
HAL Id: hal-01124587
https://hal.science/hal-01124587v1

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some simple rules for interpreting outputs of principal
components and correspondence analysis

Gilbert Saporta

To cite this version:
Gilbert Saporta. Some simple rules for interpreting outputs of principal components and correspon-
dence analysis. ASMDA 99: IX International Symposium on Applied Stochastic Models and Data
Analysis, Jul 1999, Lisbonne, Portugal. �hal-01124587�

https://hal.science/hal-01124587v1
https://hal.archives-ouvertes.fr


IX International Symposium on Applied Stochastic Models and Data Analysis,
June 14-17, 1999, Lisbon, Portugal

SOME SIMPLE RULES FOR INTERPRETING OUTPUTS
 OF PRINCIPAL COMPONENTS AND CORRESPONDENCE ANALYSIS

Gilbert Saporta
CEDRIC, Conservatoire National des Arts et Métiers
292 rue Saint Martin, 75141 Paris Cedex03, France

saporta@cnam.fr

A large literature has been devoted to the assessment of the right number of eigenvalues
in PCA and CA (two-way and multiple). Most of the publications are based on
distributional assuptions for the sample, or on bootstrap techniques. After having
recalled some of the most important results, we present simple thresholds based on a
« control chart » approach for eigenvalues as well as for contributions, distances…

1. Principal components

We deal here with standardised data, and n equally weighted observations of p

variables.

1.1 Choosing eigenvalues :

It is commonly accepted that significant eigenvalues should be greater than one and

well separated. Kaiser’s rule consists in discarding eigenvalues less than one.

Confidence intervals based on Anderson’s asymptotic distributions are frequently used

in this context, despite it is well known that these results do not hold for a correlation

matrix but only for a covariance matrix : if λ i  is the true ith value and $λ i  is its

estimation with a sample of size n :
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Forgetting about the fact that the $λ i  are an ordered sample of non independent variables,

we may notice that they have a mean equal to 1 and that
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Since the expectation of the square correlation coefficient between two independent

normal variables is 
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and the variance of the p $λ i has thus an expectation equal to 
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Like in control charts, we may assume that an eigenvalue is significantly greater than

one if :
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1.2 Contributions

Principal components C may often be considered as normally distributed if  p and n are

large, with zero mean and variance equal to  λ k . The contribution of an observation i to

the variance being  defined by 
1 2
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λ
 is distributed as χ1

2 . Hence a contribution

might be considered as significantly large with α=0.05 if it is greater than 3.84/n.

1.3 Distance to the centroid

For normally distributed observations, the square distance to 0 is a weighted sum of p

independent χ 1
2  variables : λ χi
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may be considered as outliers.

In the case of independence, we may replace 2 2

1
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bound becomes :
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1.3 Quality of representation

A common but questionable index of proximity between an observation and a principal

axis is cos2(θ). For the first axis we have tan ( )

.
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the expected value of cos2(θ)gives 
λ1

p
. (This is an exact value for the mean of the

square correlations between variables and principal components). No simple formula

seems available for the variance ; however we may use empirical 2σ-bounds. For an

axis cos2(θ) seems approximately distributed like beta.

A much better way to know if an observation is well represented in a subspace is to

examine its square distance to this subspace which may be compared to a linear

combination of χ 1
2  variables. For the first principal plane we may consider that points

with a square distance greater than
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are not correctly projected.

2.Correspondence analysis of contingency tables

CA being  a weighted PCA where weights depend on the data, results using chi-square

distributions do not generally hold for contributions and quality of representation.This is

also due to the usually small number of rows and columns in contingency tables.

However it is still possible to derive empirical 2σ-bounds.

2.1 Distribution of eigenvalues

For a contingency table with m1 rows and m2 columns, the assumption that N is a

realization of a multinomial distribution M(n ;pij) is realistic. In this framework the

observed eigenvalues $λ i  are estimates of the eigenvalues λ i  of nP, where P is the table

of unknown joint probabilities. Lebart and O’Neill have proved the following results : if

λ i = 0 then $λ i has the same distribution as the corresponding eigenvalue of a Wishart

matrix W r Im m( )( ) ( , )
1 21 1− − where r=min(m1-1 ; m2-1).

Ifλ i ≠ 0, then $λ i is asymptotically normally distributed, but with parameters which

depend on the unknown pij. Since it is difficult to test this hypothesis, some authors

have proposed a bootstrap approach which unfortunately is not valid : since the

empirical  eigenvalues, on which the replication is based, are generally not null, we

cannot observe the distribution based on Wishart matrices.



2.2 Malinvaud’s test

Based upon the reconstitution formula, which is a weighted singular value

decomposition of N : n n n n a bij i j ik jk k
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/ / $d i 1 λ , we may use a chi-square test

comparing the observed nij from a sample of size n to the expected frequencies under

the hypothesis  Hk of only k non zero λ i .Weighted least squares estimates ot these

expectations are precisely the ñij of the reconstitution formula with its first k terms. We

then compute the classical chi-square goodness of fit statistic:
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If k= 0 (independence) Q0 is compared to a chi-square with (p-1)(q-1) degrees of

freedom .

Under Hk, Qk is asymptotically distributed like a chi-square with (p-k-1)(q-k-1) degrees

of freedom.

E.Malinvaud 1987 proposed to use ni.n.j/n instead of ñij for the denominator which

leads to a simple relation with the some of the discarded eigenvalues :
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Many experiences have proved that this procedure is efficient (Saporta, Tambrea, 1995).

3. Multiple correspondence analysis

3.1 Eigenvalues

Let X X X . .. X1 2 p= e jbe a disjunctive table of p variables and q be the number of non

trivial eigenvalues q m pi
i

p

= −
=
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1

Despite that MCA is an extension of CA, results of part 2 are not valid and one cannot

use Malinvaud’s test : elements of X being 0 or 1 and not frequencies, Qk and Q’k do

not follow a chi-square distribution.



However it is possible to get informations about the dispersion of the q eigenvalues in

particular cases (Ben Ammou, Saporta 1998).

It is well known that :
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When variables are pairwise independent n ijϕ 2  is distributed as χ ( )( )m mi j− −1 1
2  and the

expected value is (mi-1)(mj-1), hence :
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and  we get :
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With E S( )λ
2  =  σ2 we may assume that the 

1
p

2±  σ should contain about 95% of the

eigenvalues. Since the kurtosis of the set of eigenvalues is lower than for a normal

distribution, the actual proportion is larger than 95%.

3.2 Other statistics

Since MCA is similar to PCA, we may apply results of part 1 for distances, and

contributions.

4 Concluding remarks

Of course, most of the preceding results are crude approximations and one has to be

careful when using it. They work well for moderately large samples , but not for too

large sample sizes : it is well known that in this case, even small and useless departures

from the mean are statistically significant. Further developments are needed, but  we

think that a reasonable use of 2σ-bounds should be proposed in softwares.
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