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Abstract.

Phys and Math are two colleagues at the University of Saçenbon (Crefan Kingdom),

dialoguing about the remarkable efficiency of mathematics for physics. They talk

about the notches on the Ishango bone, the various uses of psi in maths and physics,

they arrive at dessins d’enfants, moonshine concepts, Rademacher sums and their

significance in the quantum world. You should not miss their eccentric proposal of

relating Bell’s theorem to the Baby Monster group. Their hyperbolic polygons show

a considerable singularity/cusp structure that our modern age of computers is able to

capture. Henri Poincaré would have been happy to see it.

Yes I’m crazy Also they say I’m lazy But I’ll have my days When I do as I please You

won’t see the woods While you’re a tree No you’ll never see the woods While you’re a

tree (Under Moonshine, The Moody Blues [1]).

I would suggest, as a more hopeful-looking idea for getting an improved quantum theory,

that one take as basis the theory of functions of a complex variable. This branch of

mathematics is of exceptional beauty, and further, the group of transformations in the

complex plane, is the same as the Lorentz group governing the space-time of restricted

relativity... the working out of which will be a difficult task for the future (Dirac in 1939,

delivered on presentation of the James Scott prize [2]).

1. Day 1: the Ishango bone, psi and moonshine

Phys: Did you hear about the mystery of the Ishango bone found in Congo by Prof.

J. de Heinzelin? You can see it pictured as Fig. 1a.

Math: Yes, this is the oldest known mathematical puzzle, it dates back at least

20, 000 years. The bone carries groups of notches totalizing 60 in left and right columns

and 48 in the center column. A friend of mine found a good explanation of the puzzle,

the ancient African of Ishango happened to use the base 12 for counting [3].

Phys: Why 12?



2

Figure 1. (a) A schematic of the notches on the Ishango bone, (b) Véritable Portrait

de Monsieur Ubu, by Alfred Jarry (1896) ( with a free labeling by the author).

Math: At that time, African used the thumb of a hand to count the bones in the

fingers of their hands. Four fingers times three little bones on a hand yield 12 as a

counting unit. As there are 24 little bones in the two hands one gets: 60 = σ(24) and

48 = ψ(24).

Phys: What are these strange symbols σ and ψ? In quantum physics, ψ(x, t)

denotes the wave function in space time but some scientists doubt its reality, it leads

to many paradoxes such as Schrödinger’s cat that may be simultaneously dead or alive.

One finally introduced the qubit concept ψ = a |0〉+b |1〉 to model the superposition, but

problems arise with two qubits or more with such strange phenomena as non-locality and

the non-reality of objects prior to measurements, a phenomenon called contextuality.

Math: In number theory, ψ(x) may designate the second Chebyshev function, a

very important concept for looking accurately at the distribution of prime numbers.

But I refer to the Dedekind psi function ψ(n) = n
∏

p|n(1 + 1

n
), where the product is

over the primes p that divide n. At square free numbers, ψ(n) equals the sum of divisor

function σ(n). There are papers showing that both functions simultaneously arise for

counting the number of maximal commuting sets of a d-level quantum system [4].

Phys: I guess you mean a multidimensional Schrödinger’s cat. This may have to do

with the Cheshire cat in weak quantum measurements [5]. With pre- and post-selection

one has the ability to separate the location of the system (the cat) from one of its

properties (the grin). Cat story in Lewis Caroll tale: Alice in Wonderland is: “Well!

I’ve often seen a cat without a grin,’ thought Alice; “but a grin without a cat! It’s the

most curious thing I ever saw in my life!’ [6].

Math: Both arithmetic functions ψ(x) and ψ(n) can be used to formulate the

Riemann hypothesis about the critical zeros of the Riemann zeta ζ(s). I know that

the logarithmic integral li[ψ(x)] does much better than li(x) for counting the number
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of primes [7]. Concerning ψ(n), it was first introduced as the index of a particular

congruence subgroup Γ0(n) of the modular group Γ = PSL2(Z). Congruence subgroups

Γ0(p), for p prime, are used for defining genus zero surfaces if p− 1 divides 24.

Phys: Impressive, so these ‘prime groups’ and the number 24 are finally related to

the explanation of the tracks on the Ishango bone. I heard about the Mathieu groupM24

and the 24-dimensional Leech lattice used to pack spheres efficiently. I am interested in

advanced maths for clarifying problems in physics. I like Wolfgang Pauli quote There

is no God and Dirac is his prophet [8]. Do you think that God is a mathematician or,

like Alfred Jarry, that God is the tangential point between zero and infinity? [9] It is a

bit provocative, isn’t it?

Math: But the story is not finished, the groups you mention are sporadic

parts of the largest finite group, the Monster group M of cardinality |M| =

246 320 59 76 112 133 17 19 23 29 31 41 47 59 71 ∼ 1054 -this would correspond to

the mass in Kg of the known universe. Now if you add to Γ0(n) (n square free) the

Fricke involution matrix 1√
n
(0,−1;n, 0) you get another group with a single cusp at ∞

called Γ+

0 (n). For prime p, the group has genus zero if and only if p is in the sequence

{2, 3, · · ·71} occurring in the factors of [M|. This coincidence is again a puzzle when it

is rewritten as

196884 = 1 + 196883,

21493760 = 1 + 196883 + 21296876,

and so on, in which the numbers at the left column occur in the q-expansion of the

modular j-invariant and the numbers at the right column are sums of dimensions of the

smallest irreducible representations of the Monster M. The coincidence is known as the

‘monstrous moonshine’ (in the sense of being a crazy idea). I quote the field medalist

Richard Borcherds after his proof of the puzzle with the help of string theoretical

concepts: I sometimes wonder if this is the feeling you get when you take certain drugs.

I don’t actually know, as I have not tested this theory of mine [10]. This is an illustration

of the pre-established harmony between maths and physics. Concerning Jarry’s quote,

I have put labels 0, 1 and ∞ on Ubu’s portrait in Fig. 1b in order to illustrate a

salient feature of Grothendieck’s ‘dessins d’enfants’ [11], another way to approach the

moonshine subject.

Phys: Thanks, may be this approach helps to solve the ψ-quantum puzzle. See you

tomorrow.

2. Day 2: the ψ-quantum puzzle revisited

Phys: Look at what I see as the simplest ψ-quantum diagram of all, a square graph

(shown in Fig. 2a) that is the paragon of two-qubit Bell’s theorem about non-locality.

Imagine that Alice and Bob are spatially separated and do electron spin measurements

(along the orthogonal directions x and z) with their Stern-Gerlach. The four (two-

qubit) operators involved are denoted si, i = 1..4 as shown in my picture (a) where
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X = (0, 1; 1, 0) and Z = (1, 0; 0,−1) are the Pauli spin matrices. There is an edge

between two vertices if they commute. As the result of a measurement can only be the

eigenvalue ±1 of a si, one expects to satisfy the inequality

C = | 〈s1s2〉+ 〈s2s3〉+ 〈s3s4〉 − 〈s4s2〉 | ≤ 2.

But the calculations with the operators si lead to the norm ||C|| = 2
√
2 instead of 2,

and the experiments confirm this fact. There are many choices for a square graph with

multiple qudits si and the result is always a maximal violation 2
√
2.

Math: Do you have an explanation of the algebraic equation C2 = 8?

Figure 2. (a) The square graph of Bell’s theorem, (b) the dessin stabilizing the square

graph where the labeling ‘i’ of the edges corresponds to the (operator) vertices ‘si’ of

the square.

Phys: One cannot escape the quantum formalism on this matter. Observe that

there is none commuting entangled pair (si, sj) in my example, the proof of Bell’s

theorem does not refer to entanglement. But I found another argument based on the

permutation group P = 〈α, β〉 with the two generators α = (1, 2, 4, 3) and β = (2, 3),

this is pictured in my Fig. 2b where i means si. Each edge of my drawing corresponds

to the same stabilizer subgroup of P .

Math: Your graph is a Grothendieck’s ‘dessin d’enfant’ and the generators mean

how you go around the black and white vertices, isn’t it? And I see that the vertices

live in the extension field Q(
√
2). This means that your dessin can also be seen as a

complex algebraic curve over the field of algebraic numbers. Congratulations, this is a

nice use of a quite sophisticated mathematical trick. Is your graph (b) the only choice

to stabilize the square?

Phys: You are right, there are essentially four choices as shown in Fig. 2 of my

paper [12]. I kept the most asymmetric graph because I have the vague feeling that,

as Einstein wrote: Everything should be made as simple as possible, but not simpler

[13]. The three other choices are too symmetric, I feel one needs some breaking of the

symmetry to allow a deeper explanation of Bell’s theorem. I suspect that mathematics

can help.
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Math: You know, I met your dessin before. It corresponds to one (the case I)

of the non-normal inclusions of triangle groups classified by D. Singerman [14]. The

monodromy permutation P that you introduced is the subcover

X0(4) → X+

0 (2)

of the famous Klein quartic X(7) = X3Y + Y 3Z + Z3X . The triangle groups

corresponding to the modular curves X0(4) and X+

0 (2) are the congruence subgroup

Γ0(4) and the smallest moonshine group Γ+

0 (2) that we discussed yesterday. I suspect

that your Bell’s theorem is an elementary stone of a modular physical theory based on

the Monster M, a kind of atom. This reminds me the vortex atoms of Lord Kelvin. The

modern language is knot theory and Witten developed his topological quantum field

theory based on this set of ideas.

Even more intriguing, the moonshine group Γ+

0 (2) is related to the Baby Monster

group B of order 241 313 56 72 11 13 17 19 23 31 47 ∼ 4.1033 through another puzzling

series [15, p. 20]

a1 = 4372 = 1 + 4371, a2 = 96256 = 1 + 96255,

a3 = 1240002 = 2.1 + 4371 + 96255 + 1139374,

and so on, where the numbers ai correspond to the q-expansion of the main

modular invariant T2A (also called a Hauptmodul) for Γ+

0 (2) and the numbers

1, 4371, 96255, 1139374, . . . are all dimensions of smallest irreducible representations of

B. One has the property:
∑

24

i=1
a2i mod(70) = 24 as for the q-expansion of j(q) and that

of the modular discriminant ∆(q) [16].

That moonshine for B relates to Bell’s theorem is a remarkable coincidence!

Phys: My approach is the application of a simple axiomatic with only two letters

a and b [17]. Mathematically, my language is also called a free group G = 〈a, b|b2 = e〉.
Elements in the group are words u, any combination uu−1 = e (the neutral element) is

annihilated and I also write that b is an involution that is, b2 = e.

Figure 3. (a) The representatives of cosets for the dessin (b) stabilizing the square

graph (a). For this special case, mutually commuting operators correspond to mutually

commuting cosets.
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The relative size of a subgroup H of G is called the index which means that there

are n inequivalent copies (called cosets) of H that fill up G. The action of generators on

these cosets creates the permutation group P by the Todd-Coxeter algorithm. You can

name the cosets by a word representative, the other elements in the coset are conjugate

to the representative. I did it in Fig. 3 for the case just discussed where the index is 4.

With a little effort, you can check that pairs of cosets on a edge are commuting in

the group sense that is, the commutator (u, v) = u−1v−1uv = e. In this special case,

coset commutation respects quantum commutation.

But I can show that it is not always the case for a geometry stabilized by a higher

index group. Following Gottlob Frege quote: Never ask for the meaning of a word in

isolation, but only in the context of a sentence [18].

Figure 4. A dessin (a) stabilizing Mermin’s pentagram (b) and (c) the fundamental

domain of congruence subgroup ‘5C0’. The pictures have coordinates in the G-set

{1..10} with the corresponding cosets shown on (a) and a set of 3-qubit operators

shown on (b).

Look at Mermin’s pentagram shown on Fig. 4b [19], I labeled the vertices from

1 to 10 and with 3-qubit coordinates. The product of operators on a thin line is III

and −III on a thick line so that, as shown by David Mermin, this pentagram is a

contextuality proof [12].

Remember that I was able to stabilize a square with the permutation group (i.e. the

dessin d’enfant) shown in Fig. 2b. With the same reasoning, I stabilize the pentagram

with a permutation group P generated by the permutations α = (2, 3, 4)(5, 7, 8)(6, 9, 10)

and β = (1, 2)(3, 5)(4, 6)(7, 10) as shown in Fig. 4a. Each point on a selected line

of the pentagram corresponds to the same stabilizer subgroup S of P (all the S are

isomorphic but they act on different sets of points). Then in Fig. 3b, I have put the
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coset representatives for labeling the edges. In this way you can check that on a thick

line of the pentagram not all cosets are commuting [17]. Of course the cosets on a (thin)

line containing the identity element e are commuting.

Math: You didn’t comment on your Fig. 4c but I recognize the tiling of a

fundamental domain in the upper-half plane H. I see that the tiles of H reflect the

edge (coset) structure of your dessin and, of course, the tiles also correspond to your

three-qubit operators.

Figure 5. The fundamental domain for the index 1755 permuta-

tion group stabilizing the Ree-Tits octagon, details can be found at

http://brauer.maths.qmul.ac.uk/Atlas/exc/TF42/mag/TF42G1-p1755B0.M.

Phys: Yes, the ‘modular’ representation of the pentagram is in the spirit of what you

explained yesterday. As the generators α and β have order three and two respectively,

they build a subgroup Γ′ of the modular group Γ that happens to be a congruence

subgroup of level 5. The set of cusps for Γ′ consists of the Γ′-orbits of {Q}∪{∞}, cusps
are at −3 and ∞ and they have width 3. My Γ′ is of type ‘5C0’ in Cummins-Pauli

classification (http://www.uncg.edu/mat/faculty/pauli/congruence/congruence.html).

I used the software Sage to draw the fundamental domain of Γ′ thanks to the Farey

symbol methodology. I am not the first to play with Sage on modular aspects of dessins,

you can read the essay by Lieven le Bruyn [20].

Math: Do you encounter the moonshine group Γ+

0 (5) here?

Phys: Not yet. There are papers about the connection of modular subgroups to

dessins d’enfants, K3 surfaces and supersymmetric gauge theory (this is part of the

so-called ‘umbral moonshine’) [21]. Look at such an elegant formula as G(q) = φ(q)24,

that generates the states of a bosonic string oscillator from the Euler phi function φ(q)

[21] (still the number 24 occurring). Tomorrow, I tell you more about my work inspired

by the moonshine topic.
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3. Dessins d’enfants, hyperbolic polygons, Rademacher sums

Phys: It seems not to have been recognized that many sporadic groups in the ‘Atlas

of finite group representations’ are defined as dessins d’enfants that is, with only two

generators. They may be used to stabilize the corresponding graph/geometry (this is a

different approach of that followed by J. Tits). Lieven le Bruyn writes in [20]: It would

be nice to have (a) other Farey-symbols associated to the second Janko group, hopefully

showing a pattern that one can extend into an infinite family as in the iguanodon series

and (b) to determine Farey-symbols of more sporadic groups.

This is precisely what I did for several ‘sporadic’ iguanodons (dessins d’enfants

[11],[12]). In table 1, I list a few of them (those related to J1, J2, J3, McL, M24, T , Suz,

Fi23 and Co1) and give the main characteristics of their fundamental domain P in the

upper-half plane H. All the groups are represented as non-congruence subgroups of the

modular group Γ. The number n of edges of the dessin D is the index of the (sporadic)

group representation. The genus g of D equals that of the hyperbolic polygon P, a face

of D corresponds to a cusp of P, the number of black points (resp. of white points) of

D is B = f + ν3− 1 (resp. W=n+2-2g-B-c), where f is the number of fractions, c is the

number of cusps, ν2 and ν3 are the number of elliptic points of order two and three of P,

respectively. For instance, the fundamental domain for the index 1755 representation of

the Tits group T [that stabilizes the Ree-Tits octagon GO(2, 4)] is shown in Fig. 5.

Table 1. Characteristics of a few small ’sporadic’ fundamental polygons.

Graph/geometry Group n g ν2 ν3 cusps f

Hall-Janko J2 100 0 0 4 12714 33

Livingstone J1 266 0 10 5 738 88

McLaughin McL : 2 275 10 11 14 1112212 88

T (24) M24 276 10 12 15 2312 12

Ree-Tits GO(2, 4) T 1755 57 91 0 13135 586

Suzuki Suz 1782 70 42 0 113137 595

Janko J3 6156 321 76 36 19324 2041

Fischer Fi23 31671 1876 695 27 2142791445281106 10549

Conway Co1 98280 6922 0 27 101220108402400 32752

Fischer Fi′24 306936 19409 3512 0 2910584 155225

Math: Excellent, the next step would be to compute the modular symbols, the

relative homology of the extended upper half plane and the corresponding modular

forms of weight two and higher. I am curious to see if the noncongruence cusp forms

for these ‘sporadic’ polygons have unbounded denominators, as conjectured [22].

You are close to the ‘philosophy of cusp forms’ of Harish-Chandra. He was studying

under Dirac himself but turned to mathematics when he learned in Princeton that not

every function is analytic [23]. The keyword for the link between moonshine and the
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Langlands program is VOA (for vertex operator algebra). The Monster vertex algebra

is conjectured (by E. Frenkel and collaborators) to be the unique holomorphic VOA

with charge 24 and partition function j − 744 (where j is again the modular invariant).

I quote E. Frenkel [24]: Mathematics is not about studying boring and useless

equations: It is about accessing a new way of thinking and understanding reality at

a deeper level. It endows us with an extra sense and enables humanity to keep pushing

the boundaries of the unknown.

I suggest that we look at a promising line of moonshine research by I. Frenkel (‘not

E. Frenkel’) and J. Dunkan [25] based on the use of a Rademacher sum for the modular

invariant j(τ) = q−1 + 196884q + 21493760q2 + · · ·, with q = e2iπτ as

j(τ) + 12 = e−2iπτ + lim
K→∞

∑

0 < c < K, −K2 < d < K2

(c, d) = 1

e−2iπ aτ+b

cτ+d − e−2iπ a

c ,

with a, b relative integers and ad− bc = 1, τ ∈ H.

The authors show that the McKay-Thomson series Tg(τ) of an element g ∈ M

coincides with a generalized Rademacher sum. They expect to get a version of the

simplest chiral 3d quantum gravity with 24 charges, as the original construction of the

chiral 2d conformal field theory by McKay based on the partition function j(q).

Phys: I am familiar with Rademacher work. Some time ago, I investigated the

thermodynamics of the Euler gas whose partition function is that of the number of

unrestricted partitions p(n). This was useful to model the low frequency fluctuations (of

the 1/f type) occurring in a gaz of bosons, like the phonons in a quartz crystal resonator

[26]. The mathematics involves the Hardy-Ramanujan circle method in analytic number

theory and this was improved by Rademacher.

Math: Do you think that our mathematics is the real world?

Phys: As a provisional response, I offer you a quote of Stephen Hawking from his

lecture “Godel and the end of the universe” [27]: In the standard positivist approach to

the philosophy of science, physical theories live rent free in a Platonic heaven of ideal

mathematical models... But we are not angels, who view the universe from the outside.

Instead, we and our models are both part of the universe we are describing. Thus a

physical theory is self referencing, like in Godels theorem. One might therefore expect it

to be either inconsistent or incomplete. The theories we have so far are both inconsistent

and incomplete.

Math: Yes, self reference, consciousness and contextuality are isomorphic at the

bottom and a quote attributed to Darwin is: A mathematician is a blind man in

a dark room looking for a black cat that isn’t there [28]. But in Dyson’s words in

1981: I have a sneaking hope, a hope unsupported by any facts or any evidence, that

sometime in the twenty-first century physicists will stumble upon the Monster group,

built in some unsuspected way into the structure of the universe. This is of course only

a wild speculation, almost certainly wrong [29].
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