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I. INTRODUCTION

Aerial robotics is nowadays the focus of many researches in the robotics field, with an enormous increasing interest over the last decade. The recently technological advances, made aerial robots (also referred to as aerial vehicles, UAVs, or UASs in the literature) extremely versatile and usable in many applications, ranging, e.g., from aerial monitoring to search and rescue. Although they were mainly used as remote and moving sensors, nowadays, their use for physically interactive tasks has become a very popular topic.

In addition to the cooperative transportation case [START_REF] Maza | Multi-UAV cooperation and control for load transportation and deployment[END_REF], cables are exploited also in systems where one vehicle is tethered to a ground station. In this case the cable can be used to provide energy and a high-bandwidth communication channel. These systems could find direct application for tasks such as surveillance, border protection, temporary communication relay and so on [START_REF] Pinkney | Unmanned aerial vehicle (UAV) communications relay[END_REF], [START_REF] Muttin | Umbilical deployment modeling for tethered UAV detecting oil pollution from ship[END_REF]. The tethered flight solution could be exploited also to improve the hover stability in the presence of wind or during dangerous maneuvers, e.g., landing and take off from a moving platform as a ship in the presence of rough sea (see [START_REF] Sandino | Advances in modeling and control of tethered unmanned helicopters to enhance hovering performance[END_REF] and references therein).

A controller is presented in [START_REF] Lupashin | Stabilization of a flying vehicle on a taut tether using inertial sensing[END_REF] to stabilize the elevation of a cable-tethered aerial vehicle to a constant value using only inertial onboard sensors. The proposed method is tested on a real quadrotor and relies on a quasi-static assumption. A different controller is presented in [START_REF] Nicotra | Taut cable control of a tethered UAV[END_REF] which is also able to ensure the positivity of the cable tension.

In this work we solve a generalization of the problems considered in [START_REF] Lupashin | Stabilization of a flying vehicle on a taut tether using inertial sensing[END_REF], [START_REF] Nicotra | Taut cable control of a tethered UAV[END_REF]. First of all, we consider the possibility of having a more generic link, either a cable, a strut, or a bar. Second of all we consider a tracking problem for time-varying desired elevation trajectories, instead of just a regulation to a constant desired elevation. Finally, we also consider the problem of simultaneously letting the link stress track any time-varying force trajectory that can assume values both in the positive (tensions) and negative (compressions) domains, instead of only ensuring the positivity of the stress [START_REF] Nicotra | Taut cable control of a tethered UAV[END_REF]. In this way, for example, our control method can be used to follow a certain elevation trajectory while precisely regulating the stress of the link on the basis of its mechanical strength thus avoiding breakages due to excessive tensions or compressions.

The first main contribution of the paper is the design of a nonlinear controller based on dynamic feedback linearization. The second one is the design of a nonlinear observer which uses inertial sensors only. Observation works in dynamics conditions, not only in the quasi-static case [START_REF] Lupashin | Stabilization of a flying vehicle on a taut tether using inertial sensing[END_REF]. The stability of the controlled/observed system is both theoretically proven and validated through extensive simulations.

Finally, another important contribution of this paper is the thorough investigation of the intrinsic properties of the system, such as exact linearizability with dynamic feedback, flatness, state observability, and trajectory feasibility.

The paper is organized as follows. In Sec. II we derive the dynamic model of the system and the explicit characterization of the internal stress of the link. Then, in Sec. III we show dynamic feedback linearizability of the system with respect to elevation and stress of the link and the related nonlinear controller, moreover we ascertain the flatness property of the system. In Sec. IV we develop a nonlinear observer of the state based on onboard inertial-only measurements. Simulation results are presented in Sec. V. Conclusions and future developments are shown in Sec. VI.

II. DYNAMIC MODEL

Similarly to the original problem defined in [START_REF] Lupashin | Stabilization of a flying vehicle on a taut tether using inertial sensing[END_REF], [START_REF] Nicotra | Taut cable control of a tethered UAV[END_REF] we consider a system composed by an underactuated flying vehicle lying on a vertical plane that is connected to the ground through a link, as depicted in Fig. 1 1 . Like [START_REF] Lupashin | Stabilization of a flying vehicle on a taut tether using inertial sensing[END_REF], [START_REF] Nicotra | Taut cable control of a tethered UAV[END_REF] we assume that the link has a negligible mass and inertia, it is not deformable, and its elasticity is minor in the operative conditions. Therefore, the link has a fixed length l ∈ R >0 .

We denote with ϕ ∈ R the elevation of the link, i.e., the angle that it forms with the horizon. With

f L ∈ R we denote f R z W x W x B z B ϑ -m Q gz W -f L d ϕ l O W O B τ R
Fig. 1: Representation of the system and its mainly variables. the link stress, i.e., the internal force that is exerted on the link along its longitudinal line. If f L > 0 then the link is pulled and the stress is a tension, viceversa, if f L < 0 then the link is compressed and the stress is called a compression.

We depart from [START_REF] Lupashin | Stabilization of a flying vehicle on a taut tether using inertial sensing[END_REF], [START_REF] Nicotra | Taut cable control of a tethered UAV[END_REF] by adding three more 'challenges' to the original problem. First of all, we consider the simultaneous control of f L and ϕ instead of only controlling ϕ. Second of all, we consider here a tracking problem for the controlled quantities, i.e., their servoing to a time-varying trajectory, instead of regulation to a constant value. 2 Finally, we consider the more general case of a link that can be either a cable, a strut, or a bar (instead of the cable-only case considered in the original problem). We recall that cables, struts, and bars are structural element designed to resist only to tension, compression, and generic stress, respectively.

The two ends of the link attached to the vehicle center of mass (CoM) and to a fixed point, respectively. Connection is made in such a way that no rotational constraint holds on the two ends. Finally, the aerial vehicle is modeled as a rigid body, and we denote with m R ∈ R >0 and J R ∈ R >0 the mass and the rotational inertia of the vehicle, respectively.

Although we consider here a 2D problem it is still convenient to define our frames in 3D, in order, e.g., to have a properly defined angular velocity vector for the aerial vehicle. Consider in particular two frames: a world frame, F W , with unit vectors along the axes denoted by {x W , y W , z W } and origin O W set on the fixed point, and a body frame, F B , which is rigidly attached to the vehicle, with unit vectors denoted by {x B , y B , z B } and origin O B set on the vehicle CoM, described on F W by p B = [x B y B z B ] T , where y B = 0. The axes y W and y B are parallel to each other and both perpendicular to the vertical plane where the system evolves, see Fig. 1. The vehicle motion on the {x W , z W } plane can be controlled acting on two inputs: the intensity f R ∈ R of the thrust force f R = -f R z B ∈ R 3 ; and the torque τ R ∈ R acting about the y B axis.

Since the motion of the vehicle CoM is constrained on a circle of radius l, the system is completely described by the generalized coordinates q = (ϕ, ϑ ), where ϕ and ϑ are the elevation of the link (defined before) and the attitude of the vehicle, respectively. Deriving kinematic and potential energy, omitted for the limited space, and applying the Euler-Lagrange equation we obtain the system model:

m R l φ = -m R g cos ϕ + f R cos(ϕ + ϑ ) (1) 
J R θ = τ R . (2) 
Considering the motion system constraint, the acceleration of the CoM of the vehicle, with respect

F W , is pB = -ld φ2 + ld ⊥ φ, (3) 
where d = [cos ϕ 0 sin ϕ] T and d ⊥ = [-sin ϕ 0 cos ϕ] T are unit vectors, in R 3 , parallel and perpendicular to the link, respectively. The balance equation of all the forces is

m R pB = -f L d -f R z B -m R gz W . (4) 
The stress f L can be retrieved by projecting the equation ( 4) along the link axis

f L = -m R g sin ϕ + f R sin (ϕ + ϑ ) + m R l φ2 . (5) 
The problem that we are facing in this paper is that of designing a control law for the inputs ( f R , τ R ) that is able to asymptotically steer (ϕ, f L ) along any smooth desired trajectory (ϕ d , f d L ) making use only of an accelerometer and a gyroscope mounted on-board. Moreover, regardless the proposed solution, we aim at investigating the intrinsic characteristics of the system, as dynamic feedback linearizability, flatness and its observability.

III. DYNAMIC DECOUPLING CONTROL

In order to study the system and design the controller, we define

x = ϕ φ ϑ θ T = [x 1 x 2 x 3 x 4 ] T and u = [ f R τ R ] T = [u 1 u 2 ]
T as the state and input vectors of the system, respectively. Rewriting ( 1) and ( 2) in the state-space form we have

ẋ1 = x 2 (6a) ẋ2 = a 1 cos x 1 + a 2 cos (x 1 + x 3 ) u 1 (6b) ẋ3 = x 4 (6c) ẋ4 = a 3 u 2 , (6d) 
where the constant model parameters are

a 1 = -g/l, a 2 = 1/(m R l), a 3 = 1/J R .
To control the elevation and the stress of the link, we consider as outputs of the system the variables y

= [ϕ f L ] T = [y 1 y 2 ] T .
Using a feedback linearization approach, we show now how the nonlinear system can be completely transformed in an equivalent controllable and decoupled linear system. First of all, we differentiate the outputs until the inputs appear. From ( 5) and ( 6), the outputs can be written as

y 1 = x 1 (7a) y 2 = -m R g sin x 1 + m R lx 2 2 + sin (x 1 + x 3 ) u 1 . (7b) 
We can see that y 2 already contains the input u 1 , while y 1 has to be differentiated twice, obtaining

y (2) 1 y 2 = a 1 cos x 1 m R lx 2 2 -m R g sin x 1 + a 2 cos (x 1 + x 3 ) 0 sin (x 1 + x 3 ) 0 E(x) u, (8) 
where

• (n) = d n •
dt n indicates the n-th time-derivative, for n ≥ 1. We can observe that the decoupling matrix E(x) is always singular which means that the system is not linearizable with a static feedback. In these cases one can delay the appearance of the input u 1 in y 2 (i.e., increasing the relative degree of y 2 ) by adding one or more integrators in the input channel u 1 thus resulting in a dynamic compensator. To this aim, we redefine the input as ū = [ ü1 u 2 ] T = [ ū1 ū2 ] T , considering the acceleration of the thrust intensity as new controllable input, ü1 = fR . The system is now described by the extended state x = ϕ φ ϑ θ u 1 u1

T , that contains also the thrust intensity and its derivative. Considering the extended system and the new input, y 1 and y 2 have to be differentiated four and two times, respectively, in order to see the new input ū appear:

y (4) 1 y (2) 2 = b(x) + a 2 cos (x 1 + x 3 ) -a 2 a 3 sin (x 1 + x 3 ) u 1 sin (x 1 + x 3 ) a 3 cos (x 1 + x 3 ) u 1 Ē(x)
ū, [START_REF] De Luca | Trajectory planning and control for planar robots with passive last joint[END_REF] where b(x) is simply derived differentiating equations [START_REF] Khalil | Nonlinear Systems[END_REF].

The new decoupling matrix Ē(x) is now always invertible except for the zero measure case u 1 = 0,3 indeed det Ē(x) = a 2 a 3 u 1 . Furthermore the total relative degree4 r = r 1 + r 2 = 4 + 2 = 6 is equal to the dimension of the extended state. Therefore the system does not have an internal dynamics [START_REF] Khalil | Nonlinear Systems[END_REF]. Thus designing the control input as

ū = E -1 (x) [-b(x) + v] , (10) 
where

v = [v 1 v 2 ]
T are virtual inputs, we obtain y (4)

1 = v 1 and y (2) 2 = v 2 i.e.
, a linear decoupled model equivalent to the original nonlinear system through the state feedback transformation [START_REF] Marino | Nonlinear Control Design: Geometric, Adaptive and Robust[END_REF].

Given any desired trajectory y d 1 (t) of class C 3 for the link elevation y 1 and any desired trajectory y d 2 (t) of class C 1 for the link stress y 2 , one can set the virtual inputs as

v 1 = y d 1 (4) + k 11 e 1 + k 12 e (1)
1 + k 13 e (2)
1 + k 14 e (3) 1 (11a) v 2 = y d 2 (2) + k 21 e 2 + k 22 e (1) 2 , (11b) 
where e 1 = y d 1 -y 1 and e 2 = y d 2 -y 2 . Choosing the gains

k 1 = [k 11 k 12 k 13 k 14 ] ∈ R 4 >0 and k 2 = [k 21 k 22 ] ∈ R 2 >0
, one can arbitrarily assign the poles of the error dynamics in order to guaranties an arbitrarily fast exponential tracking of (y d 1 (t), y d 2 (t)) for (y 1 (t), y 2 (t)). The block diagram of the controller is depicted in Fig. 2. We summarize the obtained results in the following: Proposition 1. Consider the system composed by a link connected to the ground and an aerial vehicle with passive joints, whose dynamic model is described by [START_REF] Nicotra | Taut cable control of a tethered UAV[END_REF]. Consider as outputs the elevation and the stress of the link, y = [ϕ f L ] T . Then the system is fully linearizable via dynamic feedback for every state configuration, iff the thrust intensity f R = 0.

Furthermore, considering as input the second derivative of the thrust and the torque provided by the aerial vehicle, ū = [ fR τ R ] T , the control law described by [START_REF] Marino | Nonlinear Control Design: Geometric, Adaptive and Robust[END_REF] and [START_REF] Tognon | Extended simulations for the link stress and elevation control of a tethered aerial robot[END_REF] globally exponentially steers y along any desired trajectory Remark III.1. Thanks to the exactness of the feedback linearization (i.e., the absence of the internal dynamics) the dynamics of the pitch of the aerial vehicle is automatically stabilized while tracking the desired output.

y d = [ϕ d f d L ] T with
f R τ R + + - - x f R ḟR ḟ d L .... ϕ d
Remark III.2. If the link is a bar it is completely feasible to pass from compression to tension, and viceversa.

Remark III.3. In the case that the link is a tie (like, e.g., a cable) a preliminary phase has to bring the link in a taut condition. As shown in [START_REF] Gioioso | Turning a near-hovering controlled quadrotor into a 3D force effector[END_REF], using a near hovering controller, is possible to reach the initial position and to provide a sufficient force to make the tie taut. Then the control action [START_REF] Marino | Nonlinear Control Design: Geometric, Adaptive and Robust[END_REF], [START_REF] Tognon | Extended simulations for the link stress and elevation control of a tethered aerial robot[END_REF] can be switched on and used to control the stress in the positive domain.

For the equivalence between dynamic feedback linearizability and differential flatness on an open and dense set of the state space [START_REF] De Luca | Trajectory planning and control for planar robots with passive last joint[END_REF], the following proposition is valid, whose detailed proof is omitted for space limitation.

Proposition 2. Consider the model (1) (2), then, the system is flat with respect the flat outputs: elevation and stress of the link, y = (ϕ, f L ). In other words the state (ϕ, φ, ϑ , θ ) and the inputs ( f R , τ R ) can be written as algebraic function of (ϕ, f L ) and their time derivatives (up to ϕ (4) and f

(2) L ).

IV. STATE OBSERVER

Implementation of the control laws [START_REF] Marino | Nonlinear Control Design: Geometric, Adaptive and Robust[END_REF], [START_REF] Tognon | Extended simulations for the link stress and elevation control of a tethered aerial robot[END_REF] requires the knowledge (measurement) of the state x, the output y and its derivatives (up to the third-order for y 1 and firstorder for y 2 ). Nevertheless, y and all its needed derivatives can be computed from x and ū as done, e.g., in [START_REF] Khalil | Nonlinear Systems[END_REF], ( 8) and ( 9) for some of the derivatives. Furthermore, u 1 and u1 are internal states of the controller and therefore they are known. Ultimately the knowledge of x is sufficient in order to implement the presented controller. In this section we demonstrate how the needed x can be observed based only on the measurements from the onboard IMU (accelerometer plus gyroscope). Then we prove that the observed state can be used in the controller in place of the real state while preserving the closed-loop system stability.

Assume to have an IMU mounted at O B and oriented according to F B . The gyroscope provides the angular velocity along y B , representable in 2D by the scalar ω = θ . The accelerometer gives the specific acceleration in F B , i.e.,

a = R B W ( pB -gz W ) = [a x , 0, a z ] T , (12) 
where R B W ∈ R 3 is the rotation matrix from F W to F B . Putting (1) and ( 3) in (12), we obtain:

a x = cos (ϕ + ϑ ) l φ2 -g sin ϕ + f R m sin (ϕ + ϑ ) (13a) a z = sin (ϕ + ϑ ) l φ2 -g sin ϕ + f R m sin (ϕ + ϑ ) - f R m . (13b) 

A. State/Output Transformations and Observability

First of all, since x 4 = ω is directly measured, we can restrict the observability study and the observer design to the reduced system (6a)-(6c). Then, applying the state transformation z = T (x) : R 3 → R 3 defined by

z 1 = x 1 , z 2 = x 2 , z 3 = x 1 + x 3 , (14) 
and defining the new input u 3 = x 4 = ω, and the new measurements w 1 = a x /l and w 1 = a z /l + f R /(ml), the system (6a)-( 6c) is transformed into

     ż1 = z 2 ż2 = a 1 cos z 1 + a 2 cos z 3 u 1 ż3 = z 2 + u 3 ( 15 
)
w 1 = cos z 3 [z 2 2 + a 1 sin z 1 + a 2 sin z 3 u 1 ] w 2 = sin z 3 [z 2 2 + a 1 sin z 1 + a 2 sin z 3 u 1 ].
Clearly, if we are able to estimate z 1 , z 2 , z 3 then we can easily recover the original state using

x 1 = z 1 , x 2 = z 2 , x 3 = z 3 -z 1 .
We then apply another output transformation

w 1 = w 2 w 1 = tan z 3 if | w 2 w 1 | ≤ 1 w 1 w 2 = cot z 3 if | w 1 w 2 | < 1 w 2 = w 2 1 + w 2 2 = |z 2 2 + a 1 sin z 1 + a 2 sin z 3 u 1 |. (16) 
Note that this transformation is not allowed when w 2 = 0. Indeed in this case, both w 1 and w 2 are zero and w 1 cannot be evaluated. From [START_REF] Lupashin | Stabilization of a flying vehicle on a taut tether using inertial sensing[END_REF], one can notice that w 2 = | f L /(ml)|. Therefore, w 2 is zero when the stress on the link is equal to zero. In the observer design, we shall take into account this singularity, particularly important in the case that the desired stress trajectory passes through zero.

We can now invert the measurement map (16) in order to obtain a direct measure of z 3 . However, since the sign of z 2 2 + a 1 sin z 1 + a 2 sin z 3 u 1 is unknown, one obtains two solutions

w1 (k) =    tan -1 ( w 2 w 1 ) [-π 2 , π 2 ] + kπ if | w 2 w 1 | ≤ 1 cot -1 ( w 1 w 2 ) [0,π] + kπ if | w 1 w 2 | < 1 w2 (k) = cos( w1 (k))w 1 + sin( w1 (k))w 2 ,
where k ∈ {0, 1}. Depending on k we have then two distinct pairs of measures: ( w1 (0), w2 (0)) and ( w1 (1), w2 (1)). We know that, at each time t one of the two pairs of measurements is correct, i.e., it is equal to (z 3 , f L ml ), while the second one is wrong, i.e., it is equal to (z 3 + π, -f L ml ). As a matter of fact, it is not possible to discriminate whether the correct one corresponds to k = 0 or to k = 1 by only considering a single measurement. For the analysis of the observability and design of the observer, we consider from now on the correct measurement case. We shall show in Sec. IV-E a discrimination method that exploits the filtering error dynamics. We can then write

w1 = z 3 , w2 = z 2 2 + a 1 sin z 1 + a 2 sin z 3 u 1 = f L ml . ( 17 
)
In a compact form we can write ( 15), ( 17) as

ż = f(z, u), w = h(z, u), where z = [z 1 z 2 z 3 ] T , u = [u 1 u 3 ]
T and w = [ w1 w2 ] T . The system is observable if the nonlinear observability matrix O(z, u) has full rank [START_REF] Marino | Nonlinear Control Design: Geometric, Adaptive and Robust[END_REF]. After some algebra (not reported for reason of space) it is possible to see that two minors of O(z, u) are equal to a 1 cos z 1 and a 1 sin z 1 , respectively, which are never contemporarily zero. Therefore we can conclude that O(z, u) is full rank for every z ∈ R 3 and u ∈ R 3 , i.e.:

Proposition 3. The full state of the system (6) is observable with accelerometer and gyroscope measurements only, except along the trajectories that keep the link stress constantly zero.

We divide the observer in two parts, as depicted in the block diagram of Fig. 3. The first part makes use of a High Gain Observer (HGO) approach [START_REF] Khalil | Nonlinear Systems[END_REF], in order to estimate the quantities z 3 , z 2 , ż2 . The second part applies a nonlinear transformation in order to retrieve z 1 . We describe these two parts separately in the next sections.

B. High Gain Observer for z 2 and z

3 Let us define ζ 1 = z 3 , ζ 2 = z 2 , ζ 3 = ż2 and ζ ζ ζ = [ζ 1 ζ 2 ζ 3 ] T and µ µ µ = (u 1 , u1 , u 3 ).
Taking the derivative of ż2 in (15) we can hide the dependency on z 1 , in fact:

z2 = -[a 1 sin z 1 + a 2 sin z 3 u 1 ]z 2 -a 2 sin z 3 u 3 u 1 + a 2 cos z 3 u1 = [z 2 2 -w2 ]z 2 -a 2 sin z 3 u 3 u 1 + a 2 cos z 3 u1 σ (ζ ζ ζ , w2 ,µ µ µ)
.

Therefore, we, can write the dynamics of

ζ ζ ζ as ζ ζ ζ = 0 1 0 0 0 1 0 0 0 A ζ ζ ζ + u 3 0 σ (ζ ζ ζ , w2 ,µ µ µ) σ σ σ (ζ ζ ζ , w2 ,µ µ µ) , w1 = [ 1 0 0 ] C ζ ζ ζ . (18) 
Thanks to the previous transformations we have been able to put the system in the triangular form (18) for which is possible to use the following high gain observer

ζ ζ ζ = A ζ ζ ζ + σ σ σ ( ζ ζ ζ , w2 , µ µ µ) + H( w1 -C ζ ζ ζ ), (19) 
where

H = α 1 ε α 2 ε 2 α 3 ε 3
T , ε ∈ R >0 , and α i ∈ R >0 are set such that the roots of s 3 +α 1 s 2 +α 2 s+α 3 have negative real part. 5C. Observation of z 1 and Final x

From the expressions of ż2 in (15) and w2 in (17) we have:

cos z 1 sin z 1 = 1 a 1 ż2 -a 2 cos z 3 u 1 w2 -z 2 2 -a 2 sin z 3 u 1 = h(ζ ζ ζ , u 1 , w2 ).
The state z 1 can then be interpreted as the phase of the unit-

vector h(ζ ζ ζ , u 1 , w2 ), which we denote with ∠ h(ζ ζ ζ , u 1 , w2 ).
We can then obtain a direct estimate of z 1 as Finally, using the first state transformation (14), we get the estimation of the original state x = ( x1 , x2 , x3 , x4 ) needed by the controller shown in Sec. III, i.e,:

ẑ1 = ∠ h( ζ ζ ζ , u 1 , w2 ). (20) 
x1 = ẑ1 , x2 = ẑ2 , x3 = ẑ3 -ẑ1 , x4 = u 3 . (21) 

D. Closed-loop System Stability with State Observation

Due to space limitations we provide here only the main steps of the convergence proof for the controlled closed loop system with observer. From (20) and (21) we can notice that the estimated state, x, is a function of ζ ζ ζ , w2 and

u 3 x = T ( ζ ζ ζ , w2 , u 3 ). (22) 
Therefore, writing the output controller [START_REF] Marino | Nonlinear Control Design: Geometric, Adaptive and Robust[END_REF] as function of the estimated state, and replacing (22) we obtain

ū = Γ(x, u 1 , u1 ) = Γ( ζ ζ ζ , w2 , u 3 , u 1 , u1 ).
The controller depends only on the estimation of the HGO, the measures, and the states of the dynamic compensator. Then, since the system is observable, it can be transformed in triangular form, and the controller stabilizes the nominal system, there exists ε * > 0 such that, for every 0 < ε < ε * , the error dynamic of the observer and the closed-loop system are asymptotically stable [START_REF] Khalil | Nonlinear Systems[END_REF].

The observer presented here is globally convergent. However, to minimize the transient phase it is wise to use some method to initialize the estimate as close as possible to the actual state. For example one can use for this purpose the method proposed in [START_REF] Lupashin | Stabilization of a flying vehicle on a taut tether using inertial sensing[END_REF], which produces an acceptable estimate for quasi-static motions and a distorted estimate for more general motions.

E. Disambiguation of w Using the gyroscope measure, u 3 = ω, and the knowledge of the control inputs, the observer Σ k , described by (19) (20) (21), based on the measures w(k), provides an estimation of the state xk = ( x1k , x2k , x3k , x4k ), depending on k = {0, 1}. Implementing this observer for both the k values, we get two estimations of the same state, x0 and x1 . Thus the problem arises of which observer should be considered as the correct one. We propose here a selection method based on the prediction error. We assign to each observer a prediction error ẽk , smoothed with an exponential discount factor:

ėk = λ ( w -ŵk -ẽk ) , (23) 
where λ ∈ R >0 sets the discount rate, w = [w 1 w 2 ] T = a x l a x l + f R ml T , and ŵk = [ ŵ1k ŵ2k ] T is defined as

ŵ1k = cos ( x1k + x3k ) [ x2 2k + a 1 sin x1k + a 2 sin ( x1k + x3k ) u 1 ] ŵ2k = sin ( x1k + x3k ) [ x2 2k + a 1 sin x1k + a 2 sin ( x1k + x3k ) u 1 ]. (24) 
Then we select the estimation provided by the observer with the minimum prediction error

x = x0 if ẽ0 ≤ ẽ1 x1 if ẽ1 < ẽ0 .
If the system starts with zero elevation rate (i.e., x 2 = 0), after a transient the two estimations will converge to

x1k = x 1 + kπ x2k = 0 x3k = x 3 x4 = x 4 ,
where (x 1 , x 2 , x 3 , x 4 ) are the real state. In this condition, from equation (24) it is easy to verify that the prediction errors of the two observers converge both to zero. Thus the proposed method could select the incorrect observer. Nevertheless, this is not a problem in practice. Because, by computing the control action based on the wrong estimation, the controller will react forcing x 2 = 0 and, in turn, the predictions errors to be different from each other.

V. SIMULATIONS We conducted several simulations using Simulink and modeling the system with the toolbox SimMechanics, thus obtaining a more realistic validation independently from the model used for the control and observer design. In all the simulations we consider an aerial robot of mass m R = 1 [Kg] and moment of inertia J R = 0.15 [Kg m 2 ], connected to the ground with a generic link of length l = 2 [m]. We assume the vehicle is able to provide both positive and negative thrust. The gains k 1 and k 2 in [START_REF] Tognon | Extended simulations for the link stress and elevation control of a tethered aerial robot[END_REF] are chosen such that the poles of the error dynamics e 1 and e 2 are placed in (-3, -6, -12, -24) and in (-6, -12) respectively. We set ε = 0.1 and (α 1 , α 2 , α 3 ) in (19) in order to obtain an error dynamics with negative real poles. The discount rate in (23) is set to λ = 20.

Each simulation considers different initial state and pair of desired trajectories for the stress and elevation. The complete set of simulation results is provided in [START_REF] Tognon | Extended simulations for the link stress and elevation control of a tethered aerial robot[END_REF]. We show in Fig. 4 a representative simulation chosen from that set. Each simulation result is composed by three figures showing: a stroboscopic trajectory, the controller plots and the observer plots, respectively.

In the stroboscopic trajectories (as the one in Fig 4a ) we show the trajectory evolution as a sequence of state images discriminated by the color that represents the time. In order to show the stress variation, the width of the link is thinner when the tension is higher, and wider when the compression is higher. Moreover to better distinguish the positive from the negative stresses, we draw the link dashed or solid, respectively. This recalls the usual mechanical behavior of a bar under stress. Similarly, the arrow representing the thrust vector is wider and longer when the thrust intensity is higher.

In the controller and observer plot figures (like the ones in Figs. 4b, and4c) it is possible to see that, after a transient due to the state estimation convergence, the controller is able to obtain an exact tracking of all the desired trajectories for both the elevation and stress of the link. This is also obtained for desired stress trajectories passing from tension to compression and viceversa. One can also notice that the transition from tension to compression is also stable and that compression is automatically achieved with a facing down attitude and positive thrust.

A video of the simulations is available in the supplementary material. Additional simulations are provided in [START_REF] Tognon | Extended simulations for the link stress and elevation control of a tethered aerial robot[END_REF].

VI. CONCLUSIONS

We presented a solution to a new tethered aerial vehicle problem that goes beyond the quasi static case considered in the literature. We showed the possibility to precisely and independently control tension and compression of a generic link only resorting to onboard inertial measurements.

In the future we plan to experimentally validate the proposed approach and to design a trajectory planner based on the proven differential flatness of the tethered vehicle. . The complete simulation results can be found in [START_REF] Tognon | Extended simulations for the link stress and elevation control of a tethered aerial robot[END_REF].

Fig. 2 :

 2 Fig. 2: Graphic representation of the controller.

  Observer Σ k : The first block is the high gain observer, the next is the linear observer for z 1 , the third is the state transformation and in the end the prediction error dynamics.

Fig. 3 :

 3 Fig. 3: Graphic representation of the observer.

  It is easy to see that the convergence of ζ ζ ζ to ζ ζ ζ automatically implies the convergence of ẑ1 to z 1 .

  Trajectory from time Begin = 2 [s] to End = 4.5 [s]. Controller Results: thrust stays positive even when the strees becomes negative and compression is obtained turning the robot. Observer Results: zoom on the first 0.7 seconds of simulation. The remaining part is not displayed because the observer follows the state with high fidelity. θ and θ are always equal because the estimated value comes from the direct measure of the gyroscope. The prediction error does not increase even when the tension goes to zero for an instant.

Fig. 4 :

 4 Fig. 4: The desired smooth elevation trajectory of class C 3 goes from the initial value ϕ d 0 = π/4 [rad] to the final ϕ d f = 3π/4 [rad]. The desired smooth stress trajectory of class C 1 goes from the initial tension f d L 0 = 20 [N] to the final compression f d L f = -20 [N]. The complete simulation results can be found in[START_REF] Tognon | Extended simulations for the link stress and elevation control of a tethered aerial robot[END_REF].

  ϕ d of class C 3 and f d L of class C 1 . The behavior of the convergence can be arbitrarily assigned by suitably choosing k 1 ∈ R 4 >0 , and k 2 ∈ R 2 >0 .
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Consideration of the

2D model has been done often in the related literature and does not limit the range of the results. In fact, the 2D case captures most of the nonlinear and challenging features of the problem.

In[START_REF] Nicotra | Taut cable control of a tethered UAV[END_REF] it is guaranteed only the positivity of the stress, while here we allow exact tracking of any stress trajectory.
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In practice, if a trajectory requires zero thrust for a short time, one can switch off the controller when |u 1 | < ε for a sufficiently small ε ∈ R.

The sum, for each entry of the output, of the number of times that each output entry has to be differentiated in order to see the input appear.
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The difference ( w1 -C ζ ζ ζ ) stands here for the unique angle β ∈ (-π, π] such that β +C ζ ζ ζ = w1 + k2π for a certain k ∈ Z.
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