforward to parallelize the code and
process several sources simultaneously. To do so, the “source

loop” (in the shaded box of Fig. 3, the loop on J) is parallelized
using Open-MP. Matrix operations are performed in sequen-
tial mode, although a parallel implementation is also possible.
Experiments on parallelization are presented in Sect. 6.3.3.

6. Results

The sky model for each dataset consists of sources plus the in-
strumental background, whose intensity variations are to be de-
termined. The background is also the dominant contributor to
the observed detector counts or data. Its spatial structure on the
detector plane (relative count rates of the detectors) is assumed
to be known thanks to “empty-field” observations, but its inten-
sity is variable (Appendix A). By default, its intensity variability
timescale is fixed to ∼6 h, which was shown to be relevant for
SPI (Bouchet et al. 2010). Its intensity variation can also be com-
puted, as for a source, with the “data-space” algorithm.

Owing to observational constraints (solar panel orientation
toward the Sun, etc.), a given source is “visible” only every
∼6 months and is observed only during specific dedicated expo-
sures (Fig. 4). For these reasons, it is more convenient to present
the “light curves” as a function of the exposure number, so the
abscissa does not actually reflect the time directly.

The fluxes obtained with SPI and IBIS in each defined “time
bin”, are also compared whenever possible. However, IBIS light
curves are provided by a “quick-look analysis” and are intended
to give an approximate measurement of the source intensity.
These time series, used as external data input to the “image-
space” method, are not fully converted into units that are in-
dependent of the instrument (such as photonscm2 s−1) and can
even be affected by the specific characteristics of the instrument.

6.1. Datasets/training data

The various datasets used in this paper are shorter subsets re-
lated to a given sky region of a larger database that consists of
∼39 000 exposures covering six years of observations of the en-
tire sky (Bouchet et al. 2011). An SPI dataset, related to a par-
ticular source, consists of all exposures whose angular distance,
between the telescope pointing axis and the source of interest di-
rection (central source), is less than 15◦. This procedure gathers
the maximum number of exposures containing the signal from
the source of interest, but at the same time the datasets span
a ∼30◦ radius FoV sky region containing numerous sources.

Concerning the energy bandwidth of the datasets, the trans-
fer function is computed for the same mean energy. However,
because of the spectral evolution of the source with time, this
approximation introduces some inaccuracies that increase with
the energy bandwidth. At first glance, it is preferable to use a
narrow energy band, but at the same time, the S/N of the sources
are lower (since the error bars on the fluxes are large enough,
we detected virtually no variation in intensity). In other words,
for a narrower energy band, the reduced chi-square between the
data and the model of the sky is lower, but at the same time, the
source intensity variations are less marked. Finally, as a compro-
mise for our demonstration purpose, we used the 25–50 keV and
27–36 keV energy bands.

6.2. “Image-space” method

6.2.1. Application framework

We rely on auxiliary information, such as available light curves,
to define the “time bins” for SPI. These light curves come from
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Fig. 4. GX 339-4 intensity variations. The 26–40 keV IBIS time series
(gray), which contains 1183 data points (one measurement per expo-
sure), is segmented into 17 constant segments or “time bins” (green).

The χ
2(i)
r between the time series and its segmented version is 1.0006

for 1166 d.o.f.. These curves are plotted as a function of time (top) and
the exposure number (bottom). The raw time series (without S/N scal-
ing) is directly segmented into 46 segments (bottom blue curve).

the IBIS “quick-look analysis”6, more precisely, its first detector
layer ISGRI (Ubertini et al. 2003). The light curves of the known
sources are not all available, but usually the strongest ones are,
if not always exactly in the requested energy bands, but this is
sufficient to define some reliable “time bins”.

The “image-space” method consists of two separate steps.
The first does not necessarily involve the SPI instrument, while
the second one involves the SPI only.

6.2.2. “Time bins”: segmentation of an existing time series

The basic process to set up the “time bin” characteristics (posi-
tion and length) is the time series segmentation. The raw time
series is the light curve linked to a given source, which comes
from the “quick-look analysis” of IBIS data. Below 100 keV,
IBIS is more sensitive than SPI. However, it depends on the
source position relative to the instrument pointing axis, the num-
ber of sources in the FoV, but also on the source’s spectral shape.
The measured S/N of the two instruments for strong sources is
around ∼2 and increased to ∼3 for crowded sky regions. To have
roughly similar S/N per sources between IBIS and SPI, espe-
cially in crowded sky regions, random Gaussian statistical fluc-
tuations are added to raw time series to obtain statistical error
bars on IBIS light curves increased roughly by a factor 3 below
100 keV. This forms the time series used. This ad hoc procedure
is also retrospectively coherent with the number of segments ob-
tained with the “data-space” method (Sect. 6.5). Above 150 keV
SPI is more sensitive, but at these energies many sources can be
considered to be stable in intensity because their detection sig-
nificance is low (fluxes have large error bars), hence we do not
expect as many “time bins”.

In principle, the model of the time series, hence the num-
ber of segments, can be adjusted to the data with the desired
chi-square value by varying the penalty parameter β of Eq. (3).
Intuitively, one readily sees that a too high value will underfit,
while a too low value will overfit the data. To be conservative,
we adjusted this parameter to obtain a reduced chi-square (χ

2(i)
r )

of 1; the segmentation algorithm is fast enough to test several
values of β to achieve this objective.

6 Provided by the INTEGRAL Science Data Centre (ISDC).
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Fig. 5. GX 339-4 time series segmentation. Variation of the χ
2(i)
r (green

circles) and number of segments (blue squares) as a function of the
penalty parameter value for the time series of Fig. 4. The red star indi-

cates the value of the penalty parameter (β = 8.99) where χ
2(i)
r = 1.0006

and which corresponds to 17 segments.

We proceeded as follows: if a single segment (constant flux)

gives χ
2(i)
r above 1, the time series was segmented. Many expres-

sions of the cost function can be used; expressions C.3 and C.5
described in Appendix C give similar results. Finally, we chose
the most simple one (C.3), which is the chi-square function.

Figures 4 and 5 show the application to the GX 339-4 source,
whose intensity variation is characterized by a short rise time
followed by an exponential decay on a timescale of about one
month. The IBIS time series for the 26–40 keV band contains
1183 exposures. The χ

2(i)
r is 1.0006 for 1166 degrees of freedom

(d.o.f.), the number of “time bins” is 17 for a penalty parameter
value of 8.99 (if the IBIS raw time series is directly segmented7,
the number of segments is 46 instead of 17).

6.2.3. Application to SPI

We applied the “image-space” algorithm to the common
IBIS/SPI 27–36 keV datasets related to the GX 339-4,
4U 1700-377, and GX 1+4 sources, which contain 1183, 4112,
and 4246 exposures. The persistent source 4U 1700-377 is vari-
able on hour timescales, while GX 1+4 is variable on a timescale
from days to about 1–2 months. In the sky model are 120, 142,
and 140 sources included for the GX 339-4, 4U 1700-377, and
GX 1+4 datasets.

For 4U 1700-377, the reduced chi-square (χ2r ) between the
predicted and measured data is 6.15; assuming that all sources
have constant intensity, this value is clearly not acceptable. Each
available IBIS individual light curve was segmented as indicated
in Sect. 6.2.2 to define the “time bins”. A total number of 4005
“time bins” was obtained to describe the dataset, and the result-
ing 4U 1700-377 was partitioned into 2245 segments. The SPI-
related system of equations (Appendix A) was then solved using
these segments. The χ2r is 1.28 for 68 455 d.o.f., which is a clear
improvement compared with the value of 6.15 obtained when all
sources are assumed to remain constant over time. It is also pos-
sible to directly use the “time bins” defined with the IBIS light
curves without scaling the sensitivities of the two instruments
(Sect. 6.2.2), in which case the χ2r reaches 1.13. For strong and
highly variable sources such as 4U 1700-377, one can fix the

7 The direct segmentation of IBIS time series will generally produce
more “time bins” than necessary. This will overfit the SPI model of
the source intensity variations. Obviously, this reduces the chi-square,
but does not necessarily produce the best source S/N after SPI data
processing.



Table 2. “Image-space” method final chi-square.

Dataset 4U 1700-377 GX 339-4∗ GX 1+4∗ 4U 1700-377∗

exposures 4112 1183 4246 4112
sources 142 120 140 142

All sources are assumed to have constant intensity

χ2r (d.o.f.) 6.15(71 594) 2.46(19 308) 1.81(69 361) 2.01(67 483)
nseg 1 1 1 4112

“Time bins” from IBIS light curves after S/N scaling (Sect. 6.2.2)

χ2r (d.o.f.) 1.28(68 455) 1.186(18 880) 1.193(68 557) 1.186(66 588)
nseg 2245 17 122 4112

“Time bins” from IBIS light curves directly

χ2r (d.o.f.) 1.132(65 768) 1.106(18 317) 1.143(66 939) 1.124(64 841)
nseg 3185 46 675 4112

Notes. (∗) The source 4U 1700-377 is also contained in the FoV and is
set to be variable on the exposure duration timescale (∼1 h).

Table 3. Characteristics of the datasets.

Dataset Number of Energy Number of
exposures range (keV) sources

V0332+53 391 25–50 17
GX 339-4a 1183 27–36 120
GRS 1915+105 2980 27–36 61
Cyg X-1 2351 27–36 32
IGR J17464-3213 7147 27–36 132

Notes. (a) The dataset is restricted to common IBIS and SPI exposures.

variation timescale to the exposure duration (∼1 h). All these
results are summarized in Table 2.

For all three datasets, the source 4U 1700-377 was assumed
to vary on the exposure timescale. Assuming that all other
sources are constant in intensity yields a final χ2r of 2.46, 1.81,
and 2.01 for the GX 339-4, GX 1+4, and 4U 1700-377 datasets.

The segmentation of the available IBIS time series permits
one to obtain better “time bins” and the χ2r improves to values
below 1.2 (Table 2). The resulting GX 339-4 and GX 1+4 light
curves were partitioned into 17 and 122 segments (Table 2).
Figure 6 shows the intensity variations of these two sources,
obtained from SPI data.

The correlation of the fluxes in the “time bins” of the two in-
struments is purely indicative since IBIS time series are obtained
from a “quick-look analysis”. However, the fluxes are well cor-
related (Fig. 8). The linear correlation coefficients are 0.995,
0.941, and 0.816, for GX 339-4, 4U 1700-377, and GX 1+4.

To illustrate the decreasing number of “time bins” with in-
creasing energies, we used the GRS 1915+105 dataset. There
are 1185 common IBIS and SPI exposures for this source in our
database. For each energy band, the procedure is the same as
before, but with 66 sources contained in the FoV. The number
of “time bins” after segmentation of the IBIS time series in the
27–36, 49–66, 90–121 and 163–220 keV bands, is 174, 50, 8,
and 1 and the χ2r (d.o.f.), after solving the SPI related system
of equations, is 1.20 (20 257), 1.05(20545), 1.02(20562), and
1.01(20616). Figure 7 shows the resulting intensity variations.

6.3. “Data-space” method

6.3.1. Application framework

As examples, we built datasets related to the sources V0332+53,
Cyg X-1, GRS 1915+105, GX 339-4, and IGR J17464-3213 as
described in Sect. 6.2. The characteristics of these datasets are
indicated in Table 3.
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Fig. 6. Intensity variations of GX 339-4 and GX 1+4 in the 27–36 keV
band as a function of the exposure number. The SPI segments are plot-
ted in red and the IBIS raw light curves (26–40 keV) are drawn in gray.
The segmented IBIS time series (scaled S/N) is shown in green. The
count rate normalization between IBIS and SPI is arbitrary.

6.3.2. Cost function, penalty parameter, and chi-square

The penalty parameter value determines the final chi-square
value between the data and the sky model, but its choice is more
problematic than with the “image-space” algorithm. Figure 9 il-
lustrates the influence of parameter β on the final number of seg-
ments and the χ2r value for several datasets of Table 3. Because
of the very schematic representation of the data, it is not always
possible to reach a χ2r value of 1 for all these datasets, but this
value can be approached; if necessary, the width of the energy
bands can be reduced (Sect. 6.1) to obtain a lower χ2r value. Two
expressions of the cost function are used using different assump-
tions (Appendix C), but there is no strong justification for pre-
ferring one expression over the other.

The simplest cost function expression C.8 is essentially the
chi-square. The value of the penalty parameter β prescribed by
the Bayesian information criterion is β0 ∼ log(M), M being the
number of data points (Appendix D). A penalty parameter value
lower than this prescription is required to reach a χ2r value closer
to 1. These lower values of β produce a greater number of “time
bins”, which has the effect of reducing the chi-square at the ex-
pense of the reliability of the solution. However, the value β0 re-
mains a reliable guess value of the penalty parameter and gives
a number of “time bins” similar to what is expected from the
direct segmentation of the light curves (Sect. 6.5).
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Expression C.9 of the cost function has an additional term
with respect to the expression C.8, which acts as a penalty pa-
rameter and further limits the increase of the number of “time
bins”. The minimum cost function value is reached for penalty
parameters β below one tenth of β0. A value β = 0 can be used
since it gives the minimum chi-square or at least a value close
to the lowest one. The χ2r value is then comparable to the value
obtained with expression C.8 and the Bayesian information cri-
terion prescription for the value of β.

Figure 9 shows the evolution of the χ2r and total number of
segments to describe the intensity variations of the central source
as a function of the penalty parameter β for several datasets and
configurations of the “data-space” algorithm. The C.8 expres-
sion of the cost function permits one to reach a lower value of
the chi-square compared to C.9. Tables 6 and 7 summarize the
results obtained with the “data-space”method.We quite arbitrar-
ily chose to use the expression C.9 as the baseline cost function
with penalty parameter β = 0.
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Fig. 9. (Bottom) Reduced chi-square (χ2r ) as a function of the penalty pa-
rameter in units of β0 = log(M), where M is the number of data points
of the dataset. (Top) Number of segments to describe the intensity vari-
ation of the central source. Left panels are related to V0332+53 and
right panels to GX 339-4, GRS 1915+105, and Cyg X-1. The results
obtained with different configurations of the “limited version” of the
“data-space” method (background timescale fixed to ∼6 h, cost func-
tion expression (C.8 or C.9) are compared with the default configura-
tion (cost function C.9 and background timescale to be computed). The
“full” version is compared with the ‘limited’ version of the “data-space”
algorithm for the V0332+53 dataset.

Table 4. Gain in time achieved by “source loop” parallelization of the
“data-space” algorithm.

Algorithm Average time (s) per “source loop”
Dataset version Number of threads

1 2 4 8 16 32

V0332+53 Full 22.8 15.7 10.1 8.1 7.7 5.2
(391 exposures) limited 3.1 2.0 1.8 1.1 1.0 0.7

GX 339-4 Full 607
(1183 exposures) limited 119 43 30 23

Notes. The “limited” version is parameterized as indicated in
Sect. 6.3.4. The dataset characteristics are detailed in Table 3. A com-
puter with 64 (2.62 GHz) processors was used. The total number of
“source loops” performed for the “full” version was 519 and 2359 for
V0332+53 and GX 339-4. Similarly, 508 and 2296 loops were per-
formed with the “limited memory” version. The total time spent in the
“source loop” for the “full” (“limited memory”) “data-space” algorithm
was obtained by multiplying the average single-loop time by the num-
ber of performed loops.

6.3.3. Parallelization

Table 4 shows experimental results for two datasets (V0332+53
and GX 339-4 (Table 3). A system with 64 (2.62 GHz) cores
was used. The run time was measured in the “source loop”
(Sect. 5.5). Using 16 threads instead of 1 speeds up the com-
putation by a factor ∼3 for the V0332+53 dataset and by a factor
∼4 for the GX 339-4 with the “limited memory” code. The gain
is the same for the V0332+53 dataset with the “full” code, but
the average time to perform a loop is about seven times higher
than the “limited memory” code.

6.3.4. “Limited memory” and “full” version

The “limited memory” version (Sect. 5.4) is parameterized such
that at iteration n, it starts the change-points position exploration



Table 5. Mean time spent in the “source loop” by the “full” and “limited
memory” versions of the ’data-space’ algorithm.

“Source loop” duration (s) Total
Iteration 20 50 125 250 500 1000 1183 time(s)

Full 6 18 50 107 288 1701 2748 1 432 864
“Limited” 8 18 20 20 30 107 100 98 746

Notes. The characteristics of the dataset related to GX 339-4 are de-
tailed in Table 3. The “source loop” was parallelized on 8 threads of a
64 processors (2.62 GHz) machine. The “limited” version was param-
eterized as follows: n0 = min (n −30 exposures, n – two change points
backward), where n is the current exposure, individually obtained for
each source as explained in Sect. 5.4.

at exposure n0 = min(n − 30 exposures, n − 2 change points
backward), individually for each source.

For the GX 339-4 dataset, the average time spent in a single
“source loop” by the “full” version increases with the iteration
number (number of exposures processed) while it is comparable
per iteration number with the “limited memory” version. Table 5
reports the gain in time achieved with the “limited memory”
version compared with the full “data-space” algorithm. Finally,
the “limited memory” version is almost ∼15 times faster than
the “full” version on the GX 339-4 dataset. Table 7 compares
the results of the “limited memory” and “full” version for the
V0332+53 and GX 339-4 and the GRS 1915+105 and Cyg X-1
datasets. The number of segments found by the “limited” ver-
sion is in general slightly higher than the number found by the
“full” version of the code; however, this effect is also due to
the particular parametrization used for the “limited” version.
The results remain quite similar in terms of number of segments
and reached χ2r , showing that the “limited memory” version is a
good alternative to the full “data-space” algorithm, especially for
the gain in computation time. The gain in time of the “limited”
(with the above parametrization) over the “full” version reaches
a factor ∼30 when the background timescale is fixed (not to be
segmented).

6.3.5. Background segmentation

It is no longer necessary to fix the variation timescale of instru-
mental background to about six hours. The “data-space” algo-
rithm models the change in intensity of the background simi-
larly to the other sources of the sky model (Table 7). If we let
the algorithm determine the background intensity variation, it is
modeled with a fewer number of segments than when the back-
ground variation is fixed for a quantitatively comparable chi-
square. This is because of a better localization of the change
points. The other parameters, such as the number and locations
of the source “time bins”, stay essentially the same.

6.3.6. Application

The “limited memory” version, where the intensity variations of
both sources and background are computed, was used as the de-
fault algorithm. For the dataset relative to V0332+53, this con-
sisted of a χ2r of 1.06 for 6595 d.o.f. and a total of 97 “time
bins”. The resulting V0332+53 intensity evolution is displayed
in Fig. 10 as a function of the exposure number (nine segments).

Next, we processed the highly variable source Cyg X-1. The
dataset χ2r is 1.44 for 40 068 d.o.f. and a total of 676 “time bins”.
The number of segments needed to describe Cyg X-1 is 280. The
relatively high value of the chi-square may be due to the strong
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Fig. 10. ‘’Data-space” method applied to V0332+53. The source inten-
sity variations (25–50 keV) were modeled by nine segments (red) and
were compared with the IBIS time series (26–51 keV, gray). The green
curve corresponds to the IBIS flux averaged on SPI-obtained segments.
The insert is a zoom between exposure number 81 and 179. (Top) SPI
intensity variations model (black) compared with Swift/BAT time series
(24–50 keV, purple line). The scale between the different instruments is
arbitrary and was chosen such that their measured total fluxes are equal.
It should be noted that the Swift/BAT and IBIS data are not necessar-
ily recorded at the same time as the SPI data, nor exactly in the same
energy band.
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Fig. 11. Same caption as Fig. 10, but for GRS 1915+105 in the
27–36 keV band. The intensity linear correlation coefficients are
0.98 between IBIS (26–40 keV) and SPI, and 0.97 between Swift/BAT
(24–35 keV) and SPI.

intensity and hence to the high S/N of the source. However, the
systematic errors due to the finite precision of the transfer func-
tion start to be important for this strong source, which may be in
part responsible for the high chi-square value.

For the dataset related to GRS 1915+105, a moderately
strong and variable source, the χ2r is 1.24 for 51 573 d.o.f. and
a total of 440 “time bins”. GRS 1915+105 intensity variation is
displayed in Fig. 11 and consists of 106 segments.

The flux linear correlation factors between SPI and IBIS
(“quick-look analysis”) fluxes measured in the same “time bins”
are 0.991, 0.948, and 0.983 for V0332+53, Cyg X-1, and
GRS 1915+105. The linear correlations with Swift/BAT are
0.993, 0.934, and 0.973. The flux correlation for Cyg X-1 and
GRS 1915+105 are shown in Fig. 12. In addition, the average
flux in a given segment is not necessarily based on the same du-
ration of the observation. The number of usable SPI and IBIS
exposures contained in the same segment is not always the same
and there are not always simultaneous observations available
of the same sky region by Swift/BAT and INTEGRAL. Despite
these limitations, the fluxes measured by these instruments are
quantitatively well correlated.
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Table 6. “Limited-memory” “data-space” algorithm results.

Dataset Cost Penalty χ2r Total number
function (β/β0) (d.o.f.) of “time bins”

V0332+53 C.9 0 1.062( 6595) 97
C.8 1 1.059( 6592) 100
C.8 0.32 0.995( 6492) 200
C.8 0.05 0.997( 16 533) 2147

GX 339-4 C.9 0 1.202( 19 930) 940
C.9 0.02 1.197( 19 906) 964
C.8 1 1.278( 20 108) 762
C.8 0.2 1.030( 18 951) 1919

GRS 1915+105 C.9 0 1.241( 51 553) 424
C.9 0.02 1.237( 51 565) 412
C.8 1 1.246( 51 585) 392
C.8 0.2 1.215( 51 023) 954

Cyg X-1 C.9 0 1.436( 40 068) 676
C.8 1 1.475( 40 120) 624
C.8 0.02 1.292( 38 948) 1796

Notes. The “limited” version is parameterized as indicated in
Sect. 6.3.4. The penalty parameter is measured in units of β0 = log(M),
where M is the number of data points of the dataset. The bold penalty
parameters used throughout the analysis are indicated in bold. C.8 indi-
cates that the cost function is the chi-square and C.9 the cost function
obtained with a “flat-prior” hypothesis.

Lower values of the chi-square than those indicated in
Table 7 can be obtained by reducing the width of the energy band
(Sect. 6.1) or by using a lower penalty parameter (Sect. 6.3.2) if
the cost function is given by expression C.8.

The IGR J17464-3213 dataset corresponds to the central,
crowded, region of the Galaxy. The sky model consists of
132 sources and the background timescale was fixed to about
six hours. The dataset is relatively large (7147 exposures) and
was artificially split into three subsets to reduce the compu-
tation time. The characteristics of these three subsets are dis-
played in Table 6. The intensity variations of the central source,
IGR 17464-3213, was modeled with 29 segments. We also ex-
tracted the intensity evolutions of GRS 1758-258, GX 1+4,
GS 1826-24, and GX 354-0 which are derived simultaneously
(Fig. 13). There are a few spikes in the GX 1+4 intensity varia-
tions, which are not investigated here in more detail. The com-
parison of the source intensity variations obtained with the IBIS
instrument (the light curves are assembled from a “quick-look
analysis”, the intensities are computed/averaged in the temporal
segments found by the “data-space” method) gives linear corre-
lation coefficients of 0.995, 0.800, 0.786, 0.845, and 0.901 for
IGR J17464-3213, GRS 1758-258, GX 1+4, GS 1826-24, and
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Fig. 13. Intensity evolutions (red) of IGR J17464-3213, GRS 1758-258,
GX 1+4, GS 1826-24, and GX 354-0 in the 27–36 keV band. The
IGR J17464-3213 dataset is divided in-to three subsets (dashed verti-
cal lines show the limits) during the computation. The IBIS time series
(30–40 keV) is shown in gray and the averaged fluxes in SPI “time
bins” are plotted in green, as in Fig. 10. The distance of GRS 1758-258,
GX 1+4, GS 1826-24, and GX 354-0 to IGR J17464-3213 are 7.3, 8.1,
12.7, and 3.4◦.

GX 354-0. The comparison with Swift/BAT gives 0.996, 0.912,
0.909. 1.00, and 0.968 for the same sources.

6.4. Comparison of the “image-space” and “data-space”
methods

The comparison was made on the SPI and IBIS common
1183 exposures related to the GX 339-4 dataset. The “image-
space” algorithm used the IBIS (26–40 keV) light curve as ex-
ternal input to define SPI “time bins”. It achieved a χ2r of 1.19
(18 880 d.o.f.) and a total of 1990 “time bins” and used 17 seg-
ments to describe the intensity evolution of GX 339-4 (Sect. 6.2).
The “data-space” algorithm displays a similar χ2r of 1.20 and
used 15 segments. Both light curves are compared in Fig. 14. If
the background intensity is forced to vary on a timescale of about
six hours, the number of segments is 13, if the source 4U 1700-
377 is forced to vary exposure-by-exposure, the number of seg-
ments is 13 as well. The SPI curves are more difficult to compare
quantitatively because the total number of segments and the χ2r
are not the same with the two methods (Sect. 6.5). Nevertheless,
we compared them indirectly with the IBIS binned ones. This
demonstrates the effectiveness of the “data-space” algorithm.

6.5. Studying a particular source: Obtaining its light curve
on the exposure timescale

The data related to a given source also contain the contribution
of the many other sources in the FoV. To study this particular
source, one must take into account the influence of the other
sources and distinguish the different contributions to the data.
This means knowing the model of the intensity variations of all
other sources. At the same time, the number of unknowns to be
determined in the related system of equations must be minimum
to achieve a high S/N for the source of interest. The intensity
variation of all sources of the FoV is not generally known a priori



Table 7. “Data-space” algorithm comparison.

Dataset Version C.8 (Chi-square) C.9 (“Flat” prior)

χ2r (d.o.f.) Number of “time bins” χ2r (d.o.f.) Number of “time bins”

Central sourcea Backgroundb Totalc Central sourcea Backgroundb Totalc

V0332+53 Full 1.062(6603) 12 53 89 1.075(6612) 9 51 80
Limited 1.059(6592) 14 50 100 1.062(6595) 9 50 97
Full∗ 1.094(6545) 14 96 147 1.100(6550) 12 96 142

Limited∗ 1.089(6537) 15 96 155 1.094(6539) 12 96 153
GX 339-4 1.218(20 097) 13 71 773

Limited 1.278(20 108) 14 57 762 1.202(19 930) 15 87 940
Limited∗ 1.259(19 932) 12 267 938 1.189(19 730) 13 267 1140

GRS 1915+105 Limited 1.246(51 585) 100 65 392 1.241(51 553) 102 94 424
Limited∗ 1.225(51 162) 79 515 791 1.215(51 133) 92 515 840

Cyg X-1 Limited 1.475(40 120) 267 82 624 1.436(40 068) 280 121 676
Limited∗ 1.458(39 798) 252 448 946 1.423(39 729) 290 448 1015

IGR J17464-3213 Limited∗ 1.263(132 486) 29 1132 3307

Notes. The algorithm uses the penalty parameter β = 0 for cost function C.9 and β = β0 for cost function C.8 as indicated in bold in Table 6.
(∗) The background variability timescale is fixed to about six hours. (a) The central source from which the processed dataset is named. (b) Number
of segments to describe the background intensity variations and (c) the total number of segments of the dataset.
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Fig. 14. Comparison of GX 339-4 (27–36 keV) intensity variations
obtained with the “image-space” and the “data-space” algorithms.
The common SPI/IBIS database contains 1183 exposures. The “image
space” method describes GX 339-4 intensity variations with 17 seg-
ments (red) for a χ2r of 1.19. The “data-space” method uses 15 segments
(blue) and achieves χ2r of 1.20. The GX 339-4 segmented version of the
IBIS (26–40 keV) time series is shown in green. The absolute rate nor-
malization between SPI and IBIS is arbitrary.

and constitutes a difficulty. The “image-space” or “data-space”
methods are designed to solve this difficulty.

The first step consists of processing data using methods
that allow one to construct synthetic intensity variations of the
sources; then one determines these variations by constructing
“time bins” while minimizing their number. The intensity vari-
ations of all sources are fixed, excepted those of the source of
interest, which can be therefore studied in more detail.

As an example, the procedure was applied to the GX 339-4
light curve study exposure-by-exposure. Figure 15 shows the
light curve obtained with SPI, compared with its segmented ver-
sion. The light curve is segmented into 15 segments, this num-
ber is comparable to the number found using IBIS time series
of 17 segments, which also confirms the idea that it is useful to
adjust the SPI and IBIS sensitivity.

Next, both GX 339-4 source and background were forced
to vary exposure-by-exposure. The S/N of this GX 339-4 light
curve is degraded compared with the case where the back-
ground varies on a timescale of about six hours or is segmented.
The resulting light curve is segmented in-to only six segments.
This illustrates the importance of having a minimum number of
parameters to model the sky and the background.
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Fig. 15. “Data-space” algorithm has modeled the temporal evolution of
GX 339-4 in the 27–36 keV band with 15 constant segments (blue).
The light curve (in gray) of GX 339-4 was obtained by directly process-
ing SPI data (after fixing the temporal evolution of the other sources).
It contains 1183 data points (one measurement per exposure) The red
curve is the segmentation of the gray curve into 15 segments with
the “image space” algorithm. (*) If the background is forced to vary
exposure-by-exposure, the GX 339-4 light curve is segmented only into
six segments (dashed-green).

7. Discussion and summary

7.1. Discussion

We proposed two methods for modeling the intensity variations
of sky sources and instrumental background. The first one, called
“image space”, is relatively easy to implement and benefits from
the IBIS instrument on-board INTEGRAL, which simultane-
ously observes the same region of the sky as SPI. Hence in this
case, the main weakness of this method is that it requires in-
formation from other instruments and then depends both on the
characteristics of these instruments (FoV, sensitivity, etc.) and
on the level of processing performed on these available external
data.

The second method, called “data space” (Sect. 5), is based
solely on SPI data and does not depend on external data.
With this algorithm, the background intensity variations can
be computed (6.3.5). The dependence across segments through
the transfer function greatly increases the complexity of the
algorithm, which is very computer-intensive and hence time-
consuming. We have made some simplifications to be able
to handle the problem and optimizations that in most cases
accelerate the computations, in particular the way the matrices



are updated during the change-point position search. More or
alternative optimizations are possible, although we did not ex-
plore them in this paper; for example a (sparse) Cholesky
update/down-date may be used at each iteration to avoid the de-
composition of matrix H at each iteration. Similarly, an alterna-
tive to the procedure used here could be solving the orthogonal-
least-squares problem through QR rank update. Because of the
approximations we made, the best segmentation (in the mathe-
matical sense) is probably not achieved, but at least we obtained
a reliable one, which is sufficient to improve the sky model.

The final value of the chi-square is not really directly con-
trolled for the “image-space” method. For the “data space”, the
value achieved depends mainly on the value of the penalty pa-
rameter. We empirically derived some initial guess values. The
determination of the penalty parameter, even if a good guess of
its initial value is possible, and the cost function formulation
are difficulties of the “data-space” method, which need more
investigation.

In addition, the “data-space” method is more suitable for ex-
ploring the interdependence of the source contributions to the
data. It takes into account the co-variance of the parameters dur-
ing the data reduction process. In contrast, the “image-space”
method uses only the variance since the light curves are already
the product of another analysis and the covariance information
related to the sources in the FoV is lost.

We chose to use a very simple representation of the source
intensity variations by using piecewise constant functions. With
this modeling of the time series, the individual segments are
disjoint. For the “data-space” method and for a given (single)
source, the columns of the corresponding submatrix are orthog-
onal. With a more complex light curve model, this property no
longer holds. However, it is possible to derive a formulation
where the intensity variations are continuous, e.g., using piece-
wise polynomials (the quadratic functions have been studied by
Fearnhead & Liu (2011).

7.2. Summary

With only 19 pixels, the SPI detector does not provide enough
data to correctly construct and sample the sky image viewed
through the aperture. The dithering technique solves this criti-
cal imaging problem by accumulating “non-redundant” data on
a given sky region, but at the same time it raises important ques-
tions of data reduction and image/data combination because of
the variability of the sources.

We proposed two algorithms that model the intensity
variation of sources in the form of combinations of piecewise
segments of time during which a given source exhibits a constant
intensity. For our purposes, these algorithms can help to solve
a specific difficulty of the SPI data processing, which is to take
into account the variability of sources during observations and
consequently optimize the signal-to-noise ratio of the sources.
A first algorithm uses existing time series to build segments

of time during which a given source exhibits a constant intensity.
This auxiliary information is incorporated into the SPI system
of equations to be solved. A second algorithm determines these
segments directly using SPI data and constructs some “syn-
thetic” light curves of the sources contained in the FoV. It sepa-
rates the contribution to the data of each of the sources through
the transfer function. Both algorithms allow one to introduce
more objective parameters, here the “time bins”, in the problem
to be solved. They deliver an improved sky model that fits the
data better.

The algorithms also have various applications, for example
for studying a particular source in a very crowded region. One
typical example is the extraction of the diffuse emission com-
ponents in addition to all source components. Indeed, the con-
tribution of variable sources should be “eliminated” across the
whole sky, so that the diffuse low surface brightness emission is
as free as possible from residual emission coming from the point
sources.

In addition, the “image-space” method allows one to merge
databases of the various instruments on-board the INTEGRAL
observatory and uses the complementary information of different
telescopes.
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Appendix A: Stating the problem: from the physical

phenomenon to the mathematical equation

The signal (counts and energies) recorded by the SPI camera
on the 19 Ge detectors is composed of contributions from each
source (point-like or extended) in the FoV convolved with the
instrument response plus the background. For ns sources located
in the FoV, the data Draw

dp
obtained during an exposure p in de-

tector d for a given energy band can be expressed by the relation

Draw
dp =

ns
∑

j=1

Rdp, jI
s
p, j + B

bg

dp
+ ǫdp, (A.1)

where Rdp, j is the response of the instrument for source j (func-
tion of the incident angle of the source relative to pointing axis),

Is
p, j

is the flux of source j during exposure p and B
bg

dp
the back-

ground both recorded during the exposure p for detector d. ǫdp

are the measurement errors on the data Draw
dp

, they are assumed

to have zero mean, to be independent, and to be normally dis-
tributed with a known variance σdp (ǫdp ∼ N(0, [σ2

dp
]) and

ǫdp =
√

Draw
dp

).

For a given exposure p, Draw
dp

, ǫdp, Rdp, j, and B
bg

dp
are vectors

of nd(p) elements (say, nd = 19) elements). However, nd(p) cor-
responds to the number of functioning detectors, the possible
values are 16, 17, 18 or 19 for single events and up to 141 when
all the multiple events are used in addition to the single events
(Roques et al. 2003). For a given set of np exposures, we have to

solve a system of M (=
∑np

p=1
) equations (Eq. (A.1)).

To reduce the number of free parameters related to the back-
ground, we take advantage of the stability of relative count rates
between detectors and rewrite the background term as

B
bg

dp
= I

bg
p × Ud × tdp. (A.2)

In this expression, either Ud or I
bg
p is supposed to be known, de-

pending on the hypotheses made on the background structure.
To illustrate the idea, suppose that Ud is known. U is an “empty
field” (Bouchet et al. 2010), a vector of nd elements. Then, the
number of parameters necessary to model the background re-
duces to np. The number of unknowns (free parameters) of the
set of M equations is then (ns + 1) × np (for the ns sources and

the background intensities, namely Is and Ibg). Fortunately, a
further reduction of the number of parameters can be obtained
since many sources vary on timescales longer than the exposure
timescale. In addition, many point sources are weak enough to
be considered as having constant flux within the statistical errors,
especially for the higher energies. Then the np × ns parameters

related to sources will reduce to Neff
s parameters and, similarly,

Nb for the background. As these parameters also have a tem-
poral connotation, they are also termed, hereafter, “time bins”.
Finally, we have N = Neff

s + Nb free parameters to be deter-
mined. If the source and background relative intensities are sup-
posed to be constant throughout all observations (time spanned
by the exposures), omitting the detector index, the equation can
be simplified as

Draw
p =

ns
∑

j=1

Rp, j)I
s
j + PpIbg + ǫp (A.3)

with Pp = td,p × Ud.

Here Pp is a vector of nd(p) elements. The aim is to compute
the intensities Is( j) of the ns sources and the background relative
intensity Ibg. Therefore, the problem can be written in matrix
form as
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At last, Eq. (A.1) reduces to the general linear system H0x0+ε =
y, where H0 is the transfer matrix, y the data, ε the measurement
errors and x0 the unknowns H0 (elements Hi j) is an M × N0

matrix and N0 = ns + 1. x0 = (Ibg, Is(1), · · · , Is(ns))
T is a vector

of length N0. y = (D1,D2, · · · ,Dnp
)T and ε = (ǫ1, ǫ2, · · · , ǫTnp

are vectors of length M. Now, if all N0 sources (here sources
and background) are assumed to vary and the signal of source
J is represented by nseg(J) piecewise constant segments of time
or “time bins”, then each columns of H0 will be expanded in
nseg(J) columns. Equation (A.1) reduces to Hx + ε = y, where

the matrix H is of dimension M×N, with N =
∑N0

j=1
nseg( j) and x

a vector of length N representing the intensity in the “time bins”.
Schematically and to illustrate the purpose of Sect. 5.1, H can be
derived from H0:

H0 =
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For the training data given in Sect. 2, which contain ≃39 000 ex-
posures and for the 25–50 keV energy band, we used N =

Neff
s + Nb ≃ 22 500 “time bins” (Bouchet et al. 2011). To fit the

sky model consisting of sources plus instrumental background
to the data, we minimized the corresponding chi-square value:

χ2 =

M
∑

i=1















yi −
∑N

j=1 Hi jx j

σi















2

, (A.4)

where σi is the measurement error (standard deviation) corre-
sponding to the data point yi, formallyσi =

√
yi. By replacing H

and y by their weighted version,

yi ≡
yi

σi

and Hi j ≡
Hi j

σi

· (A.5)

The least-squares solution x is obtained by solving the following
normal equation:

(HTH)x = HT
y or as A.x = b. (A.6)

Here A is a symmetric matrix of order N, x and b are vectors of
length N.



Appendix B: Segmentation/partition of a time series

B.1. Bayesian model comparison

The literature about model comparisons is vast, especially in
the field of econometric (e.g. Zellner 1971; Poirier 1995; Koop
2003). We have some data y, a model Modeli containing a set
of parameters θi. In our application, we have to choose between
models of light curves (Model1 or Model2), based on observa-
tions over a time interval T :























Model1 : Constant intensity over T

Model2 : Possibly different constant intensities

in two subintervals, T1 + T2 = T.

Using Bayesian inference (see for example Scargle 1998), the
posterior odds ratio makes it possible to compare models i and
j: it is simply the ratio of their posterior model probabilities:

POi j=
p(Modeli|y)
p(Model j|y)

=
p(y|Modeli)p(Modeli)

p(y|Model j)p(Model j)
=BFi j

p(Modeli)

p(Model j)
,

(B.1)

where BFi j is the Bayes factor comparing Modeli to Model j.
The quantity p(y|Modeli), the marginal likelihood

p(y|Modeli)≡L(Modeli, y)=

∫

P(y|θi,Modeli)P(θi|Modeli)dθi.

(B.2)

To compare Model2 with Model1, non-informative choices
are commonly made for the prior model probabilities (i.e,
P(Model1) = P(Model2) =

1
2
). Then, to prevent overfitting,

we introduce a penalty parameter γ that chooses model Model2
instead of Model1 if

BF21 =
p(y|Model2)

p(y|Model1)
> γ. (B.3)

To fit the framework of expression Eq. (3), this equation can be
equivalently rewritten as

− log[p(y|Model2)] + β < − log[p(y|Model1)] with β = log(γ).

(B.4)

Appendix C: Cost or likelihood function

computation

C.1. Normal distributions

The model for the time series observations (Eq. (1)) is

xi ≡ f (ti) + ǫi i = 1, 2, . . . , L,

where xi is the value measured at time ti, f is the unknown signal
and ǫi the measurement errors. These errors are assumed to have
zero mean, to be independent, and to be normally distributed
with a known variance σ2

i
, thus the probability for bin i is

P(ǫi|σi) =
1

σi

√
2π

e
− 1

2

(

ǫi
σi

)2

.

The parameters associated with each segment are independent of
each other, the likelihood can be calculated for the data within

each segment or block. For the block K where the true signal
is λ, the likelihood is,

L(K) =
∏

i∈K

1

σi

√
2π

e
− 1

2

(

xi−λ
σi

)2

. (C.1)

The product is over all i such that ti falls within block K, for
instance LK points fall into block K. We can simply maximize
the likelihood for instance, PK = max(L(K)); its maximum is
reached for λ = λmax. With the following notations

aK =
1

2

∑

i∈K

1

σ2
i

bK = −
∑

i∈K

xi

σ2
i

cK =
1

2

∑

i∈K

x2
i

σ2
i

and CK =
(2π)−LK/2

∏

i∈K σi

·

The expression can be written in terms of ordinary least-squares
quantities:

λmax =
−bk

2ak

least-squares solution

S S EK =
∑

i∈K

(

xi − λmax

σi

)2

= −2ck +
b2

k

2ak

sum of square errors.

The block likelihood can be rewritten as

log PK = −
S S EK

2
+ logCk. (C.2)

Finally, the probability for the entire dataset is

log P = log















∏

K

PK















=
∑

K

log PK . (C.3)

The choice of the prior of λ is another question, although many
prior probabilities may be possible, we marginalize it by choos-
ing the flat unnormalized prior (p(x|Model) = constant). If the
variable λ is marginalized,

PK ≡ p(y|ModelK) = Ck

∫ +∞

−∞
e
− 1

2

∑

i∈K (
xi−λ
σi

)2
dλ. (C.4)

The expression can be integrated to give

log P =
∑

K

[

−1

2
log aK −

S S EK

2
+

1

2
log π + logCK

]

. (C.5)

C.2. Generalization to multivariate normal distributions

We assume to have a linear regression model that assesses the
relation between the dependent variables yi (the data) and the
N-vector of regressors xi (unknowns). This relation is written in
vector form as

y = Hx + ε. (C.6)

Thus, y is an M-vector, H an M × N matrix, ε an M-vector of
errors, and x an N-vector. The errors are assumed to be inde-
pendently normally distributed with mean 0 and a variance σ,
that is

ε ∼ N(0M , [σ
2]),

where 0M is an M-vector of zeroes and [σ2] is an M×M diagonal
matrix whose diagonal is {σ2

1
, σ2

2
, . . . , σ2

M
}. Using the properties



of the multivariate normal distribution, it follows that the likeli-
hood function is given by

p(y|x, σ) = 1

2πM/2
∏M

i=1 σi

e−
1
2
(y−Hx)′[σ−2](y−Hx). (C.7)

The likelihood function can be rewritten in terms of ordinary
least-squares quantities:

x̂ = (H′[σ−2]H)−1HT[σ−2]y least-squares solution

S S E = (y −Hx̂)T[σ−2](y −Hx̂) sum of squared errors.

If we take the highest likelihood value,

log P = logC − S S E

2
with C =

1

2πM/2
∏M

i=1 σi

· (C.8)

If the variable x is marginalized by choosing the flat un-
normalized prior, it yields for the marginal posterior after
integration

log P = logC +
1

2
log

(2π)p

det(H′[σ−2]H)
− S S E

2
· (C.9)

For M = L, N = 1 and H a matrix with elements Hi j = 1, we
recover Eqs. (C.2) and (C.4), with

a = det(H′[σ−2]H) =

N
∑

i=1

1

σ2
i

·

Appendix D: Common model selection criteria

Other penalty cost functions are possible, the most widely
known criteria for model selection among a class of para-
metric models with different numbers of parameters are AIC
(Akaike 1974) and BIC (Schwartz 1978). Given L, the likeli-
hood of the data, their expressions are AIC = 2k − 2 log(L),
BIC = −2 logL + k log(M). Here M is the number of data
and k the number of parameters used in the model. Both AIC
and BIC fit the general form given in Eq. (3) with (β = 2)
and (β = log M). The penalty term of BIC is more stringent
than the penalty term of AIC (for M > 8, k × log M exceeds
2k). The AIC formula is based on an asymptotic behavior with
M large and a small number of parameters k and BIC on an
asymptotic approximation to a transformation of the Bayesian
posterior probability of a candidate model. Thus, both are is-
sued from asymptotic approximation and may have some draw-
backs in some range of parameters. Modified versions of these
criteria have also been developed to correct their main weak-
ness. The Hannan-Quinn information criterion (HQC; Hannan
& Quinn 1979) proposes something intermediate with (HQC =
−2 logL + 2k log(log M)) and (β = 2 log (log M)).

Appendix E: Mathematical utilities

The formulas below avoid recomputing the inverse of matrix
from scratch when a small rank adjustment is performed on the
matrix.

E.1. Sherman-Morrison-Woodbury formula – inversion
lemma

Suppose that one aims to invert the matrix A + UCV. Here A,
U, C, and V are n × n, n × k, k × k and k × n matrices, re-
spectively. UCV is called rank-k update (or correction) of A.
If C has a much smaller dimension than A, it is more effi-
cient to use the Sherman-Morrison-Woodbury formula than to
invert A + UCV directly. Now suppose that A−1 has already
been computed and that C and C−1 + VA−1U are invertible. The
Sherman-Morrison-Woodbury formula says that the inverse of
a rank-k correction of some matrix can be computed by ap-
plying a rank-k correction to the inverse of the original ma-
trix. Alternative names for this formula are the matrix inversion
lemma or simply the Woodbury formula. The Woodbury matrix
identity is

(A + UCV)−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1.

The determinant of A + UCV is obtained through the relation:

det(A + UCV) = det(C−1 + VA−1U) det(C) det(A).

E.2. Inverse of a partitioned matrix

Let the N×N matrix A be partitioned into a block form as below,
where T and W are square matrices of size t × t and w × w,
respectively (t + w = N). Matrices U and V are not necessarily
square, and have size t×w and w× t, respectively. Let matrices T,

W and Q =W − VT−1 being invertible. The inverse of A can be
written as

A−1 =

[

T U
V W

]−1
=

[

T−1 + T−1UQ−1VT−1 −T−1UQ−1

−Q−1VT−1 Q−1

]

.

The determinant of A is obtained through the relation:

det(A) = det(T) det(W − VT−1U) = det(W) det(T − UW−1V).

E.3. Application

We have to solve system Hx = y in the least-squares sense;
y is the right-hand side, H a matrix and x the solution, see also
Appendix A. Now, we need to update the solution x of the sys-
tem of equations Ax = (HTH)x = HTy after adding or deleting
some columns to H. Here H is a matrix of size M×N, x and y are
vectors of length N and M, respectively. We first derive the ex-
pression of the updated inverse of A. We assume that the inverse
of A is already computed and denote by A∗ the updated corre-
sponding matrix. To simplify, we just plug the formula for 1 col-
umn added or suppressed. First we add Nadd columns to H such
that H∗ = [Hv], v is a matrix of size M × 1 representing the
newly added column, then

A∗ =

[

HT

vT

]

[

H v
]

=

[

HTH HTv

vTH vTv

]

.

The inverse of this partitioned matrix is (Appendix E.2)

A−1
∗ =

[

HTH HTv

vTH vTv

]−1

=

[

A−1 + A−1HTv∆−1vTHA−1 A−1HTv∆−1

−∆−1vTHA−1 ∆−1

]

=

[

F −u3

−ut
3
∆

]

,



Algorithm 1 Implicit rank-1 update of A = (HTH)−1 after
adding a column v to H at position j.

1: u1 = HTu

2: u2 = A\u1

3: ∆ = [uTu − uT
1
u2]

−1

4: u3 = u2∆

5: A
−1
∗ ←

[

A−1 + ∆uT
2
u2 −u3

−ut
3

∆

]

{Not explicitly formed}

6: z(1 : N + 1) = [Hv]Ty {A vector of length n + 1}

7: x∗ ←














x(1 : N) = x + u3

(

uT
2

z(1 : N) − z(N + 1)
)

x(N + 1) = −uT
3

z(1 : N) + ∆ y(N + 1)
{Update x

without using A−
∗ 1 explicitly}

8: y
predicted
∗ ← [Hv]x∗ {Predicted data}

9: Permute column J and row J of A−1
∗ to last column and last row

10: Permute element J of x∗ to last element

Output: Updated least-squares solution and predicted data x∗, y
predicted
∗

where ∆ = vTv − vTHA−1HTv. Algorithm 1 performs the opera-
tion without accessing A−1 explicitly. We use the MATLAB no-
tation “\” to denote the solution of a linear system (“x = A\b′′ ≡
“x = A−1b′′): it emphasizes the fact that the system is solved
without forming the inverse of the matrix of the system. If we
need to remove a column from H, the algorithm is described in
algorithm 2.

Algorithm 2 Implicit rank-1 update of A = (HTH)−1 after sup-
pressing column j of H.

1: e j = 0 and e j( j) = −1 {e j is a unit vector}
2: Au3 = e j {One system to solve to have u3 = A−1e j}
3: ∆ = (eT

j u3)
−1 {Obtain element A−1

j, j}

4: A−1
∗ ← A−1(1 : j − 1, j + 1 : N, 1 : j − 1, j + 1 : N) − u3∆uT

3
{Not

explicitly formed}
5: z = HTy

6: w = x − u3eT
j z

7: x∗ ← w − u3∆z

8: y
predicted
∗ ← Hx∗

Output: Updated least-squares solution and predicted data x∗, y
predicted
∗

E.4. Adding Nadd columns and suppressing Nsub columns

The two algorithms described above are also applicable without
loss of generality when several columns are added or removed.
Algorithm 3 first adds Nadd columns and then suppresses Nsub

columns from the transfer matrix H and updates the solution x∗
and predicted data y

predicted
∗ .



Algorithm 3 A = (HTH)−1 update after adding Nadd and suppressing Nsub columns from H.

Input: m, n size of the system
H: Transfer matrix (m × n) to be updated
y(m): data
jsubmin, jsubmax: contiguous column of H to be suppressed (Nsub = jsubmax − jsubmin + 1)
jaddmin, jaddmax: contiguous column of H to be added (Nadd = jaddmax − jaddmin + 1)
v(m, Nadd): columns to be added to H

x: solution to Ax = (HTH)x = HTy

z(1 : n) = HTy&z(n + 1 : n + Nadd) = u
Ty

1: {Add Nadd columns from jaddmin to jaddmax (append them first to position n + 1 : n + Nadd)}
2: u1 = xTu

3: Au2 = u1 {Solve u2 = A−1u1}
4: Di = u

Tu − uT
1

u2 {Symmetric matrix of order Nadd}

5: Da = D−1
i

6: u3 = u2Da

7: xa(1 : n) = x + u3(u
T
2

z(1 : n) − z(n + 1 : n + Nadd)) {Non-permuted solution after addition of Nadd columns to H}

8: xa(n + 1 : n + Nadd) = −u3Tz(1 : n, 1) + Daz(n + 1 : n + Nadd, 1) {(same)}
9: {Suppress Nsub columns from jsubmin to jsubmax}
10: e j(n + Nadd, Nsub) = 0
11: for i = 1 to Nsub do
12: e j( jsubmin + i − 1, i) = 1
13: end for

14: Aw = e j {Solve w = A−1e j}

15: u3s(1 : n, 1 : Nsub) = w + u3(u
T
2

e j(1 : n, 1 : Nsub) − e j(n + 1 : n + Nadd, 1 : Nsub))

16: u3s(n + 1 : n + Nadd, 1 : Nsub) = −uT
3

e j(1 : n, 1 : Nsub) + Dae j(n + 1 : n + Nadd, 1 : Nsub)

17: Di = eT
j
u3s {Dsub is a symmetric matrix of order Nsub}

18: Dsub = D−1
i

19: z = xa − u3seT
j
z

20: x∗ = z − u3sDsubeT
j
z

21: y∗ = Hx∗(1 : n) + vx∗(n + 1 : n + Nadd)
22: x∗ = x∗([1 : jsubmin − 1 jsubmax + 1 : n + Nadd]) {After suppressing elements jsubmin:jsubmax}
23: x∗ = x∗([1 : jaddmin − 1 n − Nsub + 1 : n + Nadd − Nsub jaddmin : n − Nsub]) {Permute the output solution x∗}

Output: Updated least-squares solution and predicted data: x∗(n + Nadd − Nsub), y∗(m)



Appendix F: “Pseudo-codes”

The codes (simplified versions) for the ’image-space’ and ’data-space’ algorithms are written in IDL and Fortran, the time series of
GX 339-4 (6.2.2) and the data for V0332+53 (6.3.1) that are to be used as input data to these codes can be downloaded at http://
sigma-2/integral/algorithms. These codes and input data allow one to reproduce the main features of Figs. 4 and 10.

F.1. “Image-space” algorithm

Algorithm 4 Data best partitioning

Input:
L: data length
x(1:L) : dataset of the form (x1 , x2 , . . . , xL)
β : penalty parameter

1: last(1:L)=0 ; best(1:L)=0.0 {Initialization}
2: for R=1 to L do { Loop on the data subset 1 to R}
3: cost(1:n)=C(x,R), see App. C {Compute cost(i)=C(xi:R) }
4: F(1)=cost(1)+β {Segment starting at i = 1 and ending at R : F(0) + C(x1:R)}
5: for i=2 to R do

6: F(i)=best(i-1)+cost(i)+β {i.e. F(t) + C(xt+1:R) with t = i − 1}
7: end for
8: [best(R),last(R)]=minloc(F(1:R)){minimum value and its location}
9: end for

10: {The vector last gives the start point of individual segment of the optimal partition in the following way. Let τm=last(L), τm−1=last(τm -1), etc. The last segments
contains cells (data points) τm, τm + 1, . . . , L, the next to last contains cells τm−1, τm−1 + 1, . . . , τm − 1 and so on.}

11: index=last(n) and cpt=[] {Change points storage}
12: while index > 1 do

13: cpt=[index cpt]
14: index=last(index-1)
15: end while

Output:

cpt = [1 = τ0, τ1 , . . . , τm , τm+1 = L + 1] : change points



F.2. “Data-space” algorithm

Algorithm 5 “Data-space” algorithm

Input:
no f p : number of exposures
no f s : number of sources
ndata : number of data points

Hzero(ndata : no f s) : weighted initial transfer matrix

(

H0 ≡
H0

i j

σi

)

y(ndata) : weighted data ( yi ≡ yi
σi

)

index−data(no f p + 1) : vector of indexes such that y(index−data(p) : index−data(p + 1) − 1)) are data points of exposure p
beta : penalty parameter beta
maxiter : number of maximum subiterations

1: lastarr(1, 1 : no f s) = 1 {Array of change points}
2: best(1 : no f p) = 1e77 {Initialize the cost function for each iteration}
3: for R=2 to nofp do {Add a new set of data at each iteration R}
4: converge = true {The cost function at iteration is improved}
5: iter = 0 {Subiteration counter}
6: m = index−data(R + 1) − 1 {Total number of data points used at iteration R}
7: lastarr(R, 1 : no f s) = lastarr(R − 1, 1 : no f s) {Extend the previous segments}
8: while converge do
9: {Compute the cost at iteration R}
10: {next−bestJ(1 : no f s): best cost function for each source}
11: {next− lastrJ(1 : no f s): and the corresponding change-point locations}
12: {cost−without−new−chgpt: cost function with no new change points added}
13: {nseg−array(1 : no f s): the number of segments per source with no change points added}
14: N = sum(nseg−array(1 : no f s)) {Total number of segments/column of matrix H}
15: if N <= m then {If the system of equations is not underdetermined}
16: iter = iter + 1
17: [bestR j, isonum] = minloc(next−bestJ) {Minimum cost value, its location in terms of source number}
18: if bestR j < cost−without−new−chgpt then {Addition of a new change point improves the cost function}
19: best(R) = bestR j

20: lastarr(R, isonum) = lastR j(isonum) {Update the array of change points}
21: else

22: converge = false {No improvement of the cost function}
23: best(R) = cost−without−new−chgpt

24: end if

25: if iter > maxiter then {Maximum subiterations reached}
26: converge = false {Next iteration}
27: end if

28: else

29: converge = false {Next iteration}
30: end if

31: end while

32: end for

Output:

lastarr(1 : no f p, 1 : no f s) : vector lastarr(no f p, Jnum) is backtracked/peeled off to obtain the location of the change points of source Jnum



Algorithm 6 “Data space” cost function computation

Input:
R : iteration number/number of used exposures
no f p : number of exposures
no f s : number of sources
ndata : number of data points

Hzero(ndata : no f s) : weighted initial transfer matrix

(

H0 ≡
H0

i j

σi

)

y(ndata) : weighted data ( yi ≡ yi
σi

)

index−data(no f p + 1): vector of indexes such that
y(index−data(p) : index−data(p + 1) − 1))
are data points of exposure p

beta : penalty parameter beta
maxiter : number of maximum subiterations
lastarr(1 : no f p, 1 : no f s) : vector lastarr(no f p, Jnum) is backtracked/peel-off to obtain the location of the change points of source Jnum

1: for iso = 1 to no f s do {Find the nseg segments in the array lastarr(1 : R, iso)}
2: nseg−array(iso) = nseg

3: end for
4: m = index−data(R + 1) − 1 {Total number of data points used at iteration R}
5: valid− source(1 : no f s) = 1 {All sources are to be “partitioned”}
6: {Optionally, by setting valid− source(J) = 0 and nseg−array(J) = 0, source J is not used to build the matrix H; the source makes the system of equations not

well-conditioned or the source is detected with a too low efficiency (low surface area ( cm2) projected on the camera).}
7: N = sum(nseg−array) {Number of columns in matrix H}
8: if N > m then {Return if this system is underdetermined}
9: cost−without−new−chgpt = 0.
10: next−bestJ = 1.0d + 77
11: next− lastrJ = −1
12: return
13: end if

14: H(1 : m, 1 : N) = 0. {Initialization of the matrix H}
15: kw = 0
16: for iso = 1 to no f s do {Build the transfer function}
17: set ka(1 : nseg + 1) {Peel-off the vector last(1 : R, iso), the segment j starts at ka(j) and ends at ka(j+1)-1}
18: if valid− source(iso) == 1 then {Consider only the list of valid sources}
19: for j = 1 to nseg do {Expand column H(1 : m, iso)}
20: kw = kw + 1
21: for i = ka( j) to ka( j + 1) − 1 do

22: ilow = index−data(i); iupp = index−data(i + 1) − 1
23: H(ilow : iupp, kw) = Hzero(ilow : iupp, iso)
24: end for

25: end for

26: end if

27: end for
28: { Solve the system of equations and return the auxiliary quantities needed to compute the cost function}
29: cost−without−new−chgpt = −log(P) {Cost function with N segments}
30: irowmin(1 : no f s) = 1 {Contains the starting of the “loop i” for each sources}
31: {Optionally modify the starting values irowmin(1 : no f s) of the “loop i”}
32: for Jnum = 1 to no f s do {Identify the best new change point for each source}
33: {Loop on source (Algorithm 7) returns next−bestJ(1 : no f s) and next− lastrJ(1 : no f s)}
34: end for[Loop on source Jnum]

Output:
next−bestJ(1 : no f s): best cost function for each sources
next− lastrJ(1 : no f s): and the corresponding vector of change points
cost−without−new−chgpt: cost function with no new change points added
nseg−array(1 : no f s): the number of segments per source with

no new change points added



Algorithm 7 “Loop on sources”

Output:
next−bestJ(1 : no f s): best cost function for each source
next− lastrJ(1 : no f s): and the corresponding change-point locations

1: next− lastrJ(Jnum) = lastarr(R, Jnum) {Best change-point location}
2: next−bestJ(Jnum)1.0e77 {and the default cost function}
3: if valid− source(Jnum) = 1 then {If the source is to be “partitioned”}
4: cost(1 : R) = 1.0e77 {Initialize to high value}
5: for irow = irowmin(Jnum) to R do {Test the change point located at irow}
6: if irow > 1 then {}
7: {Identify the segments delimiter ka(1 : nseg + 1) and the number of segments nseg in array last(1 : irow − 1, Jnum)}
8: ka(nseg + 2) = R + 1 ; nseg = nseg + 1
9: ka(1) = 1, ka(2) = R + 1 ; nseg = 1
10: else

11: ka(1) = 1, ka(2) = R + 1 ; nseg = 1 {Special case of a single segment irow = 1}
12: end if
13: N−star = N − nseg−array(Jnum) + nseg {Number of segments of the new matrix H−star}
14: if N−star ≤ m then {If the resulting system is not underdetermined}
15: H j−star(1 : m, 1 : nseg) = 0.0 {Initialize the matrix H j−star}
16: kw = 0
17: for j = 1 to nseg do {Construct the new submatrix for source Jnum}
18: kw = kw + 1
19: for i = ka( j) to ka( j + 1) − 1 do
20: ilow = index−data(i)(i) and iupp =, index−data(i + 1) − 1
21: H j−star((ilow : iupp, kw) = Hzero(ilow : iupp, Jnum)
22: end for
23: end for

24: set correct−con f = 1 {This submatrix has some desired mathematical properties}
25: {If this submatrix does not have some desired mathematical properties, set correct−con f = 0, for example for a null column}
26: if correct−con f = 1 then {Insert this submatrix in the place of the old submatrix to form the new matrix of the partition}
27: kmin = sum(nseg−array(1 : Jnum − 1)) ; kmax = kmin + nseg−array(Jnum)
28: H−star(1 : m, 1 : N−star) = 0 {Initialize the matrix H−star}
29: H−star(1 : m, 1 : kmin) = H(1 : m, 1 : kmin) {Original matrix H}
30: H−star(1 : m, kmin + 1 : kmin + nseg) = H j−star(1 : m, 1 : nseg) {Submatrix corresponding to source Jnum}
31: H−star(1 : m, kmin + nseg + 1 : N−star) = H(1 : m, kmax + 1 : N) {Original matrix H}
32: { Solve the system equation and compute the auxiliary quantities to compute the cost function}
33: if well−conditioned− system = 1 then {If the system of equation is well conditioned or fulfills some constraints}
34: cost(irow) = −log(P) {Cost function with the N−star segments}
35: end if[End ofwell−conditioned− system = 1 ]
36: end if[End Correct−con f = 1]
37: else
38: {Display optionally a WARNING because of a subdetermined system of equations: N−star > m}
39: end if[Loop N−star < m]
40: end for
41: {Locate the most probable change point in the array cost(irowmin(Jnum) : R)}
42: [next−bestJ(Jnum), next− lastrJ(Jnum)] = minloc(cost(irowmin(Jnum) : R)) {Best cost value and corresponding location}
43: end if[If the source is to be ‘partitioned’ valid− source(Jnum) = 1]

Output:
next−bestJ(1 : no f s) : best cost function for each sources
next− lastrJ(1 : no f s) : and the change-points position


