Bernd Amann

Michel Scholl

Gram: A Graph Data Model and Query Language

We present a model for data organized as graphs. Regular expressions over the types of the node and edge labels are used to qualify connected subgraphs. An algebraic language based on these regular expressions and supporting a restricted form of recursion is introduced. A natural application of this model and its query language is hypertext querying.

Introduction

Recent database [START_REF] Gyssens | A graph-oriented object database model[END_REF][START_REF] Biskup | An extension of SQL for querying graph relations[END_REF] research work shows a growing interest in the definition of graph models and languages to allow a natural way of handling data appearing in applications such as hypertext or geographic database systems. Standard data models are often inefficient as they do not capture the inherent structure of data representing hypertext documents [START_REF] Beeri | A logical query language for hypertext systems[END_REF][START_REF] Consens | Expressing structural hypertext queries in GraphLog[END_REF][START_REF] Tompa | A data model for flexible hypertext database systems[END_REF] or networks (highways, rivers, . . .) [START_REF] Güting | Extending a spatial database system by graphs and object class hierarchies[END_REF].

In this paper, we present a graph data model. Its application to hypertext querying is illustrated by an example of a travel agency that organizes journeys. We think of a hypertext as a directed labeled graph where the nodes are typed documents and the edges correspond to typed span-to-span2 links between documents [START_REF] Halasz | The Dexter Hypertext Reference Model[END_REF].

A journey corresponds to a sequence of stops in several cities, where hotels, restaurants and monuments are visited. Figure 1 shows a schema, also structured as a graph. A document can have one of the following types: STOP, JOURNEY, CITY, HOTEL, RESTAURANT and MONUMENT. A sample of the database graph is given in Figure 2. Note that links are typed and may contain information such as a date, an address or a distance in kilometers. Since restaurants like McDonalds can be described independently from the city where they are located, only their common characteristics are described in the RESTAURANT node. The information specific to a hotel or restaurant in a city, e.g. its address, is contained in the link connecting it with the city document. Consider a travel agency customer reading some touristic presentation of Paris:

. . necting this text to some other document describing Eiffel Tower. The customer navigates through the database graph by clicking on the anchors. The corresponding target document, e.g. the description of Eiffel Tower, is displayed on the screen and contains itself anchors that can be selected. Such a navigation might be supported by a graphical browser, showing a map of the hypertext graph and the current position. One drawback of graph maps is that they easily become tangled, when the number of nodes and edges passes some limit (for example more than a few dozen documents [START_REF] Conklin | Hypertext: an introduction and survey[END_REF]). Thus query languages become necessary to restrict the search space in navigational graphs [START_REF] Furuta | Separating hypertext content from structure in trellis[END_REF][START_REF] Halasz | Reflections on NoteCards: Seven issues for the next generation of hypermedia systems[END_REF][START_REF] Delisle | Contexts: A partitioning concept for hypertexts[END_REF].

We present a query algebra where regular expressions over data types are used to select walks in a graph. For example the regular expression JOURNEY first (STOPnext) STOP in CITY describes the walks going from a journey document (a node of type JOURNEY) to one of its stops in a city (node of type CITY). Intuitively, the user wants to navigate, i.e. follow some paths (walks) in the hypertext graph. He will choose walks according to ¡ a given hyperwalk expression.

¡ the values of the nodes and edges traversed.

¡

the types and values of nodes and edges of other walks that are related to the nodes and edges traversed. With the algebra to be defined below, the above query is formulated as follows (a syntax a la SQL is used for clarity):

Graph Database

Munich Vienna

Figure 4: A Travel Agency Database is not necessarily connected (Figure 4) and there may be nodes without edge (Vienna) or more than one incoming or outgoing edge (Paris).

3 Hyperwalks and Hyperwalk Expressions

Walks and Hyperwalks

Walks (paths) are the basic objects of our model. A walk in a graph is an alternating sequence of nodes and edges ¡ A ¡ U U U ¡ "! $# A ! $# %¡ "! beginning and ending with nodes, in which each edge is incident with the two nodes immediately preceding and following it [START_REF] Harary | Graph Theory[END_REF]. For example, to get the cities in a journey, one chooses the walks in the database starting from a node of type JOURNEY 4 and ending with a CITY node. As a matter of fact, a walk the user traverses, might be related to information in other walks. For example, he might choose all pairs of walks, starting in different journey nodes and ending in the same city. In the following,

STOP CITY STOP next STOP in CITY JOURNEY first STOP in CITY Figure 5: 6 ¥ 87 @9 3A CB § 3D FE HG PI W ¢ $ Q9 CR SG ¡ 3T C¦ $ UD WV ¢ $ Q9 CR ¡ A X W ¢ $ Q9 CR G ¡ 3T C¦ $ UD @&
we will combine walks into sets of walks, called hyperwalks. Figure 4 shows a hyperwalk made of two walks connecting Paris with the Pullman and Imperial hotel.

Walk and Hyperwalk Expressions

Let $ y£ y$ 54 6 ¤$ 58

where $ 54 ($ 58

) denotes the sets of node (edge) types in $

. A walk expression (we) is a regular expression (r.e.) over $ without alternation (V

), whose language contains only alternating sequences of node and edge types, starting and ending with a node type. For example (STOP next) STOP in CITY addr HOTEL is a walk expression.

Definition 3.1 A regular expression over $

is a hyperwalk expression (hwe) iff 1) it can be rewritten as a sum of walk expressions, £ `Y ba c! a cd ! such that 2) the fol- lowing undirected labeled graph 6 ¥ & is connected:

¥ & £ ¥ fe hg Hi &

, where with each ! we associate a node ¡ ! in e with label ! (pi ¥ ¡ ! & £ !), and there exists an edge with label W between nodes ¡ q and ¡ r iff W is a node type in)q and sr .

Condition 2) is a necessary condition to enforce that information in walks of a hyperwalk are related to each other. 5).

JOURNEY first STOP + CITY addr HOTEL is not a hwe since the walk expressions JOURNEY first STOP and CITY addr HOTEL do not share any node type.

Hyperwalk satisfying a Hyperwalk Expression:

The label of a walk is obtained by substituting each node and edge in the walk with its label:

¥ ¡ A U U U A r #)¡ r & £ #¥ ¡ & #¥ ¨A & 5U U U ! ¥ BA r # & #¥ ¡ r & U
The label of a hyperwalk ¡ is obtained by replacing each walk in ¡ by its label:

#¥ § £¢ ¤¢ ¦¥ U U U ¤¢ d & £ § C #¥ §¢ & V #¥ §¢ ¦¥ S& U U U #¥ §¢ d & U
We define the following language over $:

'¥ W & £ X `Y Ca ¥ W & © § W ¢ $ U (¥ @U !)& £ (¥ '& 0 "(¥ ! & © § # U $ iU ¤ % & (')! U '¥ V 0! & £ (¥ '& #6 "'¥ ! & © § # U $ iU 1 % & (' ¦! PU '¥ ¡ & £ 6 ! 2 p '¥ 3 ! & 54 ¦6 7$ £ 8$ 9(¥ & £ § ¤ © § @ (# A$ #B @C 7 D E$ #F HG 7 8$ PI 8I 8Q & EI @ @U From now on, (¥ &
will be called the language of . Let be a we and ¢ be a walk whose label is in

'¥ & : ¥ ¢ '& C¢ '¥ &
. With each occurrence of a type W in we can asso- ciate some nodes or edges in

Definition 3.2 A hyperwalk

¡ £ § £¢ 8¢ ¥ U U U 8¢ d H satis- fies a hwe , denoted ¡ £ , iff 1. its label is a subset of (¥ & : #¥ ¡ & SR T'¥ & . 2.
there exists a decomposition Y ba c! a cd ! of , such that each walk

¢ ! in ¡ has a label ¥ ¢ ! & in '¥ ! & .
3. for all node types W shared by s! and q , ¢ ! and ¢ q share at least a node of type W .

Condition 3) enforces that the walks in ¡ form a connected graph: to each edge A in 6 ¥ & , with label W ¢ p$ and between two nodes with label s! and q , correspond two walks

¢ ! and ¢ q in ¡ such that ¡ #¥ §¢ ! & ¢ U'¥ ! & , #¥ §¢ q & ¥¢ V'¥ %q &
and ¡ ¢ ! and ¢ q share a node ¡ whose label is in the do-

main of W : #¥ ¡ & ¢ X iY Ca ¥ W & . Example 3.2 h= q Jour1.3/

Hyperwalk Algebra

The query language defined in this section is based on a hyperwalk algebra. A query is an expression of the form

W ¥ ¢ & or W F ¥ ¢ ¢ F &
where ¢ and ¢ F are sets of hyperwalks and W is an algebraic operation which is closed under the sets of hyperwalks. Unary operations (projection, selection, renaming) take as a source a set ¢ of hyperwalks in the graph database t satisfying a given hwe and return a target set of hyperwalks ¢ F satisfying a hwe F possibly different from . Binary operations (join, concatenation, set operations) take two sets of source hyperwalks and return a target set of hyperwalks.

Renaming

Hyperwalk expressions may have several occurrences of the same type. Renaming allows one to distinguish between the different occurrences of a given type in a given hwe. For example ¡ £ rq as illustrated by Figure 7:

¦ (STOP next STOP + STOP in CITY)= ¦ (STOP next STOP + STOP in CITY) 6 ¦ (STOP next STOP + STOP in CITY)
By renaming the first (second) instance of STOP in , we get the subset of hyperwalks in ¦ ¥ & satisfying the schema in Figure 7-a (7-b).

Selection

Selection allows one to evaluate Boolean functions (selection conditions) on hyperwalk labels. Applied to a set ¢ of hyperwalks it returns the subset of hyperwalks in ¢ whose labels satisfy the given conditions. We may distinguish in a regular expression , "simple" subexpressions (without ¨) from "complex" subex- Salzburg.300s , q Munich.600s s .

Definition 4.2

Selection conditions on regular expressions are defined as follows:

1. Let W be a type in a simple subexpression of . 1. If T is simple, then it is evaluated in the straightfor- ward way on the label of the corresponding component in ¡ (as for tuples in the relational model).

A Boolean function E ¥ W & from X iY Ca ¥ W & into § W A i bE ¦ I A is a
2. If T 43 5 £6 and 6 is a selection condition on I , then T is true for

¡ iff the selection on the ¥ I & ¡ - component of ¡ , denoted ¡ 7 ¥ I & ¡ , is not empty: ¡ £ 86 iff & @9 ¥ ¡ A ¥ I & ¡ & 'I £ CB . 3. If T D3 E6 H GF then ¡ £ T iff ¡ £

Projection

Informally speaking, the projection of a hyperwalk ¡ on a hwe F consists in keeping either a subset of the walks in ¡ or subwalks of walks in ¡ . For example q Stop1.bus-.Stop2s is a projection of h= q Stop1.bus.Stop2, Stop1.3/10/92-.Viennas . So is the set q Viennas , containing only the city of Vienna.

We define a partial order on walk expressions as follows. Now we define a partial order on hyperwalk expressions as follows: Definition 4.5 A hwe F '£ Y ba q a UT F q is a subexpres- sion of a hwe £ Y ba c! a cd ! , denoted F VR , iff all of the following hold:

1. F is a hwe with graph 6 ¥ F & 5 (see Definition 3.1). 2. a R ¡ and for all walk expressions F q , W ¢ YX 1 a a`, there exists a we ! in , such that

F q R ! . ! is a called superexpression of F q .
3. To each edge in 6

¥ F &

with label W connecting ¡ F ! with label F ! to ¡ F q with label F q , corresponds an edge in 6 ¥ & with label W connecting ¡ @! with label ! (superexpression of F !) to ¡ q with label q (superexpression 5 b 2 ©c ed 5 must be connected, otherwise c Cd is not a hwe.

Jour1

Stop1 Stop2 Salzburg Vienna

F q). Then all occurrences of W in s! (q) have been kept in F ! (F q).
In other words, not all projections on walks are legal: (i)

¥ F &

must be connected (Condition 1) and (ii) when a type with multiple occurrences is shared, then all occurrences must be projected (Condition 3). To understand why Condition 3 is necessary, look at Figure 8

¡ in ¢ : g ¢ ¤ ¥ B¢ & £ § ¡ F ¡ ¢ ¢ ¡ F £ ¡ F & g ¢ ¤ ¥ B¢ & is a

Join

The

All journeys stopping in Munich before Paris can be obtained by the following query (we want to keep information not only about the journey itself but also about all stops in the journey):

& I(JOURNEY first (STOP next) STOP in CITY) ¨¤ ¢ ! £! e¦ © & I(STOP in CITY) T ¥¤ sd P! §¦ ¢ ¦ © 6

Concatenation

The concatenation of two hyperwalk sets ¢ and ¢ F

F , is U W U . It is ¤ otherwise. For example (STOP next) STOP STOP in- CITY=(STOP next) STOP in CITY.
For two hyperwalk expressions £ Y %a H! $a Hd ! and F £ Y ba q a UT F q , concatenation, denoted E F , is defined as the sum of the concatenations of the walk expressions in with the walk expressions in F : F £ %a H! $a Hd ba q a UT ! F

¦ ¥ F & . If ! E F I £ ¤ then the concatenation of ¢ and ¢ F , denoted ¢ ¢ F , returns a set of hyperwalks in ¦ ¥ " p F G& each element of which is the concatenation of a hyperwalk in ¢ with a hyperwalk in ¢ F , denoted ¡ © ¡ F
and defined below.

¢ ¢ F £ § ¡ © ¡ F ¡ ¢ w¢ ¡ F ¢ w¢ F ¡ © ¡ F £ F Let ¡ and
¡ F be two hyperwalks satisfying £ Y %a H! $a Hd ! respectively F r£ Y %a q a T F q . The concatenation of ¡ and ¡ F contains for each pair ! , F q where ! F q I £ ¤ the walk Set union (6), intersection (¡) and difference (¢) are defined as usual on two sets of hyperwalks satisfying the same hwe.

¢ ! © (¢ F q , where ¢ ! (¢ F q) in ¡ (¡ F) satisfies (F). Note that if for some !)q I £ ¤ , ¢ ! © ¢ F q £ ¤ , then ¡ © ¡ F does not satisfy F : ¡ © ¡ F £ § P¢ ! © ¢ F q ¢ ! ¢ ¡ ¤¢ F q ¢ ¡ F H "¢ ! £ ! ¢ F q £ F q H ! F q I £ ¤ U

Examples

In the Introduction Section we gave some examples of queries on a graph database with a syntax a la SQL. We assumed in these examples that the type system is a relational one, i.e. any node or edge has a tuple structure where each attribute is of atomic type (string, integer, . . .). For example a CITY node is structured as a tuple: [name: string, country: string, population: integer]. An G ¡ edge might contain the following information: [year: integer, month: integer, day: integer, duration: integer].

We shall now inspect some of the queries given in the Introduction Section and see how each of them can be solved by an expression of the above algebra. For each example, we give the corresponding (hyperwalk) algebraic expression.

1) All restaurants in the third district of Paris are obtained by a selection applied on all hyperwalks satisfying r=CITY addr RESTAURANT. Each target hyperwalk is projected on the RESTAURANT node:

g ¤£ 8 #© g ¦¥ ¨ § £ ¥ 4 g ¥ & ¨¤ ¢ ! ©! e¦ £G © ¢ 9 ! ©! ¡ ¢ ¦ % (% ¥ & %& VU
Observe that this is a regular relational selection/projection.

2) Assume somebody is addicted to McDonalds restaurants and Holiday Inn hotels. Those cities that meet his wishes can be found as follows. Let r=CITY addr -RESTAURANT and r'=CITY addr HOTEL. As a matter of fact, we look for all cities with a McDonalds restaurant and join them with the cities with a Holiday Inn hotel:

g ¥ & T ¦ 9 d ¤ ! e¦ "! $# &% e (' 0) 1! (' 32 6 ¦ ¥ & & ¢ 54 d Pd ¦ "6 17 6 8# @9 " ¦ ¥ F & %& or g U ¥ & T ¦ 9 d ¤ ! e¦ A! $# &% e @' B) B! (' 2 6 C ¥ B V B F & & © ¢ 54 d Pd ¦ "6 17 6 8# @9 "
where, e.g., the application of the Boolean function a ED 6 PY s¡ ¦ X I ¥

RESTAURANT & corresponds to testing whether the attribute value of the restaurant name is "mc-Donalds".

3) The last query could not have been solved with a relational query language. It illustrates the fact that our language supports recursion. We want to get all journeys which traverse Munich. It might be a journey that either starts in, or ends in, or goes through Munich:

g ¦F G7 ¦) B! $2 # ¥ & T ¥¤ d ! ¦ ¢ ¦ © ¦ (JOURNEY first(STOP next) STOP in CITY)).
Cycles in the schema, e.g. the ¡ A X W edge, allow to con- struct hyperwalk expressions with Kleene closure (¨).

Application to Hypertexts

In the following, we sketch several mechanisms for integrating the query language into hypertext applications.

When navigating through the hypertext, a user can be positioned at arbitrarily many nodes at one time (nodes corresponding to documents displayed on the screen), called the current user state A [START_REF] Tompa | A data model for flexible hypertext database systems[END_REF]. A is changing according to the user's actions: clicking on an anchor results in Vienna, Salzburg, Holiday Inns

Multiple Steps Navigation

Map Supported Navigation

Browsers are visual representations of hypertext graphs that allow the user to change the user state interactively by selecting some displayed nodes. A graphical schema browser displays the schema subgraph corresponding to a hwe . By selecting a node ¡ in the schema browser, all nodes whose labels are of type ¡ can be displayed.

Navigation Space Restriction

Several mechanisms for navigation space restriction have been proposed in the literature [START_REF] Furuta | Separating hypertext content from structure in trellis[END_REF][START_REF] Tompa | A data model for flexible hypertext database systems[END_REF]. The idea is to allow the user to select some subgraph for further navigation.

A query ¡ might then define a script or guided tour [START_REF] Afrati | A hypertext model supporting query mechanisms[END_REF][START_REF] Zellweger | Active paths through multimedia documents[END_REF]. The user navigates as usual, but being in a given node ¡ , he may only follow those links which are contained in some hyperwalk in ¡ .

Example 5.3 Assume a customer is reading some description about Paris and wants to get more information about the hotels in the 15¡ £¢ district. The query & ¥¤ §¦ ©¨ ! ©! ¡ ¢ ¦ % (% I(CITY addr HOTEL) changes the dis- played document such that only the anchors connecting the text to a description of a hotel in the 15¡ £¢ district remain active.

. . . A very nice hotel in the 15¡ £¢ district is the Imperial hotel near the metro station Pasteur.

From there you can visit Eiffel Tower, Trocadero, Orsay Museum, . . .

Related Work

GraphLog [START_REF] Consens | Expressing structural hypertext queries in GraphLog[END_REF][START_REF] Consens | GraphLog: a visual fromalism for real life recursion[END_REF] is also a query language based on a graph representation of data and whose expressive power is equivalent to stratified linear Datalog [START_REF] Ullman | Principles of Database and Knowledgebase Systems[END_REF]. We may underline a few significant differences between Gram and GraphLog: 1) the graph representation is not the same; in Gram, we do not make any assumption on the types of edges and nodes. Even if we assume relational types, it is not clear yet, whether the two graph representations are equivalent. 2) GraphLog [START_REF] Consens | Expressing structural hypertext queries in GraphLog[END_REF][START_REF] Consens | GraphLog: a visual fromalism for real life recursion[END_REF] is a query language based on graphs: a query is a graph pattern in which nodes are matched against nodes in the database and edges (specified by regular expressions on the values) are matched against paths in the database. In Gram, queries are not expressed by graphs. Instead, regular expressions on the (node and edge) types specify subgraphs (hyperwalks) in the database. 3) Finally it remains to compare the expressive power of Gram's algebra to that of GraphLog. We in-tend first to compare Gram's expressive power (with types restricted to be relational) to that of Datalog. The graph model GOOD [START_REF] Gyssens | A graph-oriented object database model[END_REF] provides a graphical language that allows to modify graph databases. Nodes and edges can be added and removed in subgraphs satisfying a given graph pattern. Opposed to GraphLog, the underlying data model is object oriented and functional edges are distinguished from non-functional (multivalued) edges.

Among other related approaches, [START_REF] Beeri | A logical query language for hypertext systems[END_REF] describes a query language for hypertexts which is based on modal logics and [START_REF] Biskup | An extension of SQL for querying graph relations[END_REF] is an extension of SQL for querying graph relations.

7 Future Work

Queries and Scripts

Assume an agency employee prepares a new trip using information already existing in the hypertext database. He would like to describe by a text document the overall organization of the journey, linking each stop description to an already existing document in the hypertext database.

He might create a new text document 6 (node of type JOURNEY), describing the beginning of the journey, then link it to the first city (link of type stop), then create a link back to description 6 . This step is repeated for each stop: each time a new anchor and links of type stop and back are added. The resulting journey satisfies hwe (JOURNEYstop CITY back) JOURNEY. The disadvantage of such an approach is that the complexity of the database and the schema might increase unnecessarily: there exists a link back between each city and the description.

An alternate solution is to accept queries as virtual links instead of concrete edges. By activating an anchor, the user enters a guided tour defined by a query: together with anchor "Paris" in journey description 6 , we store the fol- lowing query:

& ¨¤ ¢ ! £! e¦ © ¦ (CITY addr MONUMENT + CITY addr RESTAURANT).

Then by activating anchor "Paris", the user can get information about monuments and restaurants in Paris.

Such a mechanism would allow to implement rather complex scripts, navigation strategies, strategies for returning to previous states etc. Compared to "hardwired" incremental updating of the hypertext, such a "programmable" approach of hypertext provides easy updating and customization, ease of changes in navigation strategies and reuse of existing hypertexts.

As an example, one can construct multiple level hypertexts from (low level) existing hypertext databases, in order to allow hierarchical navigation and zooming [START_REF] Feiner | Seeing the forest for the trees: Hierarchical display of hypertext structure[END_REF][START_REF] Güting | Extending a spatial database system by graphs and object class hierarchies[END_REF].

Prototype

In order to validate the applicability of this model to hypertext querying, we are currently integrating [START_REF] Amann | Providing persistence to the hypermedia system MultiCard by using the OODBMS O ¥[END_REF] the hypermedia system MultiCard [START_REF] Rizk | Multicard: An open hypermedia system[END_REF] with the object oriented database management system O ¥ [START_REF] Bancilhon | The O ¥ Book[END_REF].

Figure 1 :

 1 Figure 1: The Travel Agency Schema

Figure 2 :

 2 Figure 2: A Travel Agency Hypertext Graph

Figure 7 :

 7 Figure 7: Two Hyperwalk Expressions ¡ ¥ £ rq Munich.600.Pariss are two hyperwalks satisfying r=CITY dist CITY. To distinguish between the two occurrences of CITY in , we rename the second occurrence into CITY'. In CITY dist CITY', CITY specifies the first city, which is Vienna for ¡ and Munich for ¡ ¥ and CITY' specifies the second city (Salzburg for ¡ and Paris for ¡ ¥). In relational algebra, renaming of attributes in a relation satisfying a given relational schema keeps the relation unchanged. Here, renaming of an instance ¦ ¥ & in t may

 pressions, i.e. those of the form ¥ I & ¡ . In hwe r=(CITY dist) CITY© addr RESTAURANT, (CITY dist) is a complex subexpression and CITY© addr RESTAURANT is a simple subexpression. If ¡ is a hyperwalk in the instance of then with a simple subexpression in is associated a unique component of ¡ , denoted ¡ , which is not necessarily a hyperwalk. To each complex subexpression ¥ I & ¡ of corresponds a set of components in ¡ , each of them satisfying I . For hy- perwalk h= q Salzburg.300.Munich.600.Pariss in the instance of (CITY dist) CITY© , the component h:CITY© denotes Paris and the component h:(CITY dist) denotes the set q q

,Definition 4 . 3

 43 simple condition on . 2. Let W and W F be two types in a simple subexpression of . Then W £ W F is a simple condition on . 3. If T is a condition on I , and ¥ I & ¡ is a complex subexpression of , then T is a condition on . 4. If T and T F are conditions on , then so are T H T F Let ¢ be a set of hyperwalks satisfying and T be a condition on . The selection on ¢ with condition T , denoted & (' ¥ B¢ & , returns the hyperwalks in ¢ satisfying T : & ' ¥ B¢ & £ § ¡ ¡ ¢ ¢ H ¡ I A 0) AQ I 21 E$ £I T U A hyperwalk ¡ satisfies a selection condition T (T is true for ¡) if one of the following holds:

Definition 4 . 4

 44 Let and F be two walk expressions. Then F is a subexpression of , denoted F SR , if is of the form U F U where and are possibly equal to ¤ . For example STOP in CITY is a subexpression of JOUR-NEY first STOP in CITY. It is not a subexpression of STOP (next STOP) in CITY.

 Figure 8: Hyperwalk Projection of Fq). Then all occurrences of W in s! (q) have been kept in F ! (F

: 4 . 7 4 . 4

 4744 join operation takes pairs of hyperwalks from two different hyperwalk sets ¢ R ¦ ¥ & and ¢ F R ¦ ¥ F & and returns their union that satisfies hwe V F Definition Let ¢ and ¢ F be two subsets of ¦ ¥ & re-spectively ¦ ¥ F & . If V F is a hwe then the join of ¢ and ¢ F , denoted ¢ ¡ ¢ F , returns a subset of ¦ ¥ V F & each hyperwalk of which is the union of a hyperwalk in ¢ and a hyperwalk in ¢ F : ¢ ¢ ¢ F £ § ¡ 6 ¡ F ¡ ¢ ¢ ¡ F ¢ ¢ F ¡ 6 ¡ F £ V F UNote that the union of two hyperwalks ¡ ¢ ¢ and ¡ F ¢ ¢ F is not necessarily a hyperwalk satisfying V F . For example the union of q Paris.Luxembourg.McDonaldss and q Munich.Prinzenallee.HolidayInns is not a hyperwalk. In fact,¡ 6 ¡ F is a hyperwalk in ¢ £ ¢ F if foreach pair of walk expressions ! in and F q in F sharing a node type W , the corresponding walks in ¡ and ¡ F share a node of type W . Example Suppose we have a set of journeys ¢ R I(JOURNEY first(STOP next) .STOP). To keep only those journeys that make a stop in Munich, we join ¢ with & T ¥¤ sd P! §¦ ¢ ¦ © I(STOP in CITY).

Example 4 . 5

 45 Assume that we have two sets of hyperwalks ¢ R I(STOP in CITY) and ¢ F 9R I(CITY addr HOTEL + CITY addr RESTAURANT). ¢ contains stops with their cities and ¢ F represents cities together with their hotels and restaurants. We would like to concatenate these information to obtain the hotels and restaurants which can be visited during a stop. For each pair of hyperwalks ¡ ¢ ¢ and ¡ F ¥¢ ¢ F , we concatenate the walks in ¡ with the walks in ¡ F to get the set of hyperwalks ¢ ¢ F satisfying hwe STOP in CITY addr HOTEL + STOP in CITY addr -RESTAURANT.

Figure 11 :

 11 Figure 10: Query Navigation

Example 5 . 2

 52 By clicking on the node with label RESTAURANT (Figure 11-a), McDonalds is added to the user state A (Figure 11-b): A @F = qMcDonalds, Paris, Munichs (Figure11-c).

 A very nice hotel in the 15¡ £¢ district is the Imperial hotel near the metro station Pasteur. From there you can visit Eiffel Tower, Trocadero, Orsay Museum, . . .

	Eiffeltower								Jour1
	Notre-Dame	Ile de la Cite	8/10/92 Stop4	bus	6/10/92 Stop3	bus	bus 4/10/92 Stop2	3/10/92 Stop1
		Luxembourg	Paris	600	Munich	300	Salzburg	Vienna
							4/9/92		3/9/92
	McDonalds	St. Jacques	Prinzenallee Av. Edison	Stop6	train	Stop5
		Pullman	Imperial		Holiday Inn			Jour2
						The two words Eiffel Tower are an anchor con-

 To illustrate the

			CITY).
	Les Halles	Av. Edison	
	McDonalds	Paris	Holiday Inn
	Figure 3: A Hyperwalk	
	power of this language, we take three examples of queries
	on the travel agency hypertext. Figure 3 contains a sub-
	graph of the database showing that there are a Holiday Inn
	and a McDonalds in Paris. Assume that for representing
	such information we have two relations HOTEL(NAME, -
	ADDRESS, CITY) and RESTAURANT(NAME, ADDRESS,

The following SQL query extracts all cities with a Holiday Inn and a McDonalds restaurant: select HOTEL.CITY from HOTEL, RESTAURANT where HOTEL.NAME='Holiday Inn' and RESTAURANT.NAME='McDonalds' and HOTEL.CITY=RESTAURANT.CITY A set of tuples, an element of which is depicted in Figure 3, is selected and projected on the CITY nodes. In our model, such a tuple is called a hyperwalk. We present an algebra for hyperwalks, which are specified by regular expressions, called hyperwalk expressions. For example the schema of the hyperwalk in Figure 3 can be represented by hyperwalk expression CITY addr RESTAURANT + CITY addr HOTEL.

2 Graph Databases 2.1 Database Schema

	CITY addr HOTEL where RESTAURANT.name="McDonalds" and HOTEL.name="Holiday Inn" The from clause specifies the range of the query: it is a regular expression over types of nodes and edges and specifies the starting set of hyperwalks. The se-	¢ ¤£ ¦¥ ¨ § © © © ! "© # %$ '& 1. § © is a set of nodes and © where is a set of edges. 2. © is an incidence function from (© into §)© 10 1 §)© 3. $ 2£ 3$ 54 76 1$ 58 is a set of labels and 9© is a labeling . function from § © @6 1 © into $. Additionally, ¢ has to satisfy the following restrictions:
	lect and where clauses, as usual, specify the selec-tion criteria, as well as what is to be projected: CITY in the select clause specifies that for each target hy-	¡ Different nodes must have different labels (distinct node label property): ¡ Note that ¢ is a multigraph, i.e. a pair of nodes can
	perwalk we keep only the CITY document. RESTAU-	be connected by more than one edge. If two edges
	RANT.name="McDonalds" in the where clause speci-	connect the same pair of nodes in the same direction
	fies that we select only the hyperwalks whose restaurant document is such that its attribute name value is "McDon-alds". As another example, the following query gives all restaurants in the third district of Paris: select RESTAURANT from CITY addr RESTAURANT where CITY.name="Paris" and addr.district=3	then they must have different labels (distinct edge la-bel property): '¥ BA C& D£ E '¥ BA CF G& 5H 1A PI £ 3A CF "Q R 9© #¥ ¨A S& 'I £ 2 9© T¥ ¨A CF G& VU We assume that each symbol W in $, called a type, is as-sociated with a domain of values, denoted X `Y Ca ¥ W & . A set of values b is defined as the union of the domains of all types in $: b £ dc ¡ fe hg X iY Ca ¥ W & . We do not make any other assumptions on the type system $. Figure 1
	The last query gives all information about journeys in-cluding a visit to the Mont St. Michel monument in	shows a schema with 6 nodes and 6 edges labeled by the types $ p£ rq JOURNEY, STOP, CITY, HOTEL, RESTAU-
	March:	RANT, MONUMENT, addr, in, dist, next, firsts .
	select * from JOURNEY first (STOP next) ¡ STOP	
	in CITY addr MONUMENT	
	where in.month="March" and	
	MONUMENT.name="Mont St. Michel"	
	Section 2 defines graph schemas and databases. Hyper-	
	walk expressions and the notion of satisfaction of a hy-	
	perwalk expression are introduced in Section 3. Section 4	
	presents the algebraic operations on hyperwalks which are	
	selection, projection, renaming, join and concatenation as	
	well as the usual set operations. The hyperwalk algebra is	
	then applied on the examples mentioned before. Finally,	
	in Section 5, the application of this model to hypertext	
	querying is illustrated.	
	Definition 2.1 A (graph database) schema is a directed	select CITY
	weakly connected 3 labeled multigraph	from CITY addr RESTAURANT +

Definition 2.2 A (graph) database with schema ¢

	¡ ¡ Conversely, an instance of a database schema ¢ returns for each node in t a node ¡ in ¢ and the label of is in the domain of the label of ¡ : #¥ & £¢ X `Y Ca ¥ © ¥ ¥ & %& & . returns for each edge ¤ in t , going from node to node F , an edge A in ¢ , which is going from node ¥ & to node ¥ F & and the label of ¤ is in the do-main of the label of A : © ¥ ¥ ¤ & & ¤£ ¥ ¥ & ¥ F B& %& and #¥ ¤ & ¥¢ X iY Ca ¥ B 9© T¥ ¥ ¤ & & & . is a graph database. An instantiation function ¦ associates with each node (edge) a in ¢ a set of nodes (edges) in t as fol-lows: ¦ ¥ a & '£ ¨ § © ¥ © & '£ a . Note that a database t
		Paris	
	Prinzenallee	St.Jacques	Pasteur
	Holiday Inn	Pullman	Imperial
			A (graph) database with schema ¢ is a directed labeled graph with labels in b . A function associates with each
			node and edge in the database a node, respectively an
			edge in the schema and thus allows the specification of
			the databases satisfying a schema:
			is a di-
			rected labeled multigraph t u£ v¥ ¨ § w x ' b & where 1. § is a set of nodes and 2. is an incidence function from is a set of edges. into § y0 1 § 3. b is a set of labels and is a labeling function from . § 6 into b , such that there exists a function from t to ¢ associating with each node (each edge) in t a node (an edge) in ¢
			with:

Example 3.1

 The r.e. JOURNEY first STOP in CITY + STOP next STOP in CITY is a hyperwalk expression. The walk expressions JOURNEY first STOP in CITY and STOP next STOP in CITY share the two node types STOP and CITY (Figure

 For example Vienna is an instance of CITY in the walk Stop1.3/10/92.Vienna whose label is in ¨(STOP in CITY).

¢

, called instances of W in ¢ , i.e. whose labels are in X iY Ca ¥ W & .

Example 4.1 h= q

 After renaming into r'=STOP in CITY + CITY dist CITY,Vienna is an instance of CITY , and Salzburg is an instance of CITY. Hyperwalk

	Definition 4.1 Let and F be two hyperwalk expressions such that F is obtained from by renaming some types in without changing the type definition: if W in has been renamed into W F then X `Y Ca ¥ W & @£ X `Y Ca ¥ W F & . Then and F have the same language: '¥ & £ '¥ F & . Let ¢ be a set of hyperwalks satisfying hwe . Renaming ¡ £¢ ¥¤ ¥ B¢ & keeps those hyperwalks in ¢ that satisfy F (¡ ¦¢ §¤ ¥ B¢ & SR E¢
	Stop1.3/10/92.Vienna,	Vienna.350-
	¡ satisfies F but does not satisfy the
	renaming of into STOP in CITY + CITY dist CITY .

):

¡ ¢ ¤ ¥ B¢ & D£ § ¡ ¡ ¢ w¢ ¡ £ F

.Salzburgs satisfies hwe r=STOP in CITY + CITY dist CITY.

 6 and ¡ £ HF iff ¡ £ 6 or ¡ £ EF . 5. If T 3 ¡ Y CW 6 then ¡ £ T iff ¡ I £ 6 .

	4. If T 3 6 F ¡ £ T Example 4.2 To get all hotels in Vienna, we apply then & ¡ ! £¢ d Pd ¥¤ §¦ © on the hyperwalks satisfying CITY addr -
	HOTEL where vienna(CITY) is true for the CITY node cor-
	responding to the city of Vienna. Let ¢ be a set of hyperwalks satisfying (CITY -
	dist) CITY. To get all hyperwalks where at least two
	neighbor cities are closer than 100 kilometers from each other, we apply & ¢ "! #! 8 h $¦ &% (') ©0 © on ¢ , where ¨A I sI ¥1 $2 ¥2 X iY Ca ¥ 43 65 7 #8 %& @9 § A8 CB ED GF h #H 4I QP 7 (F is true for all
	dist-edges with a value less than 100 km.
	.

 . It shows one hyperwalk satisfying r=JOURNEY first STOP in CITY + STOP next STOP in CITY© . r'=JOURNEY first STOP + STOP next STOP in CITY© (grey) is a subexpression of : F fR . But this is not true any more for the white part satisfying r"=STOP in CITY + STOP in CITY© . F F violates Condition 3 since its second component STOP in -CITY© is a subexpression of STOP next STOP in CITY© , in which we have not kept all occurrences of STOP. We should keep all occurrences of STOP in , since we do not know for each hyperwalk

	¡ satisfying , whether the
	stops shared by its walks is an instance of the first or the
	second occurrence of STOP. By removing one occurrence in the subexpression, the corresponding component of ¡
	(Figure 8) satisfying the subexpression is not anymore a hyperwalk (it is not connected): q Stop1.3/10/92.Vienna,
	Stop1.bus.Stop2.4/10/92.Salzburgs satisfies , but the projec-tion on F F , q Stop1.3/10/92.Vienna, Stop2.4/10/92.Salzburgs
	is not a hyperwalk. Definition 4.6 Let hwe F be a subexpression of hwe . Then the projection of a set of hyperwalks ¢ R ¦ ¥ & on F , denoted g (¢ §¤ ¥ B¢ & , is the set of the F -components, denoted ¡ F , of the hyperwalks

 subset of the instance of F

							Jour1
						3/10/92
	Stop4	bus	Stop3	bus	Stop2	bus	Stop1
	8/10/92						
	Paris		Munich				
				4/9/92		
	Pasteur		Prinzenallee	Stop6	train	Stop5
							3/9/92
	Imperial		Holiday Inn			Jour2
		Figure 9: Two Hyperwalks	
	q Paris.Pasteur.Imperials and q Munich.Prinzenallee.Holiday-
	Inns . Note that projecting on (STOP next) STOP returns q Stop1.bus.Stop2.bus.Stop3.bus.Stop4s and q Stop5-
	.train.Stop6s .						
							.
							Example 4.3 Figure 9 shows two hyperwalks satisfy-
							ing hwe JOURNEY first (STOP next) STOP in CITY addr -
							HOTEL. The projection on CITY addr HOTEL returns

, ¦ ¥ F &

 be two walk expressions. If is of the form U W and F is of the form W U , where W ¢ $ 4 and , are regular expressions over $

	catenates each hyperwalk	¡ in ¢ with a hyperwalk	con-¡ F in ¢ F
	whenever it is possible. The idea is to concatenate walks in ¡ with walks in ¡ F . If the ending node of a walk ¢ ¢ ¡ is equal to the starting node of a walk ¢ (F ¢ ¡ F , then the concatenation of ¢ and ¢ F , denoted ¢ © ¢ F , is obtained by replacing the ending node in ¢ by ¢ (F . For example the
	concatenation of Jour1.3/10/92.Stop1 and Stop1.bus.Stop2 is Jour1.3/10/92.Stop1.bus.Stop2. If the ending node of ¢ is not equal to the starting node of ¢ (F , then ¢ © ¢ F £ ¤ . Concatenation of walk expressions is defined as fol-lows. Let and F
	catenation of and F	, then the con-

, denoted

 For example STOP in CITY (CITY addr HOTEL + CITY addr RESTAURANT) is STOP in CITY addr HOTEL + STOP in CITY addr RESTAURANT. The concatenation of STOP next STOP with CITY addr HOTEL is empty: STOPnext STOP CITY addr HOTEL=¤ .

	Definition 4.8 Let ¢ and ¢ F be two subsets of ¦ ¥ & re-
	spectively

q U

Work partially supported by the French Programme de Recherche Coordonnée BD3 and the BRA Esprit Project Amusing. The second author is also affiliated to INRIA, France.

Links connect not only documents but more precisely spans of characters called anchors, each anchor being located in a given document.

A directed graph is weakly connected if the corresponding undirected graph is connected[START_REF] Harary | Graph Theory[END_REF]. From now on, connected will mean weakly connected.

We say that a node is of type & , if its label is in ')(10 32 4& $5 .

Acknowledgments

We are grateful to Ralf Güting. Deep exchanges with him on his graph data model [12] gave birth to this simpler, although less powerful, model. We would also like to thank Serge Abiteboul and Claude Delobel for helpful comments.