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Abstract

We give an extension of PLS regression to the case where
the set of predictor variables forms a Lo-continuous stochas-
tic process and the response is a random vector of finite or
infinite dimension. We prove the existence of PLS compo-
nents as eigenvectors of some operator and also some con-
vergence properties of the PLS approximation. The results
of an application to stock-exchange data will be compared
with those obtained by others methods.

Keywords. PLS regression, Escoufier’s operator, principal
component analysis.

1 Introduction

It doesn’t seem usual to perform a linear regression when the
number of predictors is infinite. However it is the case when one
tries to predict a response variable Y thanks to the observation



of a time dependent variable X;, for any ¢ € [0,7] (for example,
(Xi)tepo,r) can represent temperature curves observed in n places
and Y the amount of crops). Theoretically, this can be expressed
by the regression of the Y variable on the (X)) process.

The aim of this article is to adapt the
PLS regression when all the explicative
variables form a stochastic process. The .

problems brought about by the classical i
linear regression on a process — the inde- .

termination of the regression coefficients ‘ .
(Ramsay and Dalzell ([10]), Ramsay and "
Silverman ([11]), Saporta ([12])) or the  ° t r
choice of the principal components of

(Xi)tepo,r as explicative variables (Dev- Figure 1: Regression on a
ille ([4]), Saporta ([12]), Aguilera et al. stochastic process

([1])) — get within this framework satis-

factory solutions the main characteristics of which derive from those
of the Escoufier operator associated with the process (Xj)scpo,1
(Saporta ([12])).

PLS regression on a stochastic process is an extension of the
finite case (a finite set of predictors) developed by Wold et al.([15]),
Tenenhaus et al. ([13]) and Cazes ([2]). We prove the existence of
PLS components as well as a few convergence properties towards
the classical linear regression. The case Y = (Xy)ie(rr4a], @ > 0,
presents an alternative to prevision methods proposed by Aguilera
et al. ([1]) and Deville ([4]). The results of an application on stock
exchange data are compared with those obtained by other methods.

2 Some results about PCA and
regression when data are curves

Let (X¢)ico,r7 be a random process and Y = (Y7,Y3,...,Y}),
p > 1, a random vector defined on the same probability space
(22, A, P). We assume that (X;),co,r] and Y are of second order,
(Xt)tepor is Lo-continuous and for any w € Q, ¢ — X;(w) is an



element of Ly([0,7]. Without loss of generality we assume also
that F(X;) =0,Vt €[0,T] and E(Y;) =0,Vi=1,...,p.

2.1 PCA of a stochastic process

Also known as Karhunen-Loeve expansion, the principal com-
ponent analysis (PCA) of the stochastic process {X;}cjo,7 consists
in representing X; as :

Xy = Zfz(t)gta vt € [OvT]v (1)

i>1

where the set {f;}i>1 (the principal factors) forms an orthonormal
system of deterministic functions of L, ([0, T]) and {&;};>1 (principal
components) are uncorrelated zero-mean random variables.

The principal factors { f;};>1 are solution of the eigenvalue equa-
tion :

T
| ct ) fi(e)ds = xfifo), 2
where C'(t, s) = cov(Xy, Xy), Vt, s € [0,T]. Therefore, the principal
T
components {&;};>1 are defined as §; = / fi(t) Xydt.
- 0

For f,g € L(]0,T]) let C be the covariance operator, f = g,

T
9) = [ Ot 9)f(s)as.
Then, (2) can be written as
Cfi=Xfi, 121

Thus, the principal component analysis of (X;)ico,77 is the ex-
tension of the classical case corresponding to a finite number of
random variables (see also ([3]). This analogy is summarized in the
following table :



Finite Infinite
Variables | Xp,...,X,, p>1 X, t€10,T]
Data n vectors € R? n curves € Ly([0,77)
Covariance Matrix V Operator C
Ve M, (R) C: Ly([0,T]) — Ly([0,T])
Vector u € RP Function f € Lo(|0,T
Factors Vi — \u Cff: )\f([ )

2.2 Linear regression on a stochastic process

Let Y be one-dimensional random vector (p = 1) and put Y =
{Y'}. Thus, the approximation of ¥ given by the linear regression
on the stochastic process (X;);cor] is the projection Y of ¥ on

Ly(X). By the projection theorem, Y satisfies the following system
E(YX,) = E(YX,), Vtel0,T] (3)

The linear model consists in writing Y as

V= [C o 5 e L(o,T)), (4)

and, from (3), we get that the function # must verify the Wiener-
Hopf equation :

B(X,Y) = /0 Lt $)3(s)ds, Ve [0,T]. (5)

The solution of this equation is caracterized by the Picard the-
orem ([12]) : the equation (5) has an unique solution in Ly([0,T1])
if and only if

s T
> <oo a= [ BOGWY)flt)dt, (©)

k

k>1

where {\;}x>1 and { fi }x>1 are the elements of the PCA of (X}),cp0,77-

If the condition (6) is not verified, 3 is a distribution instead of
a function ([12]). This difficulty appears also in practice when one
tries to estimate the regression coefficients, 3(t), using a sample of

4



size N. Indeed, if {(Y7, X}), (Y2, X3),...(Yn, Xn)} is a sample of
(Y, X), X = (X})ieqo,17, the system

Y, = /OTXi(t)ﬁ(t)dt, Vi=1,..p, (7)

has an infinite number of solutions ([11]). Several approaches are
proposed ([6], [8], [11]). In the next section we present two of these.

2.2.1 Linear regression on principal components

The process (X;):c[o,r] and the set of its principal components,
{&}r>1, span the same linear space. Therefore, the regression of ¥’
on (X¢)cjo,r] is equivalent to those on {&;}x>1. Thus, we have

Yfk
=> (8)
k>1 Ak
The fit of the regression is usually measured by :

R}(Y,Y) = E(;Q) gjl EQ(;;&’“).

In practice we need to choose an approximation of order g,
qg> 1:
s ! Y§k

yi=3°

2 (9)

But, the choice of the principal components used to perform the
regression is not easy : indeed, if the g-first principal components
get in general a more stable model ([7]), the quality of this model is
not necessary satisfactory according with the above criteria ([12]).

2.2.2 Projection method

Let {e;};_, _, be an orthonormal system of L,([0,7]). The pro-
JeCtIOH method ([1], [11]) consists in approximating 8 with 3(t) ~

Zb ei(t), b; € R, Vi =1,...q. The relation (5) becomes
Kb = a,
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where K = (ki,j)lgi,qu; ki,j = (Cei|ej), a = (ai)i:Lm,p € Rp, a; =
(€i, ), @(t) = E(YXy), ¥t € [0, T7.

Notice that if {e;},_, . = {fi};=, _, the projection method is
equivalent to the regression on the ¢ principal components.

The choice of the approximation method employed to perform
linear regression on a stochastic process seems to be a compromise
between the stability of the model and its quality of fit. The PLS
approach gives a solution at this compromise and is presented in
the next section.

3 PLS regression on a stochastic process

Under hypothesis presented in Section 2, let Cyx and Cxy be the
operators defined as :

Cmnb@JD%Rﬁfgﬁa@:/%MMV@MJ:LQ
0

p
Cxy : R? = Ly([0, 7)), z S5 1, f(t) =S E(X\Y;)m;, t € [0,T).
i=1
and denote by Uy = Cxy o Cyx and by Uy = Cyx o Cxy.
Obviously, the operators Cyx and Cxy generalize the cross-
covariance matrices used in the finite case ([13]). In addition, Uy
and Uy are self-adjoint, positive and compact operators with the
same spectrum. Therefore, the spectral analyses of Ux and Uy
lead to a countable set of positive eigenvalues.
The following proposition justifies the interest for these opera-
tors and gives the solution to the PLS problem :
Proposition 1 (Tucker criterion)

T p
max  Cov? </ Xyw(t)dt, ZCiY}>
0 i=1

w, C
w € Ly([0, 7)), lw] =1
ceRP e =1

s reached for w, respectively c, the eigenvectors associated to the
largest eigenvalue of Uy, respectively of Uy-.
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Let wy € Ly([0,7]) be the eigenfunction of Ux associated to
the largest eigenvalue. Then, the first PLS component (Tenenhaus
et al. ([13])) of the regression of Y on the process (X)o7 is the
random variable defined as :

t = /0 " X (bt (10)

Denote by WX, respectively WY, the Escoufier’s operators'
(Escoufier ([5])) associated to (X¢):c[o,r, respectively to Y, defined
by :

T p
W7 = / E(X,Z2)Xydt, WYZ =Y E(Y;2)Y;, VZ € Ly().
0 i=1
Our main result is the following theorem.
Theorem 2 t, is the eigenvector of the WX WY associated to the
largest eigenvalue.

The PLS regression is an iterative method. Let X, = X, Vt €
[0,7] and Yp,; =Y;, Vi = 1,...,p. At the step h, h > 1, of the PLS
regression of Y on (X;)cor), we define the K" PLS component,

tn, by the eigenvector associated to the largest eigenvalue of the
operator Wi W}

Wil i Wi ith = Amaxth, (11)

where Wi, respectively W} _,, are the Escoufier’s operators as-
sociated to (X4—1,)iefo,r), respectively to Yy = (Ya—1,)i=1,..p and
Amax the largest eigenvalue of Wi W), Finally, the PLS step is
completed by the ordinary linear regression of Xj_;; and Y}_;; on
tn. Let Xp,, t €10,7) and Yy, i = 1, ..., p be the random variables
which represent the error of these regressions :

Xh,t = Xh—l,t - ph(t)tha le [07 T]a

Yii=Yh 1 — cnith, i=1,...,p,

IThe spectral analysis of this operator leads to the principal component
analysis of the associated variable. See ([3]) and ([5]) for details.
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As in the finite case (Tenenhaus et al. ([13])), the next statements
hold :
Proposition 3 For each h > 1 :

a) {tn}n>1 forms an orthogonal system in Ly(X),

b) Yi=ciity + cogly+ ...+ chgtn + Vi, i=1,...p,

&) X0 = pu( + pa®fs + oo 4 (Ot + Xews € [0,T),
d) E(Yiit) =0, Yi=1,..p¥j=1,.h,

e) B(Xpit;) =0, Vtel[0,T],¥j=1,...h.

From the Proposition 3-b), the PLS approximation of Y by
(Xt)tcor) at step h, h > 1, is given by :

?h201t1+...+chth, C; ERp,izl,...,p. (12)

Denote by Y the approximation of Y given by the ordinary
linear regression on (X;);co,77- Then, the sequence {?h}hzl is con-
vergent in L(2) and the limit is Y :

Proposition 4
lim E(||Y, - Y|?) = 0. (13)
h—00

Finally, the choice of h using the cross-validation criterion (Green
and Silverman ([6])) remains applicable in this case.

Remark (Numerical solution) Because (X});co,r7 is a continous
time stochastic process, in practice we need a discretization of the
time interval in order to get a numerical solution. In ([9]) we give
such an approximation. Thus, if A ={0=1¢, <t <...<t, =T},
p > 1, is a discretization of [0, 7], consider the process (X/)scjo7]
defined as :

1 Lit1
XtA = ﬁ/ +Xtdt, YVt € [ti,ti+1[, Vi = 07 D= L.
1+1 i/t

Denote by m; the random variable t,+11_t, ftii“Xtdt, i=0,...,p—1.
Then, the approximation of the PLS regression on (X)o7 by

those on (X/)epo,r] is equivalent to the PLS regression on the finite

set {mi\/tiﬂ — ti}, 1= 0, NNV 1.
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Continuous case Previous results are still valid for the particular
case Y = (Xy)ser,r4a], @ > 0. Indeed, because of the Ly continuity
of the process (Xy)cjo,r+q), Cx,y and Cy, y are compact and there-
fore, Ux and Uy are compact. The results of the Proposition 1
and Theorem 2 are preserved.

The decomposition formulas (Proposition 3-b,c) become in this
case :

tip1(t) + .. tapn(t) + Xy vt € [0,T7,
tlcl(t) —|—thch(t) +Xh,t; Vit € [T,T—FCL],

For each s € [0, al, the "forecast” of X7, by (X;)cjo,r7 is given by :

Xops =tie (T +5) + ...+ then (T + 5). (6)

4 Application on stock exchange data

The PLS regression on a process presented in the previous sec-
tions will be used to predict the behaviour of shares on a certain
lapse of time.

We have 84 shares quoted at the Paris stock exchange, for which
we know the whole behavior of the growth index during one hour
(between 10° and 11%) ; a share is likely to change every second.
We also know the evolution of the growth index of a new share
(noted 85) between 10°° and 10°°. The aim is to predict the way
that share will behave between 105 and 11% using a PLS model
built with the other 84 shares.

We are going to use the approximation given in Remark by
taking an equidistant discretization of the interval [0,3600] (time
expressed in seconds) in 60 subintervals. The previsions obtained
will then match the average level of the growth index of share 85
considered on each interval [60 - (i — 1), 60 -4), i = 56, ..., 60.

Using the SIMCA-P software ([16]) we are going to build seve-
ral PLS models according to the number of components chosen for



regression. So we are going to refer to the model with & PLS com-
ponents as PLS(k). The previsions obtained with these models will
be compared to those given by the regression on the principal com-
ponents (models quoted with PCR(k)) and the algorithm NIPALS
(see Tenenhaus ([14]) for details). To rate the quality of those mo-
dels we are going to compare the previsions obtained by each model,
quoted with {7m};(85), with true values {m};(85), i = 56, ..., 60,
observed previously.

Table 1 gives the percentages of variance associated to the three
first PLS components, respectively to the three first principal com-
ponents of the set {m;},_, ...

PLS| % %cum.||PCA| % % cum.
t1 91.7 91.7 & 91.7 91.7
ty | 2.0 946 & | 40 957
ts | 27 973 & | 25 982

Table 1: Percentages of variance

The forecasts of the some models are presented in Table 2.

50
Mm56(85)  Mp57(85)  Misg(85)  misg(85)  1heo(85) | SSE = Z Oy — m;)?
i=56
Observed 0.700 0.678 0.659 0.516 -0.233 -
PLS(1) 20.327 20.335 0.338 20.325 20.302 3.789
PLS(2) 0.312 0.355 0.377 0.456 0.534 0.928
PLS(3) 0.620 0.637 0.677 0.781 0.880 1.318
PCR(1) 0.356 0.365 0.368 70.355 70.331 1.026
PCR(2) -0.332 -0.333 -0.335 -0.332 -0.298 3.786
PCR(3) 0.613 0.638 0.669 0.825 0.963 1.538
NIPALS 0.222 0.209 0.240 0.293 0.338 1.000

Table 2: Forecasts and errors

Considering SSE as global measure of the quality model, the
best forecasts are those of the PLS regression in two steps. The
models PLS(3) and PCR(3) are particularly good for short term
prevision (3300, 3480), but much less for the interval of time (3480-
3600). The NIPALS algorithm provides also, on an average, good
predictions.
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5

Conclusions

The PLS regression on a process offers an alternative to regres-

sion on principal components. It gives a solution to the problems of
multicolinearity of predictors and when the number of observations
is smaller than the number of explicative variables, which is often
the case in this context.
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