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Abstract. We present a new hierarchical clustering criteria which can be applied

to data set. This is done after generating an initial partition by using a Topological

Self Organizing Map. This criteria contains two terms which take into account two

di�erent errors simultaneously: the square error of the entire clustering (as the

Ward criteria) and the topological structure given by the Self Organizing Map.

A parameter T allows to control the corresponding in
uence of these two terms.

Results on simulated data are presented which show the e�ect of this criteria for

di�erent values of T .

1 Introduction

The Self-OrganizingMap (SOM) as introduced by Kohonen (Kohonen (1984)),

has been widely used for quantization and classi�cation. But SOM is also a

clustering algorithm which generates some partition of the data. The partition

has the particular property of being structured by a topological order repre-

sented by a graph. Many authors use SOM as a �rst stage of a Hierarchical

Clustering algorithm (HC) (Thiria et al. (1997), Yacoub et al. (2000) Am-

broise et al. (2000)). At each iteration, HC agglomerates two clusters by using

a dissimilarity criteria. In this paper, we propose a new parametrized family

of criteria for this agglomeration which takes into account both the euclidian

distance on the data set and the topological order between the clusters. The

main advantage of this family is to provide a 
exible way to represent the

underlying structure of the data. Depending on the value of the parameter,

the criteria is able to identify globular or irregularly shaped clusters.

In the Section 2 we present the batch version of SOM algorithm. In Section

3 we present the new hierarchical clustering criteria. Section 4 is dedicated

to preliminary results obtained on simulated data.

2 SOM quantization

The standard Self Organizing Map (SOM) (Kohonen (1984)) consists of a

discrete set C of neurons called the map. This map has a discrete topology

de�ned by an undirected graph; usually it is a regular grid in one or two
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dimensions. We denote N
neuron

the number of neurons in C. For each pair

of neurons (c,r) on the map, the distance Æ(c; r) is de�ned as the shortest

path between c and r on the graph. For each neuron c, this distance allows

us to de�ne a neighborhood of order d: V
c
(d) = fr 2 C=Æ(c; r) � dg. In

the following, in order to control the neighborhood order, we introduce a

Kernel positive function K ( lim
jxj!1

K(x) = 0) and its associated family K
T

parametrized by T : K
T
(Æ) = [1=T ]K(Æ=T )

Let D be the data space (D � Rn) and A = fz
i
; i = 1; : : : ; Ng the

training data set (A � D). The standard SOM algorithm de�nes a mapping

from C to D where each neuron c is associated to its referent vector w
c
in D.

The set of parameters W = fw
c
; c 2 Cg, which fully determines the SOM,

have to be estimated from A. This is done iteratively by minimizing a cost

function:

JT
som

(�;W) =
X
c2C

X
zi2A

K
T
(Æ(c; �T (z

i
))kz

i
�w

c
k
2

(1)

Where �T (z
i
) represents a particular neuron of C assigned to z

i
. This mini-

mization can be done using a "batch" version of the standard SOM algorithm

(Luttrel (1994), Ritter (1992), Kohonen (1984), Anouar (1997)). It can be ex-

pressed as a dynamic cluster method (Diday and Simon (1976)) operating in

two steps:
� The assignment step assigns each observation z

i
to one neuron c of C

using the assignment function �T (relation 2). This step gives a partition

of the data spaceD inN
neuron

subsets, each observation z
i
being assigned

to its nearest neuron �T (zi) according to a weighted sum of the euclidian

distances:

�T (z) = argmin
r2C

X
c2C

K
T
(Æ(c; r)kz �w

c
k
2

(2)

� The minimization step minimizes the cost function (relation 1) with

respect to the set of parametersW giving rise to the updated values ofW :

w
T

c
=

X
r2C

(K(Æ(c; r))
X
zi2Pr

z
i
)

X
r2C

K(Æ(c; r))n
r

where P
r
= fz

i
2 A=�T (z

i
) = rg (3)

For a given value of T , the batch algorithm minimizes (1) and leads to a local

minima of this cost function with respect to both �T andW . Using the batch

version iteratively, with decreasing values of T , provides the standard SOM

model. The nature of the SOM model reached at the end of the algorithm,

the quality of the clustering (or quantization) and those of the topological

order induced by the graph depend on the �rst value of T (Tmax), its �nal

value (Tmin) and the number of iterations (N
iter

) of the batch algorithm.

Formula (3) shows that SOM uses the neighborhood system, whose size is

controlled by T , in order to introduce the topological order. When the value

of T is large, an observation z
i
will modify a large number of referent vectors

w
c
, in opposite to small values of T allowing few changes. At the end of
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the learning algorithm (when Tmin is reached), two neighbors neurons on

the map have close referent vectors in the euclidian space (Rn). In that

sense, the map provides a topological order; the clustering associated to this

topological order is de�ned in (2) by taking T = Tmin. If Tmin is such that the

neighborhood of a neuron is reduced to itself for any distance d (V
c
(d) = fcg)

the cost function JT
min

som
minimized at the end of the learning phase is as the

k-means distortion function. So, the successive iterations allow to reach a

k-means solution which takes into account the topological constraint. In this

case equation (3) shows that, for each neuron c, the referent vectors w
c
is

just the mean vector g
c
of P

c
= fz

i
2 A=�T

min

(z
i
) = cg, in the following we

denote by n
c
the cardinality of P

c
.

3 A topological hierarchical clustering

The aim of SOM is to provide a "re�ned" partition of the data space (D)
using a huge number of neurons and to induce a topological order between

them. The main goal of this partition is to reduce the information provided by

the data (D) using a vector quantization method. For practical application,

one often looks for a limited number of signi�cant clusters on the data space.

Thus the problem is to reduce the number of clusters and to de�ne a new

partition P
K
� of K� clusters from the initial SOM partition. This can be

done by clustering the N
neuron

referent vectors of SOM using a hierarchical

clustering algorithm.

In the present paper, we look for a new dissimilarity measure which allows

us to take into account the two informations provided by SOM: the square

error for the entire clustering and the existing topological order on the map.

An adequate decomposition of the cost function JT
som

which determines SOM

suggests that some new criteria will be able to do it. Rewriting JT
som

gives :

JT
som

=
X
c

X
r

X
zi2Pr

K
T
(Æ(c; r))kz

i
�w

c
k2 =2

4X
c

X
r 6=c

X
zi2Pc

K
T
(Æ(c; r))kz

i
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r
k2

3
5+

"
K

T
(Æ(c; c))

X
c

X
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kz
i
�w

c
k2

#
(4)

Since usually at the end of the learning phase, w
c
is no more that the

mean vector of P
c
(see section 2), we can decompose JT

som
using the square

error of each individual cluster (or neuron): I
c
=
P

zi2Pc
kz

i
�w

c
k2 (I

c
= 0

for P
c
= ;), and (4) gives

JT
som

= 1
2

X
c

X
r 6=c

K
T
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i
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X
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#
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2
41
2
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The �rst term of the decomposition of JT
som

takes into account the topo-

logical order, the second term corresponds to a weighted square error for the

entire clustering and is similar to Ward criteria.

The hierarchical clustering, presented in this paper and denoted HC
som

,

proceeds by successive aggregations of neurons reducing by one, at each time,

the cardinality of the preceding partition. At each iteration a new partition is

de�ned. We denote by P
K
, such a partition made of K clusters, each cluster

being denoted by an index c. The partition P
K

= fP
c
=c 2 C

K
g is such that

the set of index C
K

has a graph structure which induce a discrete topology

between the di�erent clusters. For every c in C
K
, the cluster P

c
is represented

by its mean vector g
c
, its cardinality n

c
and its square error I

c
. We use JT

som

as a measure of the "quality" of the partition P
K
. Using C

K
, the dedicated

measure becomes a sum of two terms:

J
T

hc =

"
1

2

X
c

X
r 6=c

KT (Æ(c; r))(nc + nr) � kgr � gck
2

#
+

"X
c

 X
r

KT (Æ(c; r))

!
Ic

#
(6)

Where c and r belong to C
K

and Æ(c; r) represents the distance on the graph

C
K

which will be de�ned below, as in (5) the �rst term of (6) (a) involves

the topological order of the graph C
K

and the second term (b) is similar to

Ward criteria.

The initial partition P
K0

is given by the SOM map at the end of the

learning algorithm. The graph C
K0

is the sub-graph of the map, where all

the neurons such that n
c
= 0 are removed. The initial distance Æ(c; r) on

C
K0

is de�ned as in section 2 by the length of the shortest path on the map.

In general, the hierarchical clustering reduce P
K

to P
K�1 aggregating two

vertices of C
K

which allows us to determine the graph C
K�1 of P

K�1. If we

denoted by fc1; c2g the new index which aggregate c1 and c2 and Pfc1;c2g its

related cluster, Pfc1;c2g is represented by its mean and its cardinality on the

map : gfc1;c2g =
(nc1�gc1 )+(nc2�gc2 )

nc1
+nc2

; nfc1;c2g = n
c1
+ n

c2
and its individual

square error

Ifc1;c2g = n
c1
�kg

c1
�gfc1;c2gk

2+n
c2
�kg

c2
� gfc1;c2gk

2 + I
c1

+ I
c2
. The new

distances Æ on the graph C
K�1 is de�ned by: Æ(c; fc1; c2g) = minfÆ(c; c1); Æ(c; c2)g.

HC
som

is looking for the best aggregation; as we compute the criteria JT
hc
,

among all the possible pairs of C
K

and the possible resulting partitions, we

select the pair for which the value of JT
hc

is minimal. This pair gives rise to

the new partition P
K�1 = fP

c
=c 2 C

K�1g. Doing so, the parameter T de�nes

a family of criteria whose characteristics are related to its value. Taking T

small (as T = T
min

), cancels the �rst term (a) of (6); in this case HC
som

is

the Ward criteria. Using a large value of T (as T = T
max

), cancels the term

(b); the method classify using only the topological order given by SOM. In

this later case, HC
som

becomes similar to the single link criteria. The inter-
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Fig. 1. (a) : data set (b): the set of referent vectors with the induced topological

order. (c, d, e): the evolution of JThc (dotted ligne), and its two terms a (solid

ligne) and b (dashdot ligne) during the aggregation of neurons, for three di�rent

temperatures. (f, g) The two clusters obtained for T = 0:001 and T = 0:2.

mediate values of T represent a compromise between these two alternatives.

The `best' value of T has to be speci�ed, as any hyper-parameter.

In the following, we use simulated data in order to show some examples

of the di�erent partitions we can obtain using HC
som

.

4 Simulations

HC
som

described in the previous section was applied on a simulated data set

ofR2 shown in �gure 1(a). Clearly this data set presents two di�erent clusters

which are irregularily shaped. First, we trained a two-dimensional map of size

10�10 with SOM algorithm, the set of referent vectors and the graph induced

by (C) is presented in �gure 1(b). We used HC
som

to cluster the set W of

referent vectors given by SOM and select the partition P2 with 2 clusters. The

experiment was repeated, varying the value of the parameter T . For a given

value of T , the behavior of the hierarchy can be seen, during the aggregation
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process, looking simultaneously at the evolution of JT
hc

and at those of its �rst

and second terms (a) and (b). The results we obtain for T = 0:001, T = 0:2

and T = 5, are shown in �gure 1(c,d,e). It can be seen that for T = 0:001,

JT
hc

is approximatively equal to the second term (b). In this case HC0:001
som

is similar to the Ward hierarchy. For T = 5, JT
hc

is approximatively equal

to its �rst term (a), and the topology provided by SOM predominate. For

T = 0:2, JT
hc

can be seen as a Ward criteria regularized by the topological

order of the graph, the two terms of the sum have a particular impact. In

�gure 1 (f,g) we show the two clusters obtained using HCT

som
for T = 0:001,

and for T = 0:2. Clearly the intermediate value T = 0:2 allows us to �nd the

underlying structure of the data set; the use of the Ward criteria gives more

spherical classes and is unable to extract the two circles.

5 Conclusion

In this paper, we introduce a family of new criteria to perform hierarchical

clustering. This family presents the new properties to mix two di�erent cri-

teria: the square error of the entire clustering and a graph approach which

allows us to take into account the structure of the data set. This approach

greatly takes advantage of the neural approach, the Self organizing Map pro-

vided an ordered codebook of the initial data and suggest a particular criteria

in order to cluster this codebook. Some simulated experiments proves that

this hierarchical clustering can be useful for identifying irregularly shaped or

nonglobular clusters.
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