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Abstract. In this paper we propose to use the PLS approach for clusterwise
linear regression in the particular case where the set of predictor variables
forms a L2-continuous stochastic process {Xt}t∈[0,T ]. We have adapted the
k-means algorithm to this case and we give necessar conditions for its con-
vergence. The results of an application of the clusterwise PLS regression to
stock-exchange data are compared with those obtained by other methods.
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1 Introduction

According to Charles (1977) the clusterwise linear regression is defined as a
kind of piecewise regression : given a data set {(Xi, Yi)}ni=1 of observations
of an explanatory variable X and a response variable Y , the aim is to find
simultaneously an optimal partition of the data and the regression models
associated to each cluster which maximize the overall fit.

When the regression is used for prediction such an approach gives usually
better results than a global regression. The algorithm is a special case of k-
means clustering with a criterium based on the minimisation of the squared
residuals instead of the classical within class dispersion. However the esti-
mation of the local models could be a difficult task (number of observations
less than the number of variables, multicollinearity, etc). Solutions such as
local PCR regression or local ridge regression may solve these difficulties
(Charles, 1977). Algorithms for the least squares solution are also given in
Spaeth (1979).

In this paper we propose to use PLS regression (Wold et al., 1994) for each
cluster in the particular case where the set of predictors forms a stochastic
process X = {Xt}t∈[0,T ]. In other words the problem consists in predicting a
Y variable by a set of curves. Thus, clusterwise PLS regression on a stochastic
process is an extension of the global PLS approach given in Preda and Saporta
(2001).

The paper is divided into three parts. In the first part we introduce some
tools for linear regression on a stochastic process (PCR, PLS) and justify
the choice of the PLS approach. The clusterwise linear regression algorithm
adapted to the case of PLS regression is discussed in the second part of the
paper. Aspects related to the prediction problem are also presented. In the
last part we present an application of the clusterwise PLS regression to stock-
exchange data and compare the results with those obtained by other methods
such as Aguilera et al. (1998) and Preda and Saporta (2001).
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2 Some tools for linear regression on a stochastic
process

Let (Xt)t∈[0,T ] be a random process and Y a random variable defined on the
same probability space (Ω,A, P ). We assume that (Xt)t∈[0,T ] and Y are of
second order, (Xt)t∈[0,T ] is L2-continuous and for any ω ∈ Ω, t 7→ Xt(ω)
is an element of L2([0, T ]. Without loss of generality we assume also that
E(Xt) = 0, ∀t ∈ [0, T ] and E(Yi) = 0, ∀i = 1, . . . , p.

It is well known that the linear model obtained by the classical regression
of Y on (Xt)t∈[0,T ], Ŷ =

∫ T
0
β(t)Xtdt, is such that β is in general a distribu-

tion instead a function of L2([0, T ]) (Saporta, 1981). Regression on principal
components of (Xt)t∈[0,T ] and PLS regression give satisfactory solution to
this problem.

2.1 Linear regression on principal components
The principal components regression (PCR) regress the responses onto the
principal components of the set of explanatory variables. The principal com-
ponents of the stochastic process {Xt}t∈[0,T ] is the family {ξi}i≥1 of uncorre-

lated zero-mean random variables defined by ξi =
∫ T

0

fi(t)Xtdt, where {fi}i≥1

(the principal factors) is the orthonormal family of eigenfunctions of covari-
ance operator of the process {Xt}t∈[0,T ] associated to its decreasing sequence
of non null eigenvalues {λi}i≥1. The principal components are also eigenvec-

tors of the Escoufier operator, WX , defined by WXZ =
∫ T

0

E(XtZ)Xtdt,

Z ∈ L2(Ω). Therefore, the process can be represented as Xt =
∑
i≥1

ξifi(t),

∀t ∈ [0, T ]. A such representation is called the Karhunen-Loève expansion of
the process (Saporta, 1981).

The process (Xt)t∈[0,T ] and the set of its principal components, {ξk}k≥1,
span the same linear space. Thus, the regression of Y on (Xt)t∈[0,T ] is equiv-

alent to the regression on {ξk}k≥1 and we have Ŷ =
∑
k≥1

E(Y ξk)
λk

ξk.

In practice we need to choose an approximation of order q, q ≥ 1 :

Ŷ qPCR =
q∑

k=1

E(Y ξk)
λk

ξk =
∫ T

0

β̂PCR(t)Xtdt. (2.1)

But the use of principal components for prediction is heuristic because they
are computed independently of the response. The difficulty of the choice of
principal components used for regression is discussed in detail in Saporta
(1981).

2.2 PLS regression on a stochastic proces
The PLS (Partial Least Squares) approach offers a good alternative to the
PCR method by replacing the least squares criterion with that of maximal
covariance between (Xt)t∈[0,T ] and Y (Preda and Saporta, 2001).
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The PLS regression is an iterative method. Let X0,t = Xt, ∀t ∈ [0, T ] and
Y0 = Y . At the step q, q ≥ 1, of the PLS regression of Y on (Xt)t∈[0,T ], we
define the qth PLS component, tq, by the eigenvector associated to the largest
eigenvalue of the operator WX

q−1W
Y
q−1, where WX

q−1, respectively WY
q−1, are

the Escoufier’s operators associated to (Xq−1,t)t∈[0,T ], respectively to Yq−1.
The PLS step is completed by the ordinary linear regression of Xq−1,t and
Yq−1 on tq. Let Xq,t, t ∈ [0, T ] and Yq be the random variables which represent
the error of these regressions : Xq,t = Xq−1,t − pq(t)tq and Yq = Yq−1 − cqtq.

For each q ≥ 1, {tq}q≥1 forms an orthogonal system in L2(X) and the
following decomposition formulas hold :

Y = c1t1 + c2t2 + . . .+ cqtq + Yq,
Xt = p1(t)t1 + p2(t)t2 + . . .+ pq(t)tq +Xq,t, t ∈ [0, T ].

The PLS approximation of Y by (Xt)t∈[0,T ] at step q, q ≥ 1, is given by :

Ŷ qPLS = c1t1 + . . .+ cqtq =
∫ T

0

β̂PLS(t)Xtdt. (2.2)

de Jong (1993) shows that for a fixed q, the PLS regression fits closer than
PCR, that is,

R2(Y, Y qPCR) ≤ R2(Y, Y qPLS). (2.3)

In Preda and Saporta (2001) we show the convergence of the PLS approxi-
mation to the approximation given by the classical linear regression :

lim
q→∞

E(|Ŷq − Ŷ |2) = 0. (2.4)

In practice, the number of PLS components used for regression is determined
by cross-validation (Tenenhaus, 1998).

3 Clusterwise PLS regression

The clusterwise linear regression supposes that there exists a group-variable
G : Ω → {1, 2, . . . , k}, 1 ≤ k <∞, such that

E(Y |X = x,G = i) = α(i) + β(i)x, ∀i = 1, . . . k,

where {α(i), β(i)}ki=1 are subgroup-specific regression coefficients given by the
least squares criterion. Let us denote by

Ŷ = α+ βX, the approximation given by the global regression of Y on X,

Ŷ (i) = α(i) + β(i)X, ∀i = 1, . . . k, and Ŷ L =
k∑
i=1

Ŷ (i)1{G=i}.

Then we have

Var(Y − Ŷ ) = Var(Y − Ŷ L) + Var(Ŷ L − Ŷ )

=
k∑
i=1

P({G = i})Var(Y − Ŷ (i)|G = i) + Var(Ŷ L − Ŷ ).
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In general k is unknown, and therefore, the distribution L(G) of G is un-
known.

For fixed k, the clusterwise linear regression gives estimation of L(G) and
{α(i), β(i)}ki=1 using the criterion : min

{α(i),β(i)}k
i=1,L(G)

{
Var(Y − Ŷ L)

}
.

3.1 The clusterwise linear regression algorithm
If n data points {Xi, Yi}ni=1 have been collected, the cluster linear regression
algorithm finds simultaneously an optimal partition of the n points, P =
(P (1), . . . , P (k)) (as estimation of L(G)), and the regression models associated
to each cluster, {α(i), β(i)}ki=1, which maximize the criterion :

L(P, {α(i), β(i)}ki=1) =
k∑
i=1

∑
j∈P (i)

(
Yj − (α(i) + β(i)Xj)

)2

Starting with an initial partition P0 = (P (1)
0 , . . . , P

(k)
0 ) the algorithm con-

structs iteratively a sequence (Ps, {α(i)
s , β

(i)
s }ki=1)s≥0 in the following way

(Charles, 1977) :
- for each i = 1, . . . k, (α(i)

0 , β
(i)
0 ) are given by the least square estimators of

the linear regression using the data points of the cluster P (i)
0 .

- let (Ps, {α(i)
s , β

(i)
s ) be known. Then, for each i = 1, . . . , k,

P
(i)
s+1 =

{
(Yj , Xj)|

(
Yj−(α(i)

s +β(i)
s Xj)

)2

<
(
Yj−(α(i′)

s +β(i′)
s Xj)

)2

,∀i 6= i′
}
,

(α(i)
s+1, β

(i)
s+1) are the least squares estimators of linear regression using the

data points of the cluster P (i)
s+1.

The sequence (Ps, {α(i)
s , β

(i)
s }ki=1)s≥0 is such that

L(Ps, {α(i)
s , β(i)

s }ki=1) ≥ L(Ps+1, {α(i)
s+1, β

(i)
s+1}ki=1),∀s ≥ 0

and so it is convergent. Therefore, (Ps, {α(i)
s , β

(i)
s }ki=1)s≥0 is convergent and

reaches its limit. Let (P, {α̂(i), β̂(i)}ki=1) be this limit.

3.2 Clusterwise PLS regression when data are curves
When explanatory variables are curves,Xi ∈ L2([0, T ]), the classical linear re-
gression is not adequate to give estimators for the local models {(α(i), β(i)}ki=1)
(Preda and Saporta, 2001).

We propose to adapt the PLS regression for the clusterwise algorithm,
in order to overcome this problem. Thus, the local models are estimated
using the PLS approach given in the previous section. Let us denote by
{(α(i)

PLS,s, β
(i)
PLS,s}ki=1) this estimators at the step s of algorithm.

However, a natural question arises : is the clusterwise algorithm still con-
vergent in this case ? Indeed, the least squares criterion is essential in the
proof of the convergence of the algorithm when the set of explanatory vari-
ables is finite (Charles, 1977). The following proposition gives the answer to
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this question.
Proposition 3.1 For each step s of the clusterwise PLS regression algorithm
there exists q(s), q(s) ≥ 1, such that the local PLS regressions with q(s) PLS
components preserve the convergence of the algorithm.
Proof : Let

(
Ps, {(α(i)

PLS,s, β
(i)
PLS,s}ki=1)

)
be the associate estimators for each

local model at the step s of the clusterwise PLS algorithm. By construction
we have that

L(Ps, {α(i)
PLS,s, β

(i)
PLS,s}

k
i=1) ≥ L(Ps+1, {α(i)

PLS,s, β
(i)
PLS,s}

k
i=1).

On the other hand, from (2.4) there exists q(s+ 1) such that :

L(Ps, {α(i)
PLS,s+1, β

(i)
PLS,s}ki=1) ≥ L(Ps+1, {α(i)

PLS,s+1, β
(i)
PLS,s+1}ki=1) ≥

L(Ps+1, {α(i)
s+1, β

(i)
s+1}ki=1),

where {α(i)
s+1, β

(i)
s+1}ki=1 are the estimators given by least squares for each

cluster at the step s+ 1. The proof is complete.
From practical point of view, that result allows the use of the cross-validation

criterion (with right parameters) in order to perform clusterwise PLS regres-
sion.

Let us denote the by {(α̂(i)
PLS , β̂

(i)
PLS}ki=1) the PLS estimators for each cluster

given by the clusterwise PLS regression.
Prediction. Given a new data point (Y ∗, X∗) for which one has only the
observation of X, the prediction problem of Y ∗ is reduced to those of the
determination (choice) of the cluster which contains this point. A rule that
use the approach of the k-nearest neighbours is proposed by Charles (1977).
If P (i∗) is the cluster given by this rule, then the prediction of Y ∗ given by
the clusterwise PLS regression is

Ŷ ∗ = α̂
(i∗)
PLS +

∫ T

0

β̂
(i∗)
PLS(t)X∗(t)dt.

It is important to notice that the properties of the clusterwise PLS regression
do not change if Y is a random vector of finite or infinite dimension. This
extension of the PLS regression is given in Preda and Saporta (2001). When
Y = {Xt}t∈[T,T+a] the clusterwise PLS regression is used to predict the fu-
ture of the process from its past.
Number of clusters. The number of clusters, k, is unknown. Charles (1977)
proposed to choose k by observing the evolution of the decreasing function

c(k) =
V ar(Y − Ŷ L)

V ar(Y )
. Other criteria based on the same formula of decom-

position of variance are proposed in Plaia (2001).

4 Application on stock exchange data

The clusterwise PLS regression on a stochastic process presented in the pre-
vious sections is used to predict the behaviour of shares on a certain lapse
of time. We have developed a C++ application which implements the clus-
terwise PLS approach, by varying the number of cluster and using the cross-
validation criteria for different level of significance of PLS components.
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We have 84 shares quoted at the Paris stock exchange, for which we know
the whole behavior of the growth index during one hour (between 1000 and
1100) ; a share is likely to change every second. We also know the evolution of
the growth index of a new share (noted 85) between 1000 and 1055. The aim
is to predict the way that share will behave between 1055 and 1100 using the
clusterwise PLS approach built with the other 84 shares. The same data are
used in Preda and Saporta (2001) where the global PCR and PLS regressions
are fitted. We denote by CW-PLS(k) the clusterwise PLS regression with k
clusters, by PCR(k) respectively PLS(k), the global regression on the first k
principal components, respectively on the first k PLS components.

Using the same approximation and notations as in Preda and Saporta
(2001) we have obtained the following results :

m̂56(85) m̂57(85) m̂58(85) m̂59(85) m̂60(85) SSE
Observed 0.700 0.678 0.659 0.516 -0.233 -

PLS(2) 0.312 0.355 0.377 0.456 0.534 0.911
PLS(3) 0.620 0.637 0.677 0.781 0.880 1.295
PCR(3) 0.613 0.638 0.669 0.825 0.963 1.511

CW-PLS(3) 0.643 0.667 0.675 0.482 0.235 0.215
CW-PLS(4) 0.653 0.723 0.554 0.652 -0.324 0.044
CW-PLS(5) 0.723 0.685 0.687 0.431 -0.438 0.055
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