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Logical limits of abstract argumentation frameworks

Leila Amgoud∗ and Philippe Besnard

Toulouse Institute of Computer Science, Paul Sabatier University, Toulouse, France

Dung’s (1995) argumentation framework takes as input two abstract entities: a set of
arguments and a binary relation encoding attacks between these arguments. It returns
acceptable sets of arguments, called extensions, w.r.t. a given semantics. While the
abstract nature of this setting is seen as a great advantage, it induces a big gap with
the application that it is used to. This raises some questions about the compatibility of
the setting with a logical formalism (i.e., whether it is possible to instantiate it properly
from a logical knowledge base), and about the significance of the various semantics in
the application context. In this paper we tackle the above questions. We first propose to
fill in the previous gap by extending Dung’s (1995) framework. The idea is to consider
all the ingredients involved in an argumentation process. We start with the notion of
an abstract monotonic logic which consists of a language (defining the formulas) and
a consequence operator. We show how to build, in a systematic way, arguments from
a knowledge base formalised in such a logic. We then recall some basic postulates
that any instantiation should satisfy. We study how to choose an attack relation so that
the instantiation satisfies the postulates. We show that symmetric attack relations are
generally not suitable. However, we identify at least one ‘appropriate’ attack relation.
Next, we investigate under stable, semi-stable, preferred, grounded and ideal semantics
the outputs of logic-based instantiations that satisfy the postulates. For each semantics,
we delimit the number of extensions an argumentation system may have, characterise
the extensions in terms of subsets of the knowledge base, and finally characterise the
set of conclusions that are drawn from the knowledge base. The study reveals that
stable, semi-stable and preferred semantics either lead to counter-intuitive results or
provide no added value w.r.t. naive semantics. Besides, naive semantics either leads
to arbitrary results or generalises the coherence-based approach initially developed by
Rescher and Manor (1970). Ideal and grounded semantics either coincide and generalise
the free consequence relation developed by Benferhat, Dubois, and Prade (1997), or
return arbitrary results. Consequently, Dung’s (1995) framework seems problematic
when applied over deductive logical formalisms.
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1. Introduction

Argumentation has become an Artificial Intelligence keyword for the last twenty years,

especially for handling inconsistency in knowledge bases (e.g., Amgoud & Cayrol, 2002;

Besnard & Hunter, 2008; Simari & Loui, 1992), making decisions (e.g., Amgoud & Prade,

2009; Bonet & Geffner, 1996), modelling different types of dialogues between agents like

persuasion (e.g., Amgoud, Maudet, & Parsons, 2000; Zabala, Lara, & Geffner, 1999), ne-

gotiation (e.g., Rahwan et al., 2003; Sycara, 1990) and inquiry (e.g., Black & Hunter, 2009;
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Parsons, Wooldridge, & Amgoud, 2003), and for learning concepts (e.g.,Amgoud & Serrurier,

2008; Mozina, Zabkar, & Bratko, 2007).

One of the most abstract argumentation formalisms in existing literature was proposed

by Dung (1995). It consists of a set of arguments and a binary relation encoding attacks

between these arguments. Semantics are used for defining acceptable sets of arguments,

called extensions. Since its original formulation, Dung’s (1995) framework has become

very popular because it seriously abstracts away from the application for which it can be

used. Indeed, the structure and the origin of arguments and attacks are left unspecified.

While this can be seen as a great advantage of the framework, two important questions are

raised regarding its interplay with logic – namely, when it is applied for reasoning about

inconsistent information:

(1) Is the framework compatible with a logical formalism? To put it differently, is it

possible to instantiate ‘properly’ the framework from a logical knowledge base?

(2) Are the semantics significant when the framework is instantiated from a logi-

cal knowledge base? Are they really different? What are the counterparts of the

extensions (under each semantics) in the knowledge base? Are those counterparts

meaningful? What are the plausible inferences under these semantics?

In this paper we answer the above questions. For this purpose, we first propose to fill

in the gap between the abstract framework and the logical knowledge base from which

it is specified. The idea is to consider all the ingredients involved in an argumentation

problem. We start with the notion of an abstract monotonic logic, as defined by Tarski

(1956). According to Tarski, a monotonic logic is a set of formulas and a consequence

operator that satisfies some axioms. It is worth mentioning that almost all well-known

monotonic logics such as propositional logic, modal logic, first order logic, fuzzy logic

and probabilistic logic are special cases of Tarski’s notion of abstract logic. Consequently,

any result that holds in the general case of a Tarskian logic obviously holds under all of

these particular logics. We then show how to build, in a systematic way, arguments from a

knowledge base formalised in such a logic.

A ‘good’ instantiation of Dung’s (1995) framework is one that satisfies some basic

rationality postulates. In Caminada and Amgoud (2007), three postulates were proposed,

and it was shown that not every instantiation is acceptable since some may lead to counter-

intuitive results. Examples are the instantiations proposed in Prakken and Sartor (1997)

and Governatori, Maher, Antoniou, and Billington (2004). The three postulates are tailored

for rule-based formalisms, i.e., logical languages that distinguish between strict rules and

defeasible ones. In Amgoud (2012) and Amgoud and Besnard (2009), those postulates were

generalised to any Tarskian logic. Moreover, three new and intuitive ones were proposed.

We study under which conditions they are satisfied or violated. The satisfaction/violation

of a postulate by an instantiation depends mainly on the properties of the attack relation.

We show that this relation should be based on the inconsistency of the knowledge base. We

show also that symmetric relations cannot be adopted when the knowledge base contains

a ternary or n-ary (n > 2) minimal conflict. We do establish the existence of appropriate

attack relations. To sum up, there are interesting cases that cannot be captured by Dung’s

(1995) framework. Nevertheless, the framework can still be properly instantiated.

In the second part of the paper, we investigate the underpinnings of the main semantics:

stable, semi-stable, preferred, grounded and ideal. For this purpose, we consider only

the logic-based instantiations that satisfy the postulates, since the remaining ones are

not good. For each semantics, we delimit the number of extensions an instantiation may

have, characterise its extensions in terms of subsets of the knowledge base over which the



instantiation is built, and fully characterise its set of plausible inferences that may be drawn

from the knowledge base. The results show that unlike the abstract framework, its good

instantiations have a finite number of extensions under stable, semi-stable and preferred

semantics. This is particularly the case when the knowledge base is finite. We show that

the set of all formulas used in the supports of the arguments of a stable extension is a

maximal (for set inclusion) consistent subset of the knowledge base. However, not every

maximal consistent subset of the knowledge base necessarily has a corresponding stable

extension. This leads to arbitrary plausible inferences. In the case of a full correspondence,

stable semantics does not play any role since the same result is already ensured by the naive

semantics. This means that stable semantics either returns arbitrary results or provides no

added value. Besides, naive semantics either leads to arbitrary results or generalises the

coherence-based approach initially developed by Rescher and Manor (1970). The situation

is worse for preferred semantics. The set of formulas that are used in support of the arguments

of a preferred extension is a consistent (but not necessarily maximal for set inclusion) subset

of the knowledge base. Thus, arbitrary inferences may be drawn from the knowledge base.

Semi-stable extensions are shown to always coincide with stable ones. Thus, semi-stable

semantics provides no added value w.r.t. stable semantics. Regarding the ideal and grounded

semantics, there are two cases as well. In the first case, both semantics coincide, i.e., the

ideal extension of any argumentation framework satisfying the postulates coincides with

the grounded extension, which itself coincides with the set of arguments that are built from

the free part of a knowledge base, i.e., using the subset of formulas which are not involved

in the inconsistency of the knowledge base. Consequently, under these semantics, the set of

plausible conclusions is the so-called free consequences in the coherence-based approach

for reasoning about inconsistent information (Benferhat, Dubois, & Prade, 1997). In the

second case, both semantics return arbitrary conclusions.

The overall study reveals that Dung’s (1995) framework can be properly instantiated; i.e.,

there are instantiations that satisfy some basic rationality postulates. However, stable, semi-

stable, preferred, ideal and grounded semantics are not suitable. Thus, Dung’s framework

is problematic when applied over a logical formalism, specifically a deductive one.

The paper is structured as follows: Section 2 recalls the abstract argumentation

framework of Dung (1995). Section 3 details our instantiation of Dung’s framework.

Section 4 defines rationality postulates that such instantiation should satisfy, and investigates

when those postulates are satisfied/violated. Section 5 analyses the different acceptability

semantics introduced by Dung. Section 6 compares our contribution with existing works.

Finally, Section 7 concludes the paper with some remarks and perspectives.

2. Dung’s (1995) abstract argumentation framework

In Dung (1995), an argumentation framework consists of a set of arguments and a binary

relation expressing attacks among the arguments.

Definition 1 (Argumentation framework) An argumentation framework is a pair

(A,R) where A is a set of arguments and R ⊆ A × A is an attack relation.

A pair (a, b) ∈ R means that a attacks b. A set E ⊆ A attacks an argument b iff ∃a ∈ E

such that (a, b) ∈ R.

Notations: We sometimes use the infix notation aRb to denote (a, b) ∈ R.

An argumentation framework (A,R) is a graph, the nodes of which are the arguments

of A and the edges of which are the attacks in R. The arguments are evaluated using a



semantics. In Dung (1995), different acceptability semantics were proposed. Some of them

were refined, for instance in Caminada (2006b) and Dung, Mancarella, and Toni (2007).

The basic idea behind them is the following: for a rational agent, an argument is acceptable

if the agent can defend this argument against all attacks upon it. All the arguments jointly

acceptable for a rational agent will be gathered in a so-called extension. An extension must

satisfy a consistency requirement and must defend all of its elements.

Definition 2 (Conflict-freeness, Defence) Let (A,R) be an argumentation framework

and E ⊆ A.

• E is conflict-free iff ∄a, b ∈ E such that (a, b) ∈ R.

• E defends an argument a iff ∀ b ∈ A, if (b, a) ∈ R, then ∃c ∈ E such that

(c, b) ∈ R.

The following definition recalls the main semantics that were proposed by Dung (1995),

as well as their refinements (Caminada 2006b; Dung, Mancarella, & Toni 2007). It is worth

noticing that the fundamental semantics features admissible extensions. The other semantics

are based on it.

Definition 3 (Acceptability semantics) Let T = (A,R) be an argumentation

framework, and E ⊆ A be a conflict-free set.

• E is a naive extension iff it is a maximal (w.r.t. set ⊆) conflict-free set.

• E is an admissible set iff it defends all of its elements.

• E is a complete extension iff it is an admissible set that contains any argument it

defends.

• E is a preferred extension iff it is a maximal (w.r.t. set ⊆) admissible set.

• E is a stable extension iff it attacks any argument in A \ E .

• E is a semi-stable extension iff it is a complete extension and the union of the set E

and the set of all arguments attacked by E is maximal (w.r.t. ⊆).

• E is a grounded extension iff it is a minimal (w.r.t. set ⊆) complete extension.

• E is an ideal extension iff it is a maximal (w.r.t. set ⊆) admissible set contained in

every preferred extension.

Notations: Extx (T ) denotes the set of all extensions of T under semantics x where

x ∈ {n, p, s, ss} and n (respectively p, s, ss) stands for naive (respectively preferred,

stable and semi-stable). When we do not need to refer to a particular semantics, we write

Ext(T ) for short. Since grounded and ideal extensions are unique for any argumentation

framework T , they will be denoted respectively by GE(T ) and IE(T ).

It is worth recalling that stable extensions are naive (respectively preferred) extensions

but that the converse is not always true. Moreover, an argumentation framework has at least

one preferred extension, but it may have no stable extensions. When stable extensions exist,

they coincide with the semi-stable ones (i.e., if |Exts(T )| > 0, then Exts(T ) = Extss(T )

for any argumentation framework T ).

Example 4 Let us consider the argumentation framework T = (A,R) such that:

• A = {a, b, c, d, e, f, g}.

• R = {(c, b), (b, e), (e, c), (d, c), (a, d), (d, a), (a, f ), ( f, g)}.

This framework has five naive extensions:

• E1 = {a, c, g},



• E2 = {d, e, f },

• E3 = {b, d, f },

• E4 = {a, e, g}, and

• E5 = {a, b, g}.

It has one stable/semi-stable extension E3 and two preferred extensions: E3 and

E6 = {a, g}. Both the grounded and the ideal extensions are empty, i.e.,GE(T )=IE(T )=∅.

An argumentation framework may be infinite, i.e., its set of arguments may be infinite.

Consequently, it may have an infinite number of extensions (under a given semantics).

3. Logic-based instantiations of Dung’s (1995) framework

Argumentation is an alternative approach for reasoning with inconsistent information. It

follows three main steps: (i) constructing arguments and counterarguments from a logical

knowledge base; (ii) defining the status of each argument; and (iii) specifying the conclu-

sions to be drawn from the base. In what follows, we instantiate Dung’s (1995) framework

by defining all of these items. We start with an abstract logic as defined by Alfred Tarski

(1956), from which the notions of argument and attacks between arguments are defined.

3.1. Tarski’s (1956) abstract consequence operators

Tarski (1956) defines a logic as a pair (L, CN) where the members of L are called

well-formed formulas, and CN is a consequence operator. No constraints are defined on the

logical language L. Thus, no particular connectors are required. However, the consequence

operator CN is a function from 2L to 2L that should satisfy the following axioms:

(1) X ⊆ CN(X) (Expansion)

(2) CN(CN(X)) = CN(X) (Idempotence)

(3) CN(X) =
⋃

Y⊆ f X CN(Y ) (Compactness)

(4) CN({x}) = L for some x ∈ L (Absurdity)

(5) CN(∅) 6= L (Coherence)

Notations: Y ⊆ f X means that Y is a finite subset of X .

Intuitively, CN(X) returns the set of formulas that are logical consequences of X

according to the logic in question. In Tarski (1956), it was shown that CN is a closure

operator, that is, CN enjoys properties such as:

Property 5 Let X, X ′, X ′′ ⊆ L.

(1) X ⊆ X ′ ⇒ CN(X) ⊆ CN(X ′).

(2) CN(X) ∪ CN(X ′) ⊆ CN(X ∪ X ′).

(3) CN(X) = CN(X ′) ⇒ CN(X ∪ X ′′) = CN(X ′ ∪ X ′′).

(4) CN(X ∩ X ′) ⊆ CN(X) ∩ CN(X ′).

Almost all well-known monotonic logics (classical logics, intuitionistic logics, modal

logics, etc.) can be viewed as special cases of Tarski’s notion of an abstract logic. AI

introduced non-monotonic logics, which do not satisfy monotonicity (Bobrow, 1980).

Once (L, CN) is fixed, a notion of consistency arises as follows:

Definition 6 (Consistency) Let X ⊆ L. X is consistent w.r.t. the logic (L, CN) iff

CN(X) 6= L. It is inconsistent otherwise.



In simple English, this says that X is consistent iff its set of consequences is not the set of

all formulas. The coherence requirement (absent from Tarski’s original proposal but added

here to avoid considering trivial systems) forces the empty set ∅ to always be consistent –

this makes sense for any reasonable logic.

One can show that if a set X is consistent, then its closure under CN is also consistent

and any proper subset of X is consistent.

Property 7 Let X ⊆ L.

(1) If X is consistent, then CN(X) is consistent as well.

(2) ∀X ′ ⊆ X, if X is consistent, then X ′ is consistent.

(3) ∀X ′ ⊆ X, if X ′ is inconsistent, then X is inconsistent.

If a set X ⊆ L of formulas is inconsistent, this means that it contains minimal conflicts.

Definition 8 (Minimal conflict) A set C ⊆ L is a minimal conflict iff:

• C is inconsistent.

• ∀x ∈ C, C\{x} is consistent.

Notations: Let X ⊆ L. CX denotes the set of all minimal conflicts C such that C ⊆ X .

Max(X) is the set of all maximal (for set inclusion) consistent subsets of X , Free(X) =
⋂

Si ∈Max(X) Si , and Inc(X) = X \ Free(X).

The following properties are useful for proving our results.

Property 9 For all X ⊆ 6 ⊆ L,

• if X is consistent then CX = ∅;

• if X is consistent then X ⊆ S for some S ∈ Max(6);

• if X is inconsistent then there exists at least one minimal conflict C such that C ⊆ X.

The next property is true in the case that the underlying logic is adjunctive. Let us first

define this new concept.

Definition 10 (Adjunctiveness) A logic (L, CN) is adjunctive iff for all x and y in L,

there exists z ∈ L such that CN({z}) = CN({x, y}).

Intuitively, an adjunctive logic infers, from the union of two formulas {x, y}, some

formula(s) that can be inferred neither from x alone nor from y alone (except, of course,

when y ensues from x or vice versa). In fact, most well-known logics are adjunctive.1

A logic which is not adjunctive could for instance fail to deny x ∨ y from the premises

{¬x,¬y}.

Property 11 Let (L, CN) be adjunctive, C ⊆ L be a minimal conflict. For all X ⊂ C,

if X 6= ∅, then:

(1) ∃x ∈ L such that CN({x}) = CN(X).

(2) ∃x1 ∈ CN(X) and ∃x2 ∈ CN(C \ X) such that the set {x1, x2} is inconsistent.

3.2. Tarskian logic-based instantiations

Let (L, CN) be a fixed abstract logic. From now on, we will consider a knowledge base 6,

which is a subset of the logical language L (in symbols, 6 ⊆ L). This base may be infinite,

however, with no loss of generality and for the sake of simplicity, it is assumed to be free

of tautologies:



Assumption 12 Let 6 be a knowledge base. For all x ∈ 6, x /∈ CN(∅).

The first parameter of an argumentation framework is the set of arguments. In Dung’s

(1995) framework, an argument is an abstract entity. In what follows, it is built from a

knowledge base 6. It gives a reason for believing a conclusion. Formally, an argument

satisfies three main requirements: (i) the reason is a subset of the knowledge base, thus

restricting the origin of the arguments; (ii) the reason should be consistent, thus avoiding

absurd reasons; and (iii) the reason is minimal. The third requirement means that only

relevant information w.r.t. the conclusion is considered.

Definition 13 (Argument) Let 6 be a knowledge base. An argument is a pair (X, x) such

that:

(1) X ⊆ 6 and x ∈ L.

(2) X is consistent.

(3) x ∈ CN(X).

(4) ∄X ′ ⊂ X such that x ∈ CN(X ′).

An argument (X, x) is a sub-argument of another argument (X ′, x ′) iff X ⊆ X ′.

Let us introduce some notations that will be used throughout the paper.

Notations: Supp and Conc are two functions that return respectively the support X and

the conclusion x of an argument (X, x). Sub is a function that returns all the sub-arguments

of a given argument. For X ⊆ L, Arg(X) denotes the set of all arguments that can be built

from X by means of Definition 13. For a set E of arguments,Concs(E) = {Conc(a) | a ∈ E}

and Base(E) =
⋃

a∈E Supp(a).

The following property shows that the conclusion of any argument is consistent.

Property 14 For all (X, x) ∈ Arg(6), the set {x} is consistent.

Due to Assumption 12 (x 6∈ CN(∅) for all x ∈ 6), it can also be shown that each

consistent formula in 6 gives birth to an argument:

Property 15 Let 6 be a knowledge base such that for all x ∈ 6, x 6∈ CN(∅). For all

x ∈ 6 such that the set {x} is consistent, ({x}, x) ∈ Arg(6).

Since CN is monotonic, constructing arguments is a monotonic process; additional

knowledge never causes the set of arguments to shrink but only gives rise to extra arguments

that may interact with the existing ones.

Property 16 Arg(6) ⊆ Arg(6′) whenever 6 ⊆ 6′ ⊆ L.

We show now that any proper subset of a minimal conflict is the support of at least one

argument. This is particularly so in the case of adjunctive logics. This result is of utmost

importance as regards encoding the attack relation.

Proposition 17 Let (L, CN) be adjunctive and 6 be a knowledge base. For all non-

empty proper subsets X of some minimal conflict C ∈ C6 , there exists a ∈ Arg(6) such

that Supp(a) = X.

Proposition 17 is fundamental because it says that if statements from 6 contradict others

then it is always possible to define an argument exhibiting the conflict.

In the sequel, we use the term system instead of framework in order to distinguish the

framework of Dung (1995) from its logical instantiations, which are defined as follows.



Definition 18 (Argumentation system) Let (L, CN) be a given Tarskian logic and

6 ⊆ L be a knowledge base. An argumentation system over 6 is a pair T = (Arg(6),R)

such that R ⊆ Arg(6) × Arg(6) (intuitively, it is an attack relation).

In the previous definition, the attack relation is left unspecified. However, in Section 4

we show that it should be assigned some properties, otherwise the system may return

counter-intuitive results.

The arguments of a system T = (Arg(6),R) are evaluated using one of the semantics

given in Definition 3. Recall that the structure of arguments is not taken into account in

those semantics. The extensions are used in order to define the conclusions that may be

drawn from 6 according to the system T . The idea is to conclude x if it is the conclusion

of an argument in every extension of the system.

Definition 19 (Output) Let T = (Arg(6),R) be an argumentation system over a

knowledge base 6 and Ext(T ) its set of extensions under a given semantics. For x ∈ L,

x is a conclusion of T iff ∀Ei ∈ Ext(T ), ∃a ∈ Ei such that Conc(a) = x. We write

Output(T ) to denote the set of all conclusions of T .

It follows immediately from the definition that the set of conclusions exactly consists

of the formulas which happen to be, in each extension, the conclusion of an argument of

the extension.

Property 20 Let T = (Arg(6),R) be an argumentation system over a knowledge base

6 and Ext(T ) its set of extensions under a given semantics. It holds that

Output(T ) =
⋂

Ei ∈Ext(T )

Concs(Ei ).

Finally, it is obvious that the outputs of an argumentation system are consequences of

the corresponding knowledge base under the consequence operator CN.

Property 21 Let T = (Arg(6),R) be an argumentation system over a knowledge base

6. Output(T ) ⊆ CN(6).

4. On the quality of logic-based argumentation systems

We have shown so far how to build an argumentation system from a logical knowledge

base. The system is still incomplete since the attack relation is not specified. As already

mentioned, Dung (1995) is silent on how to proceed in order to obtain a reasonable R in

practice. It happens that it is in fact a delicate step. We will show next that the choice of

this relation is crucial for the ‘soundness’ of the system. Soundness is determined by some

rationality postulates that any system should satisfy.

The first work on rationality postulates in argumentation was undertaken by

Caminada and Amgoud (2007). The authors focused only on rule-based systems (i.e., sys-

tems that distinguish between strict and defeasible rules in their underlying logical lan-

guage). They proposed the following postulates that such systems should satisfy:

• Closure: the idea is that if a system concludes x and there is a strict rule2 x → y,

then the system should also conclude y.

• Direct consistency: the set of conclusions of arguments of each extension should

be consistent.

• Indirect consistency: the closure of the set of conclusions of arguments of each

extension should be consistent.



As obvious as they may appear, these postulates are violated by most rule-based

systems (such as Amgoud, Caminada, Cayrol, Lagasquie, & Prakken 2004; Governatori,

Maher, Antoniou, and Billington 2004; Prakken 2010; Prakken & Sartor 1997. Besides,

they are tailored for rule-based logics. Their counterparts for any Tarskian logic were defined

in Amgoud (2012) and Amgoud and Besnard (2009). Moreover, three new postulates were

proposed in Amgoud (2012). In what follows, we recall all the postulates that are necessary

for our study.

4.1. Rationality postulates for logic-based argumentation systems

The first rationality postulate that an argumentation system should satisfy concerns the

closure of its output. The basic idea is that the conclusions of a formalism should be

‘complete’. There should be no case where a user performs some extra reasoning on her

own to derive statements that the formalism apparently ‘forgot’ to entail. In Caminada and

Amgoud (2007), closure is defined for rule-based argumentation systems. In what follows,

we extend this postulate to systems that are grounded in any Tarskian logic. The idea is to

define closure using the consequence operator CN.

Postulate 22 (Closure under CN) Let T = (Arg(6),R) be an argumentation system

over a knowledge base 6. For all E ∈ Ext(T ), Concs(E) = CN(Concs(E)). We say

that T is closed under CN.

In Caminada and Amgoud (2007), closure is imposed both on the extensions of a system

and on its output set. The next result shows that the closure of the output set does not deserve

to be a separate postulate since it immediately follows from the closure of extensions.

Proposition 23 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6. If T is closed under CN, then Output(T ) = CN(Output(T )).

The second rationality postulate concerns sub-arguments. An argument may have one

or several sub-arguments, reflecting the different premises on which it is based. Thus, the

acceptance of an argument should also imply the acceptance of all of its sub-parts.

Postulate 24 (Closure under sub-arguments) Let T = (Arg(6), R) be an argumenta-

tion system over a knowledge base 6. For all E ∈ Ext(T ), if a ∈ E , then Sub(a) ⊆ E . We

say that T is closed under sub-arguments.

These two postulates have a great impact on the extensions of an argumentation system,

as shown by the following result:

Proposition 25 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6. If T is closed under sub-arguments and under CN, then for all E ∈ Ext(T ),

Concs(E) = CN(Base(E)).

The third rationality postulate concerns the consistency of the results. It ensures that the

set of conclusions supported by each extension is consistent. The following postulate gen-

eralises the direct consistency postulate, which was proposed for rule-based argumentation

systems in Caminada and Amgoud (2007):

Postulate 26 (Consistency) Let T = (Arg(6),R) be an argumentation system over a

knowledge base 6. For all E ∈ Ext(T ), Concs(E) is consistent. We say that T satisfies

consistency.



As for closure, in Caminada and Amgoud (2007) a postulate imposing the consistency

of the output is defined. We show next that such a postulate is not necessary. Indeed, an

argumentation system that satisfies Postulate 26 necessarily has a consistent output.

Proposition 27 If an argumentation system T = (Arg(6),R) satisfies consistency,

then the set Output(T ) is consistent.

We show next that argumentation systems that satisfy both consistency and closure

under sub-arguments enjoy a strong version of consistency. Indeed, the set of formulae

used in the arguments of each extension is consistent. It is worth mentioning that this result

is very general, as it holds under any semantics, any attack relation and any Tarskian logic.

Proposition 28 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6 such that for all x ∈ 6, x /∈ CN(∅). If T satisfies consistency and is closed under

sub-arguments, then for all E ∈ Ext(T ), Base(E) is consistent.

Since the free formulas of a knowledge base (i.e., the ones that are not involved in any

minimal conflict) are the ‘hard’ part in the base, it is natural that any argument that is built

only from this part should be in every extension of an argumentation system built over the

knowledge base.

Postulate 29 (Free Precedence) Let T = (Arg(6),R) be an argumentation system

over a knowledge base 6. For all E ∈ Ext(T ), Arg(Free(6)) ⊆ E . We say that T

satisfies free precedence.

We show next that the free formulas are drawn by any argumentation system satisfying

Postulate 29.

Proposition 30 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6. If T satisfies free precedence, then Free(6) ⊆ Output(T ) (under any of the

reviewed semantics).

The last postulate says that if the support and the conclusion of an argument are part

of the conclusions of a given extension, then the argument should belong to the extension.

Informally: if each step in the argument is good enough to be in the extension, then so is

the argument itself.

Postulate 31 (Exhaustiveness) An argumentation system T = (Arg(6),R) over a

knowledge base 6 satisfies exhaustiveness iff for all E ∈ Ext(T ), for all (X, x) ∈ Arg(6),

if X ∪ {x} ⊆ Concs(E), then (X, x) ∈ E .

The following result shows that when this postulate is satisfied, then extensions are

closed in terms of arguments.

Proposition 32 If an argumentation systemT is closed under both CN and sub-arguments

and satisfies the exhaustiveness postulate, then ∀E ∈ Ext(T ), E = Arg(Base(E)) (under

any of the reviewed semantics).

The five postulates are generally independent. However, in the case of naive and stable

semantics, closure under the consequence operator CN is induced from closure under sub-

arguments and consistency. This is particularly the case when the attack relation is based

on inconsistency.

Definition 33 (Conflict-dependent) An attack relation R is conflict-dependent iff

for all a, b ∈ Arg(6), if aRb then Supp(a) ∪ Supp(b) is inconsistent.



The above definition says that R should show no attack from a to b unless 6 provides

evidence (according to CN) that the supports of a and b conflict with each other. That is,

being conflict-dependent ensures that, when passing from 6 to (Arg(6),R), no conflict is

‘invented’ in R. Note that all the attack relations that are used in existing structured argu-

mentation systems are conflict-dependent (see Gorogiannis & Hunter, 2011, for a summary

of existing relations).

Proposition 34 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R is conflict-dependent. If T satisfies consistency and is closed under

sub-arguments (under naive and stable semantics), then it is closed under CN (under naive

and stable semantics).

It was shown in Amgoud (2012) that the five postulates are compatible, i.e., they can

be satisfied altogether by an argumentation system. This is particularly witnessed in the

argumentation system studied in Cayrol (1995). This system is grounded in propositional

logic (aTarskian logic) and uses the assumption attack relation defined in Elvang-Gøransson,

Fox, and Krause (1993). According to this relation, an argument attacks another if its

conclusion is the negation of an element of the support of the second argument. This relation

was generalised to any Tarskian logic in Amgoud and Besnard (2010) as follows:

Definition 35 (Assumption attack relation) Let (L, CN) be a Tarskian logic. An ar-

gument (X, x) attacks another argument (X ′, x ′) iff ∃y ∈ X ′ such that the set {x, y} is

inconsistent. This relation will be denoted by Ras .

It was shown inAmgoud (2012) that any argumentation system (Arg(6),Ras) satisfies

the five postulates. This is certainly a positive result as it shows that Dung’s (1995) abstract

framework can be correctly instantiated with logical formalisms. However, in the next

section we show that there is a broad class of natural instantiations that are not possible

since they violate the postulates.

4.2. On the violation of consistency postulate

In subsection 3.2 we provided a clear definition of an argument and how it is built from

a knowledge base 6. However, there is still no indication on how the attack relation R is

chosen and how it is related to 6. Moreover, in Caminada and Amgoud (2007) it was shown

that there are some instantiations of Dung’s (1995) framework that violate the consistency

postulate. This means that the choice of the attack relation has a direct impact on the

postulates. This also means that conflict-freeness is not sufficient to ensure consistency.

Thus, an attack relation should enjoy some basic properties. The first one concerns its

origin. We show that an attack relation should be based on inconsistency, and thus conflict-

dependent.

When the attack relation is conflict-dependent, then it is empty when the knowledge

base is consistent.

Proposition 36 Let (Arg(6),R) be such that R is conflict-dependent. If 6 is consistent,

then R = ∅.

It follows that when the attack relation is conflict-dependent, if a set of arguments is

such that its corresponding base (set-theoretic union of supports) is consistent then it is a

conflict-free set:



Proposition 37 Let (Arg(6),R) be such that R is conflict-dependent. ∀E ⊆ Arg(6),

if Base(E) is consistent, then E is conflict-free.

It is also worth pointing out that an attack relation which is conflict-dependent exhibits

no self-attacks.

Proposition 38 Let (Arg(6),R) be such that R is conflict-dependent. For all

a ∈ Arg(6), (a, a) 6∈ R.

Let us now consider the following example of an argumentation system that is built

from a propositional knowledge base and uses the symmetric attack relation known as

rebut (Elvang-Gøransson, Fox, & Krause, 1993). According to this relation, an argument

a attacks another argument b iff Conc(a) ≡ ¬Conc(b) (in the case that (L, CN) is

propositional logic). This relation will be denoted by Rre.

Example 39 Let (L, CN) be propositional logic and 6 = {x, y, x → ¬y}. Let us

consider the following set of arguments:

• a1 = ({x}, x).

• a2 = ({y}, y).

• a3 = ({x → ¬y}, x → ¬y).

• a4 = ({x, x → ¬y},¬y).

• a5 = ({y, x → ¬y},¬x).

• a6 = ({x, y}, x ∧ y).

The rebut relation is as follows: {(a1, a5), (a5, a1), (a2, a4), (a4, a2), (a3, a6), (a6, a3)}.

The set {a1, a2, a3} – as a finite representation (Amgoud, Besnard, & Vesic, 2011) for all

of its ‘mates’, i.e., the arguments ({x}, . . .) and ({y}, . . .) and ({x → ¬y}, . . .) – is an

admissible extension of the system (Arg(6),Rre). However, the set {Conc(a1),Conc(a2),

Conc(a3)} is inconsistent. Similarly, the set {a4, a5, a6} is (a finite representation of) another

admissible extension whose set of conclusions is inconsistent.

This example shows that an admissible set of arguments may fail to have a consistent

set of conclusions. The problem encountered with the rebut relation is due to the fact that

it is binary, in compliance with Dung’s (1995) definitions of the attack relation as binary.

Thus, the ternary conflict between a1, a2 and a3 is not captured. Particularly, symmetric

attack relations are crippled by non-binary minimal conflicts. Indeed, we show that when

the attack relation is symmetric, Postulate 26 is violated.

Proposition 40 Let (L, CN) be adjunctive and 6 be a knowledge base such that ∃C ∈ C6

and |C | > 2. If R is conflict-dependent and symmetric, then the argumentation system

(Arg(6),R) violates consistency.

This result shows a broad class of attack relations that cannot be used in argumentation:

the symmetric ones. Relations like rebut or a union of rebut and any other conflict-dependent

attack relation would lead to the violation of consistency, namely when there exist n-ary

(n > 2) minimal conflicts in the knowledge base. Consequently, the symmetric systems

studied in Coste, Devred, and Marquis (2005) cannot be adopted in a concrete application.

5. The outcomes of logic-based argumentation systems

The aim of this section is to investigate the underpinnings of the different acceptab-

ility semantics introduced in Dung (1995), Dung, Mancarella, and Toni (2007), and



Caminada (2006b) and to check whether they make sense in a concrete application. Recall

that those semantics are defined without considering either the internal structure or the

origin of arguments and attacks. In this section, we fully characterise for the first time both

the extensions and the output set of any Tarskian logic-based argumentation system under

naive, stable, semi-stable, preferred, grounded and ideal semantics. For this purpose, we

consider only systems that enjoy the rationality postulates introduced in the previous section

(as the other systems are regarded as ill-fated instantiations of Dung’s 1995 framework).

5.1. Naive semantics

In this section, we characterise the outputs of an argumentation system under naive

semantics. We show that the naive extensions of any argumentation system that satisfies

consistency and closure under sub-arguments always return maximal (for set inclusion)

consistent subsets of 6.

Theorem 41 Let T = (Arg(6), R) be an argumentation system over a knowledge base

6 such that R is conflict-dependent. If T satisfies consistency and is closed under sub-

arguments (under naive semantics), then:

• For all E ∈ Extn(T ), Base(E) ∈ Max(6).

• For all E ∈ Extn(T ), E = Arg(Base(E)).

• For all Ei , E j ∈ Extn(T ), if Base(Ei ) = Base(E j ) then Ei = E j .

The next theorem confirms that any maximal consistent subset of 6 defines a naive

extension of an argumentation system which satisfies consistency and closure under sub-

arguments. This is the case when the logic (L, CN) is adjunctive.

Theorem 42 Let (L, CN) be adjunctive. Let T = (Arg(6), R) be an argumentation

system over a knowledge base 6 such that R is conflict-dependent. If T satisfies consistency

and is closed under sub-arguments (under naive semantics), then:

• For all S ∈ Max(6), Arg(S) ∈ Extn(T ).

• For all Si ,S j ∈ Max(6), if Arg(Si ) = Arg(S j ) then Si = S j .

• For all S ∈ Max(6), S = Base(Arg(S)).

It follows that any argumentation system that satisfies the two postulates 24 and 26

enjoys a full correspondence between the maximal consistent subsets of 6 and the naive

extensions of the system.

Corollary 43 Let (L, CN) be adjunctive. Let T = (Arg(6), R) be an argumentation

system over a knowledge base 6 such that R is conflict-dependent. T satisfies consistency

and is closed under sub-arguments (under naive semantics) iff there is a bijection between

the naive extensions of T and the elements of Max(6).

A direct consequence of the previous result is that the number of naive extensions of an

argumentation system is less than or equal to the number of maximal consistent sub-bases

of the knowledge base over which the system is built. Thus, if the knowledge base is finite,

then the system has a finite number of naive extensions.

Corollary 44 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R is conflict-dependent and T satisfies consistency and is closed under

sub-arguments (under naive semantics).

• |Extn(T )| ≤ |Max(6)|.

• If 6 is finite, then T has a finite number of naive extensions.



The following result characterises the case where an argumentation system has an empty

naive extension. It shows that the knowledge base contains only inconsistent formulae.

Corollary 45 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R is conflict-dependent and T satisfies consistency and is closed under

sub-arguments (under naive semantics). If Extn(T ) = {∅}, then for all x ∈ 6, CN({x}) is

inconsistent.

Let us now characterise the set of inferences that may be drawn from a knowledge

base 6 by any argumentation system under naive semantics. It coincides with the set of

inferences that are drawn from some maximal consistent subsets of 6.

Theorem 46 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R is conflict-dependent and T satisfies consistency and is closed under

sub-arguments (under naive semantics). Output(T ) =
⋂

CN(Si ) where Si ranges over

{Si ∈ Max(6) | ∃Ei ∈ Extn(T ) and Si = Base(Ei )}.

When the number of naive extensions of an argumentation system is less than the number

of maximal consistent subsets of the knowledge base over which the system is built, the

system returns arbitrary conclusions.

Example 47 Assume that (L, CN) is non-adjunctive, 6 = {x,¬x ∧ y} and that this base

has two maximal consistent subsets:

• S1 = {x}.

• S2 = {¬x ∧ y}.

According to Theorem 41, any argumentation system T = (Arg(6), R) satisfying the

postulates and whose attack relation R is conflict-dependent will have one or two naive

extensions: E1 = Arg(S1) and E2 = Arg(S2). Assume that Extn(T ) = {E1}. It follows

that x ∈ Output(T ) and ¬x /∈ Output(T ). If Extn(T ) = {E2}, x /∈ Output(T ) and

¬x ∈ Output(T ). Both results are arbitrary.

In the case of adjunctive logics, the output of an argumentation system is the set of

conclusions that follow from all the maximal consistent subsets of 6.

Corollary 48 Let (L, CN) be adjunctive. Let T = (Arg(6), R) be an argumentation

system over a knowledge base 6 such that R is conflict-dependent and T satisfies

consistency and is closed under sub-arguments (under naive semantics).

Output(T ) =
⋂

Si ∈Max(6)

CN(Si ).

Example 47 (Cont): Assume now that (L, CN) is propositional logic (which is adjunc-

tive). The base 6 = {x,¬x ∧ y} has two maximal consistent subsets:

• S1 = {x}.

• S2 = {¬x ∧ y}.

According to Corollary 43, any argumentation system T = (Arg(6), R) satisfying the

postulates and whose attack relation R is conflict-dependent will have exactly two naive

extensions: Arg(S1) and Arg(S2). Moreover, Output(T ) = CN(S1) ∩ CN(S2).

In short, under naive semantics, any ‘good’ instantiation of Dung’s (1995) abstract

framework returns exactly the formulas that are drawn (with CN) by all the maximal

consistent subsets of the knowledge base 6. So whichever attack relation is chosen, the



Figure 1. Reasoning under naive semantics.

result will be the same. It is worth recalling that the output set contains exactly the so-called

universal conclusions in the coherence-based approach developed in Rescher and Manor

(1970) for reasoning from inconsistent propositional bases. Indeed, Rescher and Manor

take as input a (possibly inconsistent) propositional knowledge base, then compute all of its

maximal (for set inclusion) consistent subsets. The universal conclusions to be drawn from

the base are the formulae that follow logically from all of these subsets. Thus, argumentation

systems generalise (under naive semantics) this approach to any adjunctive Tarskian logic.

As a consequence, the argumentation approach is syntax-dependent, and may thus lead to

undesirable results, as discussed in the following example.

Example 47 (Cont): Assume again that (L, CN) is propositional logic. Thus,

Output(T ) = CN(S1) ∩ CN(S2). Note that y /∈ Output(T ).

Assume that x stands for ‘Sunny day’ and y for ‘It is cloudy’. The fact that y /∈

Output(T ) seems reasonable. Assume now that y stands for ‘The temperature is 18

degrees’. In this case, y should be inferred from 6 according to the idea that it is not

part of the conflict.

Should ¬x ∧ y instead be written as two formulas, namely ¬x and y, then y is out of

the conflict and is inferred.

Figure 1 summarises the main results under naive semantics.

5.2. Stable and semi-stable semantics

We show that the stable extensions of any argumentation system satisfying consistency

and closure under sub-arguments return maximal consistent subsets of 6. This means that

if one instantiates Dung’s (1995) framework and does not get maximal consistent subsets

with stable extensions, then the instantiation certainly violates one or both of the two key

postulates: consistency and closure under sub-arguments.

Theorem 49 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R is conflict-dependent. If T satisfies consistency and closure under

sub-arguments (under stable semantics) and Exts(T ) 6= ∅, then:

• For all E ∈ Exts(T ), Base(E) ∈ Max(6).

• For all E ∈ Exts(T ), E = Arg(Base(E)).

• For all Ei , E j ∈ Exts(T ), if Base(Ei ) = Base(E j ) then Ei = E j .

This result characterises the stable extensions of a large class of argumentation systems,

namely the ones that are built using (adjunctive and non-adjunctive) Tarskian logics. How-

ever, it does not guarantee that each maximal consistent subset of 6 has a corresponding

stable extension in an argumentation system T = (Arg(6),R). To put it differently, it

does not guarantee a bijection from the set Exts(T ) to the set Max(6). The bijection (thus

the equality |Exts(T )| = |Max(6)|) broadly depends on the attack relation that is chosen.

Let ℜs be the set of all attack relations that ensure the postulates under stable semantics:



ℜs =
⋃

6⊆L

{R ⊆ Arg(6) × Arg(6) | R is conflict-dependent and (Arg(6),R)

satisfies Postulates 22, 24, 26, 29 and 31 under stable semantics}.

This set contains three disjoint subsets of attack relations: ℜs = ℜs1
∪ ℜs2

∪ ℜs3
:

• ℜs1
: the relations which lead to |Exts(T )| = 0.

• ℜs2
: the relations which ensure 0 < |Exts(T )| < |Max(6)|.

• ℜs3
: the relations which ensure |Exts(T )| = |Max(6)|.

Let us analyse each category of attack relations in turn. The following result shows that

the set ℜs1
is empty, meaning that there is no attack relation which prevents the existence

of stable extensions. In other words, any argumentation system satisfying the rationality

postulates has at least one stable extension. It is worth recalling that in the general case,

Dung (1995) has shown that stable semantics does not guarantee the existence of extensions.

This was considered a weakness of this semantics.

Theorem 50 It holds that ℜs1 = ∅.

What about the attack relations of the category ℜs2
? Systems that use these relations

choose a proper subset of the maximal consistent subsets of 6 and make inferences from

them. Their output sets are as follows:

Theorem 51 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R ∈ ℜs2
. Output(T ) =

⋂

CN(Si ) where Si ranges over {Si ∈

Max(6) | ∃Ei ∈ Exts(T ) and Si = Base(Ei )}.

These attack relations lead to an unjustified discrimination between maximal consistent

subsets of a knowledge base. Unfortunately, this is fatal for the argumentation systems

which use them as they may return arbitrary results. Note that the situation is similar to the

one encountered under naive semantics when the logic is non-adjunctive (see Example 47).

Attack relations of the category ℜs3 induce a one-to-one correspondence between the

stable extensions of an argumentation system and the maximal consistent subsets of the

knowledge base over which it is built.

Theorem 52 Let T = (Arg(6), R) be an argumentation system over a knowledge base

6 such that R ∈ ℜs3. For all S ∈ Max(6), Arg(S) ∈ Exts(T ).

The stable extensions of any argumentation system using an attack relation of the

category ℜs3 coincide with the naive extensions. They even coincide with the preferred

extensions of the system, meaning that this system is coherent (Dung, 1995).

Theorem 53 Let T = (Arg(6), R) be an argumentation system over a knowledge base

6 such that R ∈ ℜs3. The equality Extn(T ) = Exts(T ) holds. If T satisfies the postulates

under preferred semantics, then Exts(T ) = Extp(T ).

An argumentation system using an attack relation of this category leads to exactly the

same result under naive semantics. It returns the universal conclusions (of the coherence-

based approach) under any monotonic logic as opposed to only propositional logic, as in

Rescher and Manor (1970). Finally, it is worth mentioning that the set ℜs3 is not empty.

Indeed, the assumption attack relation (Ras) recalled in Definition 35 is one of its elements.

In Cayrol (1995), it was shown that there is a full correspondence between the stable



Figure 2. Reasoning under stable semantics.

extensions of an argumentation system (defined over propositional logic) and the maximal

consistent subsets of the propositional knowledge base over which it is built. This result

was generalised to any Tarskian logic in Amgoud and Besnard (2010). Consequently, any

argumentation system using Ras is coherent.

Corollary 54 For all 6 ⊆ L, the argumentation system T = (Arg(6), Ras) is coherent.

From the previous results, it follows that any argumentation system satisfying the four

postulates has stable extensions. Moreover, it is possible to delimit their maximum number.

Corollary 55 Let T = (Arg(6), R) be an argumentation system over a base 6 such

that R is conflict-dependent and T satisfies consistency, closure under sub-arguments and

free precedence (under stable semantics). It holds that

0 < |Exts(T )| ≤ |Max(6)|.

It follows that when the knowledge base is finite, the number of stable extensions is

finite as well.

Corollary 56 If 6 is finite, then the set Exts(T ) is finite, whenever T = (Arg(6),R)

satisfies consistency and closure under sub-arguments (under stable semantics).

To sum up, there are two possible categories of attack relations that lead to the satisfaction

of the rationality postulates: ℜs2
and ℜs3

. Relations of ℜs2
should be avoided as they lead

to arbitrary results. Relations of ℜs3
lead to ‘correct’ results, but argumentation systems

based on them return exactly the same results under naive semantics. This means that

stable semantics does not play any particular role in the logic-based argumentation systems

studied in the paper. Thus, stable semantics either leads to undesirable results or provides

no added value w.r.t. naive semantics. Figure 2 summarises the different situations that may

be encountered under this semantics.

From the definitions of the two categories ℜs2 and ℜs3, stable extensions exist. Besides,

it was shown in Caminada (2006b) that when this is the case, semi-stable extensions coincide

with the stable ones.

Corollary 57 Let T = (Arg(6), R) be an argumentation system over a base 6 such

that R is conflict-dependent and T satisfies consistency, closure under sub-arguments and

free precedence (under stable semantics). The equality Exts(T ) = Extss(T ) holds.

Thus, in practice semi-stable semantics does not offer added value w.r.t. stable semantics,

which is itself problematic.

5.3. Preferred semantics

Preferred semantics was mainly proposed in Dung (1995) as an alternative to stable seman-

tics, since the latter does not guarantee (for abstract frameworks) the existence of extensions.

In this section, we study the outcomes of logic-based argumentation systems under preferred



semantics and check whether it offers added value w.r.t. stable semantics in the context of

handling inconsistency in knowledge bases.

We have previously shown in Proposition 28 that the extensions (under any admissibility-

based semantics) of an argumentation system satisfying the postulates are made up of

consistent subsets of the knowledge base over which the system is defined. Thus, the subset

Base(E) computed from any preferred extension E is a subset of maximal consistent sub-

base of the knowledge base at hand.

Theorem 58 Let T = (Arg(6),R) be an argumentation system such that R is conflict-

dependent and T satisfies consistency and closure under sub-arguments (under preferred

semantics). For all E ∈ Extp(T ), there exists S ∈ Max(6) such that Base(E) ⊆ S.

Unlike stable extensions, the subsets of a knowledge base that are computed from

preferred extensions are not necessarily maximal (for set inclusion). This is due to the

existence of undecided arguments under preferred semantics. In Caminada (2006a) an-

other way of defining Dung’s (1995) semantics was provided. It consists of labelling the

nodes of the graph corresponding to the argumentation system with three possible values:

{in, out, undec}.An argument is labelled in iff all of its attackers are labelled out, and labelled

out iff one of its attackers is labelled in. Finally, it is labelled undec iff it is not possible to

assign either in or out. When the subset of 6 which is computed from a preferred extension

is not maximal then some formulae of 6 appear only in support of undecided arguments.

This does not mean that a preferred extension can never return a maximal consistent

subset. Remember that stable extensions exist, thus, there is at least one preferred extension

whose base is maximal for set inclusion.

Corollary 59 Let T = (Arg(6),R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency, closure under sub-arguments and free prece-

dence (under preferred semantics). There exists E ∈ Extp(T ) such that Base(E) ∈

Max(6).

The following result shows that the subsets computed from the preferred extensions of

an argumentation system are pairwise different.

Theorem 60 Let T = (Arg(6), R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency and closure under sub-arguments (under

preferred semantics). For all Ei , E j ∈ Extp(T ), if Base(Ei ) ⊆ Base(E j ) then Ei = E j .

We show that every maximal consistent subset of a knowledge base is captured by at

most one preferred extension.

Theorem 61 Let T = (Arg(6), R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency and closure under sub-arguments (under

preferred semantics). Let S ∈ Max(6). For all Ei , E j ∈ Extp(T ), if Base(Ei ) ⊆ S and

Base(E j ) ⊆ S, then Ei = E j .

The previous result allows us to delimit the maximum number of preferred extensions

a system may have. Like stable semantics, it is the number of maximal (for set inclusion)

consistent subsets of the knowledge base at hand.

Theorem 62 Let T = (Arg(6),R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency and closure under sub-arguments (under

preferred semantics). It holds that

1 ≤ |Extp(T )| ≤ |Max(6)|.



When a knowledge base is finite, each argumentation system enjoying the rationality

postulates has a finite number of preferred extensions.

Corollary 63 If a knowledge base 6 is finite, then for all T = (Arg(6),R) such that R

is conflict-dependent and T satisfies consistency and closure under sub-arguments (under

preferred semantics), Extp(T ) is finite.

Let us characterise the inferences that are drawn from a knowledge base 6 by an

argumentation system T satisfying the rationality postulates under preferred semantics. Let

ℜp be the set of all attack relations that ensure the postulates under preferred semantics:

ℜp =
⋃

6⊆L

{R ⊆ Arg(6) × Arg(6) | R is conflict-dependent and (Arg(6),R)

satisfies Postulates 22, 24, 26, 29 and 31 under preferred semantics} .

In his seminal paper, Dung (1995) has shown that the stable extensions of an argumen-

tation system are also preferred extensions of the system. Consequently, the set ℜp is a

subset of ℜs .

Property 64 It holds that ℜp ⊆ ℜs .

The set ℜp thus contains three disjoint subsets of attack relations:ℜp = ℜp1
∪ℜp2

∪ℜp3
:

• ℜp1
: the relations which are in ℜp ∩ ℜs1

.

• ℜp2
: the relations which are in ℜp ∩ ℜs2

.

• ℜp3
: the relations which are in ℜp ∩ ℜs3

.

Let us analyse each category of attack relations in turn. The first set is empty (i.e.,

ℜp1
= ∅) since we have shown previously that there is no attack relation which prevents

an argumentation system from having stable extensions (ℜs1
= ∅).

Attack relations of the category ℜp3
lead to coherent argumentation systems (their stable

extensions coincide with the preferred extensions) as shown in Theorem 53. Moreover,

the preferred extensions coincide with the naive ones, meaning that preferred semantics

provides no added value w.r.t. naive semantics.

Theorem 65 Let T =(Arg(6),R) be an argumentation system. If R ∈ ℜp3
then:

• For all S ∈ Max(6), Arg(S) ∈ Extp(T ).

• |Extp(T )| = |Max(6)|.

The output of an argumentation system is in this case the same as under naive semantics,

i.e., the universal conclusions given in Corollary 48.

Corollary 66 Let T =(Arg(6),R) be an argumentation system such that R ∈ ℜp3
.

Output(T ) =
⋂

Si ∈Max(6)

CN(Si ).

Let us now analyse the attack relations of the second category, ℜp2
. Remember that in

this case stable semantics chooses only some maximal consistent subsets of the knowledge

base at hand. Four situations may be encountered:

(1) The stable extensions and the preferred extensions of an argumentation system

coincide. Thus, preferred semantics provides no added value w.r.t. stable semantics.



Figure 3. Reasoning under preferred semantics.

Moreover, it leads to arbitrary results, as discussed in the previous subsection (i.e.,

when R ∈ ℜs2
).

(2) The preferred extensions consider additional but not all maximal consistent subsets

(other than the ones chosen by stable semantics). This case is similar to the previous

one and the argumentation system returns arbitrary results.

(3) The preferred extensions return all the maximal consistent subsets of the knowledge

base. This means that stable semantics chooses some maximal consistent subsets

and preferred semantics considers the remaining ones. This case collapses in the

case of attack relations of the category ℜp3
. We have seen that the result of preferred

semantics is already ensured by naive and stable semantics in this case.

(4) Some of the preferred extensions provide non-maximal consistent subsets of the

knowledge base. In this case, the result of the argumentation system is arbitrary.

To sum up, attack relations of the category ℜp2
may lead either to arbitrary results or

to results which can be provided by naive semantics. The results are characterised in the

following theorem.

Theorem 67 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6 such that R ∈ ℜp2
. Output(T ) =

⋂

CN(Si ) where Si ranges over {Si ∈

Cons(6) | ∃Ei ∈ Extp(T ) and Si = Base(Ei )} and Cons(6) = {S | S ⊆ 6, S is

consistent and Free(6) ⊆ S}.

The results of this section show that reasoning under preferred semantics is not recom-

mended, since it leads either to arbitrary results or to the results got under naive semantics.

Figure 3 summarises the different situations that may be encountered under this semantics.

5.4. Grounded and ideal semantics

This section analyses the outputs of argumentation systems under existing sceptical

semantics, namely grounded and ideal. Grounded semantics was proposed by Dung (1995).

It ensures a unique extension for every argumentation system, and is based on a sceptical

principle. It starts with non-attacked arguments, to which are added the arguments they

defend. This reinstatement process is repeated until a fixpoint is reached. Argumentation

systems that do not have non-attacked arguments have empty grounded extensions. In

Dung, Mancarella, and Toni (2007), this semantics was extended to the so-called ideal

semantics. The new semantics returns a unique extension which is an admissible set of

arguments contained by every preferred extension of an argumentation system. The follow-

ing properties were shown in Dung, Mancarella, and Toni (2007).

Property 68 (Dung, Mancarella, and Toni, 2007) Let T be an argumentation system.

• T admits a unique ideal extension.

• GE(T ) ⊆ IE(T ) ⊆
⋂

Ei ∈Extp(T ) Ei .

• If
⋂

Ei ∈Extp(T ) Ei is admissible, then IE(T ) =
⋂

Ei ∈Extp(T ) Ei .



The following example, borrowed from Dung, Mancarella, and Toni (2007), shows

some differences between ideal and grounded semantics.

Example 69 Let us consider the argumentation framework T = (A,R), where

• A = {a, b, c, d}.

• R = {(a, a), (a, b), (b, a), (c, d), (d, c)}.

It can be checked that:

• GE(T ) = ∅,

• Extp(T ) = {{b, c}, {b, d}}, and

• IE(T ) = {b}.

Before analysing the argumentation systems’ outputs under ideal and grounded

semantics, we provide a result of great importance. It shows that the set of arguments

built from Free(6) is an admissible extension of any argumentation system whose attack

relation is conflict-dependent. Thus, this is true even for systems that do not satisfy the free

precedence postulate.

Theorem 70 Let T = (Arg(6), R) be such that R is conflict-dependent.

• For all a ∈ Arg(Free(6)), a neither attacks nor is attacked by another argument

in Arg(6).

• Arg(Free(6)) is an admissible extension of T .

Since ideal semantics is based on preferred semantics, we analyse the two cases that may

be encountered with the latter. We start with the case of an argumentation system that uses

an attack relation of the category ℜp3
. We show that the ideal extension of such a system

coincides with the intersection of all of its preferred extensions. Moreover, it is exactly the

set of arguments built from the free part of the knowledge base.

Theorem 71 Let T =(Arg(6),R) be an argumentation system such that R ∈ ℜp3
.

IE(T ) =
⋂

Ei ∈Extp(T )

Ei = Arg(Free(6)).

Since arguments of Arg(Free(6)) are not attacked by any argument, then they belong

to the grounded extension of the argumentation system. Consequently, grounded and ideal

extensions coincide.

Corollary 72 Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp3
.

IE(T ) = GE(T ) = Arg(Free(6)).

From the previous results, it is possible to characterise the set of conclusions drawn

from a knowledge base using grounded and ideal semantics. It is the set of all formulae that

follow using the consequence operator CN from Free(6).

Theorem 73 Let T =(Arg(6),R) be an argumentation system such that R ∈ ℜp3
. The

output of T under grounded/ideal semantics is:

Output(T ) = CN(Free(6)).



Figure 4. Reasoning under grounded and ideal semantics.

It is worth pointing out that, in this case, argumentation systems generalise the

free consequences proposed by Benferhat, Dubois, and Prade (1997) for reasoning about

inconsistent propositional knowledge bases. Indeed, argumentation systems consider not

only propositional logic but also any other Tarskian logic.

Recall that the assumption attack relation leads to coherent argumentation systems, thus

their ideal and grounded semantics coincide.

Corollary 74 LetT = (Arg(6),Ras). For any6 ⊆ L,Output(T ) = CN(Free(6)).

Let us now consider the case where the attack relation of an argumentation system is

of the category ℜp2
. Here again, since the attack relation is conflict-dependent, the set of

arguments Arg(Free(6)) is contained by both ideal and grounded extensions.

Corollary 75 Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp2
.

The inclusions Arg(Free(6)) ⊆ GE(T ) ⊆ IE(T ) ⊆ S hold for some S ∈ Max(6).

In the case of the above inclusions being strict, i.e., Arg(Free(6)) ⊂ GE(T )

(respectivelyArg(Free(6)) ⊂ IE(T )), we show that the argumentation system T returns

arbitrary conclusions.

Theorem 76 Let T = (Arg(6),R) be an argumentation system such that R is

conflict-dependent and T satisfies the five postulates under grounded (respectively ideal)

semantics. IfArg(Free(6)) ⊂ GE(T ) (respectivelyArg(Free(6)) ⊂ IE(T )) then there

exists C ∈ C6 such that there exist x, x ′ ∈ C and x ∈ Output(T ) and x ′ /∈ Output(T ).

To sum up, ideal and grounded semantics either coincide and return as output the set

of all formulas that follow from the safe part of a knowledge base, i.e., CN(Free(6)), or

may both return arbitrary results. Figure 4 summarises the different situations encountered

under these two semantics.

6. Related work

This paper investigated the compatibility of Dung’s (1995) argumentation framework with

logical formalisms. For this purpose, it showed how to instantiate the framework from a

logical knowledge base, namely how to define the arguments in a systematic way. Then,

it proposed some basic postulates that the logical instantiations should satisfy, and studied

under which conditions the postulates may be violated. Next, it investigated the outputs of

such instantiations under various semantics.

There are some works in the literature which are in some ways related to ours. In

Caminada and Amgoud (2007), rationality postulates were proposed for instantiations that

use a particular language (it distinguishes between strict rules and defeasible rules). In our

work, we extended some of those postulates to Tarskian logics and proposed three new

ones. In Caminada and Amgoud (2007), the authors investigated when the ASPIC system

satisfies the postulates. In Gorogiannis and Hunter (2011), the authors focused on some

argumentation systems that are defined using propositional logic. They studied when those

systems satisfy some of the rationality postulates presented in this paper. Our work is more



general, since we considered a larger class of logics and did not focus on particular attack

relations. Our results hold for any attack relation that is conflict-dependent. Note that all the

attack relations that were studied in Gorogiannis and Hunter (2011) are conflict-dependent.

The second part of our paper on the outputs of argumentation systems under various

semantics is novel. There is almost no work on the topic, with the exception of Cayrol

(1995). Cayrol studied the underpinnings of stable semantics for one particular argumen-

tation system: the one that is grounded in propositional logic (a particular case of Tarski’s

logics) and uses the ‘assumption attack’ relation. She showed that there is a one-to-one

correspondence between the stable extensions of the system and the maximal consistent

subsets of the knowledge base over which the system is built. In our paper, this result is

generalised to any Tarskian logic and any attack relation. Moreover, we have shown that

this result is already ensured by naive semantics. Thus, in the case of the system studied

by Cayrol, stable semantics is useless. Finally, we have shown that this particular system

is coherent, i.e., its stable extensions coincide with its preferred ones. Our work is more

general, since it presented a complete view of the outputs of argumentation systems not

only under stable semantics but also under various other semantics.

7. Conclusion

The paper investigated Dung’s (1995) argumentation framework. It started by pointing out

its main limits, namely the gap between the abstract framework and the application for

which it may be used, the lack of rationality postulates that would describe the kind of

results expected from the framework, the lack of methodology for defining arguments and

the attacks between them, and finally an overview of the underpinnings of the different

acceptability semantics, as well as the basic concepts of the framework such as defence and

conflict-freeness. The paper gave an answer to each of these issues.

The paper extended Dung’s (1995) argumentation framework by taking into account the

logic from which arguments are built. The new framework is general since it is grounded

in any abstract logic in Tarski’s sense. Thus, a wide variety of logics can be used – even

those that have not yet been considered in argumentation, such as temporal logic, modal

logic, etc. The extension has two main advantages: first, it enforces the framework to avoid

unsound conclusions; second, it relates the different notions of Dung’s approach, like the

attack relation and conflict-freeness, to the knowledge base at hand.

In Caminada and Amgoud (2007), three rationality postulates were defined for

rule-based argumentation systems. The paper generalised the two postulates on direct

consistency and closure to any argumentation framework built over a monotonic logic,

and proposed three new postulates on sub-arguments, free precedence and exhaustiveness.

It then showed that indirect consistency is always satisfied if direct consistency is ensured.

Moreover, it showed that if consistency (respectively closure) is satisfied by the different

extensions, then it is also satisfied by the output of the framework.

The paper then presented a formal methodology for defining arguments from a knowl-

edge base, and for eliciting an appropriate attack relation. By appropriate, we mean an attack

relation that satisfies the postulates. It showed that an attack relation should be grounded in

the minimal conflicts that occur in the knowledge base at hand. An important result shows

that when ternary or more minimal conflicts occur in the knowledge base, symmetric attack

relations should be avoided since they lead to the violation of direct consistency.

Using well-behaved attack relations, the paper analysed the different acceptability

semantics introduced in Dung (1995) in terms of the subsets that are returned by each



extension. The results of the analysis are very surprising and, unfortunately, disappointing.

In fact, they show to what extent the rationality of Dung’s approach is at stake. Moreover,

it behaves in a completely arbitrary way. The first important result shows that maximal

conflict-free sets of arguments are sufficient in order to derive reasonable conclusions from

a knowledge base. Indeed, there is a one-to-one correspondence between maximal consistent

subsets of a knowledge base and maximal conflict-free sets of arguments. This means that

the different acceptability semantics defined in the literature are not necessary, and the notion

of defence is useless. It is also shown that under naive semantics, argumentation systems

generalise the coherence-based approach of Rescher and Manor (1970) to any Tarskian

logic. This is particularly the case for adjunctive logics.

Remember that stable extensions are maximal conflict-free sets of arguments. Does

this mean that stable semantics is appropriate? The answer is unfortunately ‘no’. Indeed,

stable extensions amount to either an arbitrary pick of some maximal consistent subsets

of the knowledge base, or to the consideration of all of them. In the first case, they lead

to arbitrary inferences whereas in the second case they lead to the result already ensured

by naive semantics. The case of preferred semantics is even worse, and so this semantics

should be avoided. The corresponding extensions represent some consistent subsets but not

necessarily maximal ones. Thus, they lead to arbitrary inferences. There are, however, two

pieces of good news. The first is that the number of (stable/preferred/naive) extensions is

finite as soon as the knowledge base is finite. The second is that stable extensions always

exist, meaning that semi-stable semantics proposed in Caminada (2006b) is useless since it

does not provide added value w.r.t. stable semantics. Reasoning under ideal and grounded

semantics may also be problematic. There are two possible situations: (i) the situation where

the two extensions (grounded and ideal) coincide with the set of arguments built from the

free part of a knowledge base; and (ii) the situation where both semantics lead to arbitrary

results.

One of the main reasons for this defective behaviour of Dung’s (1995) approach is the

attack relation. Indeed, we have shown that in order to ensure reasonable results, this relation

should capture the minimal conflicts that occur in the knowledge base at hand. A minimal

conflict is an inconsistent set of formulas. It is well known that the notion of inconsistency is

not oriented. Thus, it should be captured by a symmetric attack relation. However, we have

also shown that, due to the binary character of the attack relation, if it is symmetric, then

consistency often fails. Which is when n-ary (other than binary) minimal conflicts occur in

the knowledge base. The second reason is the definition of semantics without taking into

account the application to which the system is applied, and thus without considering the

structure of arguments.

Acknowledgements

The authors are very grateful to the anonymous referee for her/his valuable suggestions for improving

the presentation of this work.

Notes

1. Some fragments of well-known logics fail to be adjunctive, e.g., the pure implicational fragment
of classical logic as it is negationless, disjunctionless, and, of course, conjunctionless.

2. A strict rule x → y means that if x holds, then y holds with no exception whatsoever.
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Appendix

Property 5 Let X, X ′, X ′′ ⊆ L.

(1) X ⊆ X ′ ⇒ CN(X) ⊆ CN(X ′).

(2) CN(X) ∪ CN(X ′) ⊆ CN(X ∪ X ′).

(3) CN(X) = CN(X ′) ⇒ CN(X ∪ X ′′) = CN(X ′ ∪ X ′′).

(4) CN(X ∩ X ′) ⊆ CN(X) ∩ CN(X ′).

Proof Let X, X ′, X ′′ ⊆ L.

(1) Assume that X ⊆ X ′. According to the compactness axiom, it holds that

CN(X) =
⋃

Y⊆ f X CN(Y ).
⋃

Y⊆ f X CN(Y ) ⊆
⋃

Y⊆ f X ′ CN(Y ) = CN(X ′) since

Y ⊆ f X ⊂ X ′.

(2) X ⊆ X ∪ X ′, thus by monotonicity, CN(X) ⊆ CN(X ∪ X ′) (a). Similarly,

X ′ ⊆ X∪X ′ thus CN(X ′) ⊆ CN(X∪X ′) (b). From (a) and (b), CN(X)∪CN(X ′) ⊆

CN(X ∪ X ′).

(3) Assume that CN(X) = CN(X ′). According to the expansion axiom, the following

inclusions hold: X ′ ⊆ CN(X ′) and X ′′ ⊆ CN(X ′′). Thus, X ′ ∪ X ′′ ⊆ CN(X ′) ∪

CN(X ′′) = CN(X)∪CN(X ′′) (a). Moreover, X ⊆ X ∪ X ′′ thus CN(X) ⊆ CN(X ∪

X ′′) (a’). Similarly, X ′′ ⊆ X ∪ X ′′ thus CN(X ′′) ⊆ CN(X ∪ X ′′) (b’). From (a’)



and (b’), CN(X) ∪ CN(X ′′) ⊆ CN(X ∪ X ′′). From (a), it follows that X ′ ∪ X ′′ ⊆

CN(X ∪ X ′′). By monotonicity, CN(X ′ ∪ X ′′) ⊆ CN(CN(X ∪ X ′′)). Finally, by the

idempotence axiom, the inclusion CN(X ′ ∪ X ′′) ⊆ CN(X ∪ X ′′) holds. To show

that CN(X ∪ X ′′) ⊆ CN(X ′ ∪ X ′′), the same reasoning is applied by starting with

X instead of X ′.

(4) X ∩ X ′ ⊆ X thus CN(X ∩ X ′) ⊆ CN(X). Similarly, X ∩ X ′ ⊆ X ′ thus

CN(X ∩ X ′) ⊆ CN(X ′). Consequently, CN(X ∩ X ′) ⊆ CN(X) ∩ CN(X ′). �

Property 7 Let X ⊆ L.

(1) If X is consistent, then CN(X) is consistent as well.

(2) ∀X ′ ⊆ X, if X is consistent, then X ′ is consistent.

(3) ∀X ′ ⊆ X, if X ′ is inconsistent, then X is inconsistent.

Proof Let X ⊆ L. Assume that X is consistent, then CN(X) 6= L (1).

(1) Let us now assume that CN(X) is inconsistent. This means that CN(CN(X)) = L.

However, according to the idempotence axiom, CN(CN(X)) = CN(X). Thus,

CN(X) = L, which contradicts (1).

(2) Assume that ∃X ′ ⊆ X such that X ′ is inconsistent. This means that CN(X ′) = L.

However, since X ′ ⊆ X then CN(X ′) ⊆ CN(X) (according to the monotonicity

axiom). Thus, L ⊆ CN(X). Since CN(X) ⊆ L, then CN(X) = L. Thus, X is

inconsistent. Contradiction.

(3) Let X ′ ⊆ X . Assume that X ′ is inconsistent. Since X ′ ⊆ X thus CN(X ′) ⊆ CN(X)

(by the monotonicity axiom). Since X ′ is inconsistent, CN(X ′) = L. Consequently,

CN(X) = L which means that X is inconsistent. �

Property 9 For all X ⊆ 6 ⊆ L,

• if X is consistent then CX = ∅;

• if X is consistent then X ⊆ S for some S ∈ Max(6);

• if X is inconsistent then there exists at least one minimal conflict C such that C ⊆ X.

Proof The first and third items are obvious. Let us now prove the second item. Let us

construct a maximal consistent subset of 6 that contains X . Consider an enumeration

s1, s2, . . . of 6. Define a series S0, S1, S2, . . . of subsets of 6 as follows: S0 is X , and

Sn+1 = Sn ∪ {sn+1} if Sn ∪ {sn+1} is consistent, otherwise Sn+1 = Sn . By construction,

Sn is consistent for all n ≥ 0. Let S =
⋃

n≥0 Sn . Trivially, X ⊆ S. We now show S ∈

Max(6). Assume first that S is inconsistent, i.e., CN(S) = L according to Definition 6.

Tarski’s absurdity axiom yields that x ∈ CN(S) for some x satisfying CN({x}) = L. Since

Sn ⊆ Sn+1, Tarski’s compactness axiom means that x ∈ CN(S) iff x ∈ CN(Sk) for some

k. However, x ∈ CN(Sk) means that x ∈ Sk is inconsistent – a contradiction. Hence, we

have shown that S is consistent. By construction, it is a subset of 6. It remains to show that

it is a maximal consistent subset of 6. Let y be in 6 \S. Assume that S ∪ {y} is consistent.

Since y ∈ 6, y is some sh in the above enumeration. Should S ∪ {y} be consistent, so

would Sh ∪{y} be, in view of Tarski’s compactness axiom (monotony direction). However,

Sh ∪ {y} consistent would mean that y ∈ Sh+1 hence y ∈ S, a contradiction. �

Property 11 Let (L, CN) be adjunctive, C ⊆ L be a minimal conflict. For all X ⊂ C,

if X 6= ∅, then:

(1) ∃x ∈ L such that CN({x}) = CN(X).

(2) ∃x1 ∈ CN(X) and ∃x2 ∈ CN(C \ X) such that the set {x1, x2} is inconsistent.



Proof Let C be a minimal conflict. Consider X ⊂ C such that X 6= ∅.

We prove the first item of the property by induction, after we first take care to show that

X is finite. By Tarski’s requirements, there exists x0 ∈ L such that CN({x0}) = L. Since

C is a conflict, CN(C) = CN({x0}). As a consequence, x0 ∈ CN(C). However, CN(C) =
⋃

C ′⊆ f C CN(C ′) by Tarski’s requirements. Thus, x0 ∈ CN(C) means that there exists

C ′ ⊆ f C such that x0 ∈ CN(C ′). This says that C ′ is a conflict. Since C is a minimal conflict,

C = C ′ and it follows that C is finite. Of course, so is X : let us write X = {x1, . . . , xn}. Base

step: n = 1. Taking x to be x1 is enough. Induction step:Assume the lemma is true up to rank

n − 1. As CN is a closure operator, CN({x1, . . . , xn}) = CN(CN({x1, . . . , xn−1}) ∪ {xn}).

The induction hypothesis entails ∃x ∈ L such that CN(CN({x1, . . . , xn−1}) ∪ {xn}) =

CN(CN({x}) ∪ {xn}). Then, CN({x1, . . . , xn}) = CN({x, xn}). Hence, there exists y ∈ L

such that CN({x, xn}) = CN({y}) because (L, CN) is adjunctive. Since CN({x1, . . . , xn})=

CN({x, xn}) was just proved, it follows that CN({y})=CN({x1, . . . , xn}).

Take X1 = X and X2 = C \ X1. Since X is a non-empty proper subset of C , so are both

X1 and X2. Then, the first bullet of this property can be applied to X1 and X2. As a result,

∃x1 ∈ L such that CN({x1}) = CN(X1) and ∃x2 ∈ L such that CN({x2}) = CN(X2).

The expansion axiom gives {x1} ⊆ CN({x1}) and {x2} ⊆ CN({x2}). Thus, x1 ∈ CN(X1)

and x2 ∈ CN(X2). Using the expansion axiom again, X1 ⊆ CN(X1) and X2 ⊆ CN(X2).

Thus, X1 ∪ X2 ⊆ CN(X1) ∪ CN(X2) = CN({x1}) ∪ CN({x2}). It follows that C ⊆

CN({x1}) ∪ CN({x2}). Using Property 5, CN({x1}) ∪ CN({x2}) ⊆ CN({x1, x2}), thus C ⊆

CN({x1, x2}). Since C is inconsistent, Property 7 gives that CN({x1, x2}) is inconsistent as

well. By the definition of inconsistency, it follows that CN(CN({x1, x2})) = L. Applying

the idempotence axiom, CN({x1, x2}) = L, thus the set {x1, x2} is inconsistent. �

Property 14 For all (X, x) ∈ Arg(6), the set {x} is consistent.

Proof Let (X, x) ∈ Arg(6). From Definition 13, the support X is consistent. Thus,

according to Property 7, CN(X) is consistent as well. Since x ∈ CN(X), then {x} ⊆ CN(X)

thus {x} is consistent. �

Property 15 Let 6 be a knowledge base such that for all x ∈ 6, x 6∈ CN(∅). For all

x ∈ 6 such that the set {x} is consistent, ({x}, x) ∈ Arg(6).

Proof Let x ∈ 6 be such that the set {x} is consistent. Since x 6∈ CN(∅), then {x} is a

minimal set such that x ∈ CN({x}). It follows that ({x}, x) ∈ Arg(6). �

Property 16 Arg(6) ⊆ Arg(6′) whenever 6 ⊆ 6′ ⊆ L.

Proof Let 6 ⊆ 6′ ⊆ L. Assume that (X, x) ∈ Arg(6) and (X, x) /∈ Arg(6′). Since

(X, x) /∈ Arg(6′), then there are four possible cases:

(1) X is not a subset of 6′. This is impossible since (X, x) ∈ Arg(6), thus X ⊆ 6 ⊆

6′.

(2) X is inconsistent. This is impossible since (X, x) ∈ Arg(6).

(3) x /∈ CN(X). This is impossible since (X, x) ∈ Arg(6) hence x ∈ CN(X).

(4) X is not minimal. This means that ∃X ′ ⊂ X that satisfies conditions 1–3 of

Definition 13. This is impossible since (X, x) ∈ Arg(6). �

Property 20 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6 and Ext(T ) its set of extensions under a given semantics. It holds that

Output(T ) =
⋂

Ei ∈Ext(T ) Concs(Ei ).

Proof Let T = (Arg(6),R) be an argumentation system over a base 6.



(1) Let x ∈ Output(T ). Thus, for all Ei ∈ Ext(T ), ∃ai ∈ Ei such thatConc(ai ) = x .

It follows that x ∈ Concs(Ei ), ∀Ei and hence x ∈ ∩Concs(Ei ).

(2) Assume that x ∈ ∩Concs(Ei ). Thus, ∀Ei ∈ Ext(T ), ∃ai ∈ Ei such that

Conc(ai ) = x . Consequently, x ∈ Output(T ).

�

Property 21 Let T = (Arg(6),R) be an argumentation system over a knowledge base

6. Output(T ) ⊆ CN(6).

Proof Let T = (Arg(6),R) be an argumentation system over a knowledge base 6.

Let x ∈ Output(T ). Thus, ∃a ∈ Arg(6) such that Conc(a) = x . Besides, x ∈

CN(Supp(a)) and Supp(a) ⊆ 6. By monotonicity of CN, CN(Supp(a)) ⊆ CN(6).

Thus, x ∈ CN(6). �

Property 64 It holds that ℜp ⊆ ℜs .

Proof Let R ∈ ℜp. Thus, for all T = (Arg(6),R), T satisfies all the postulates, i.e., for

all E ∈ Extp(T ),

• Concs(E) is consistent;

• Concs(E) = CN(Concs(E));

• for all a ∈ E , Sub(a) ⊆ E ;

• Arg(Free(6)) ⊆ E ;

• for all (X, x) ∈ Arg(6), if X ∪ {x} ⊆ Concs(E), then (X, x) ∈ E .

Since Exts(T ) ⊆ Extp(T ), the previous properties are satisfied by all the stable

extensions of T . Consequently, R ∈ ℜs . �

Proposition 17 Let (L, CN) be adjunctive and 6 be a knowledge base. For all non-

empty proper subsets X of some minimal conflict C ∈ C6 , there exists a ∈ Arg(6) such

that Supp(a) = X.

Proof Let C ∈ C6 and X ⊆ C such that X is non-empty. Assume ∄a ∈ Arg(6) such that

Supp(a) = X – i.e., there exists no x such that X is a minimal consistent set satisfying

x ∈ CN(X). So, for all x ∈ L, if x ∈ CN(X) then ∃Y ⊂ X such that x ∈ CN(Y ). In

short, for all x ∈ CN(X), there exists Y ⊂ X such that x ∈ CN(Y ). Property 11 says that

there exists z ∈ L such that CN({z}) = CN(X). However, z 6∈ CN(Y ) for all Y ⊂ X

otherwise C would fail to be minimal (because Y ∪ (C \ X) ⊂ C while z ∈ CN(Y ) implies

CN(C) = CN(X ∪ (C \ X)) = CN({z} ∪ (C \ X)) ⊆ CN(Y ∪ (C \ X))). A contradiction

arises. �

Proposition 23 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6. If T is closed under CN, then Output(T ) = CN(Output(T )).

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6, and

Ext(T ) be its set of extensions under a given semantics. Assume that T satisfies closure

under CN. From the Expansion axiom, it follows that Output(T ) ⊆ CN(Output(T )).

Assume now that x ∈ CN(Output(T )). Thus, ∃x1, . . . , xn ∈ Output(T ) such

that x ∈ CN({x1, . . . , xn}). From Property 20, x1, . . . , xn ∈ ∩Concs(Ei ) where

Ei ∈ Ext(T ). From Property 5, it holds that CN({x1, . . . , xn}) ⊆ CN(∩Concs(Ei )).

Again, from Property 5, x ∈ CN(Concs(E1)) ∩ . . . ∩ CN(Concs(En)). Since T satisfies

closure under CN, then for each Ei it holds that CN(Concs(Ei )) = Concs(Ei ). Thus,

x ∈ Concs(E1) ∩ . . . ∩ Concs(En). From Property 20, it holds that x ∈ Output(T ). �



Proposition 25 Let T = (Args(6),R) be an argumentation system over a knowledge

base 6. If T is closed under sub-arguments and under CN, then for all E ∈ Ext(T ),

Concs(E) = CN(Base(E)).

Proof Assume that T = (Args(6),R) is closed under sub-arguments and under CN.

From Property 4 in Amgoud (2012), since T is closed under sub-arguments, then it fol-

lows that Base(E) ⊆ Concs(E). By monotonicity of CN, we get CN(Base(E)) ⊆

CN(Concs(E)). Since T is closed under CN, then CN(Base(E)) ⊆ Concs(E). Besides,

by definition of Concs(E), Concs(E) ⊆
⋃

CN(Supp(ai )) with ai ∈ E . From Property

5, it follows that Concs(E) ⊆ CN(
⋃

Supp(ai )), thus Concs(E) ⊆ CN(Base(E)). �

Proposition 27 If an argumentation system T = (Arg(6),R) satisfies consistency,

then the set Output(T ) is consistent.

Proof Let T = (Arg(6),R) be an argumentation system built over a knowledge base 6.

Assume thatT satisfies consistency.Thus,∀Ei ∈ Ext(T ),Concs(Ei ) is consistent. LetE be

a given extension in the set Ext(T ). Since ∩Concs(Ei ) ⊆ Concs(E), then ∩Concs(Ei )

is consistent as well. Besides, from Property 20, Output(T ) = ∩Concs(Ei ). It follows

that Output(T ) is consistent. �

Proposition 28 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6 such that for all x ∈ 6, x /∈ CN(∅). If T satisfies consistency and is closed under

sub-arguments, then for all E ∈ Ext(T ), Base(E) is consistent.

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6.

Assume that T satisfies consistency and closure under sub-arguments. From closure under

sub-arguments, it follows that for all E ∈ Ext(T ), Base(E) ⊆ Concs(E) (from Property

4 in Amgoud, 2012). Since T satisfies consistency, the set Concs(E) is consistent. From

Property 7, it follows that Base(E) is consistent. �

Proposition 30 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6. If T satisfies free precedence, then Free(6) ⊆ Output(T ) (under any of the

reviewed semantics).

Proof Let T = (Arg(6),R) be an argumentation system over a knowledge base 6,

and let Ext(T ) be its set of extensions under any of the reviewed semantics. Assume

that T satisfies Postulate 29. Thus, for all E ∈ Ext(T ), Arg(Free(6)) ⊆ E . Assume

that Free(6) 6= ∅. Thus, for all x ∈ Free(6), ({x}, x) ∈ Arg(Free(6)) (indeed,

x /∈ CN(∅)) and thus, ({x}, x) ∈ E (for all E ∈ Ext(T )). Consequently, Free(6) ⊆

Concs(E) (for all E ∈ Ext). So, Free(6) ⊆ Output(T ). �

Proposition 32 If an argumentation systemT is closed under both CN and sub-arguments

and satisfies the exhaustiveness postulate, then ∀E ∈ Ext(T ), E = Arg(Base(E)) (under

any of the reviewed semantics).

Proof Let T be an argumentation system that satisfies exhaustiveness and that is closed

under both CN and sub-arguments. Let Ext(T ) be its extensions under any of the reviewed

semantics. Let E ∈ Ext(T ). From the definition of Arg and Base, it follows that

E ⊆ Arg(Base(E)).



Assume now a ∈ Arg(Base(E)) and let a = (X, x). Thus, X ⊆ Base(E). By

monotonicity of CN, CN(X) ⊆ CN(Base(E)). From Proposition 25, since T is closed

under both CN and sub-arguments, then Concs(E) = CN(Base(E)). Thus, CN(X) ⊆

Concs(E). Besides, X ⊆ CN(X) (from the Expansion Axiom of CN) and x ∈ CN(X)

(from the definition of an argument), thus, X ∪ {x} ⊆ Concs(E). By exhaustiveness of T ,

a ∈ E . �

Proposition 34 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R is conflict-dependent. If T satisfies consistency and is closed under

sub-arguments (under naive and stable semantics), then it is closed under CN (under naive

and stable semantics).

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R is conflict-dependent. Assume that T is closed under sub-arguments and satisfies

consistency. Assume also that T violates closure under CN. Thus, ∃E ∈ Extn(T ) such that

Concs(E) 6= CN(Concs(E)). This means that ∃x ∈ CN(Concs(E)) and x /∈ Concs(E).

Besides, CN(Concs(E)) ⊆ CN(Base(E)). Thus, x ∈ CN(Base(E)). Since CN verifies

compactness, then ∃X ⊆ Base(E) such that X is finite and x ∈ CN(X). Moreover,

from Proposition 28, Base(E) is consistent. Then, X is consistent as well (from Property

7). Consequently, the pair (X, x) is an argument. Besides, since x /∈ Concs(E) then

(X, x) /∈ E . This means that ∃a ∈ E such that aR(X, x) or (X, x)Ra. Finally, since

R is conflict-dependent, then Supp(a) ∪ X is inconsistent and consequently Base(E) is

inconsistent. This contradicts the assumption.

Since Exts(T ) ⊆ Extn(T ), then since T satisfies closure under CN under naive

semantics, then it also satisfies the postulate under stable semantics. �

Proposition 36 Let (Arg(6),R) be such that R is conflict-dependent. If 6 is consistent,

then R = ∅.

Proof Let (Arg(6),R) be such that R is conflict-dependent.Assume that 6 is consistent.

Then, for all a, b ∈ Arg(6), Supp(a) ∪ Supp(b) is consistent. Since R is conflict-

dependent, then (a, b) /∈ R. Thus, R = ∅. �

Proposition 37 Let (Arg(6),R) be such that R is conflict-dependent. ∀E ⊆ Arg(6),

if Base(E) is consistent, then E is conflict-free.

Proof Let E ⊆ Arg(6). Since Base(E) is consistent, then so is Supp(a) ∪ Supp(b)

for all a and b in E (according to Property 7). Hence, there exists no minimal conflict

C ⊆ Supp(a) ∪ Supp(b). By the definition of R being conflict-dependent, (a, b) /∈ R

ensues. �

Proposition 38 Let (Arg(6),R) be such that R is conflict-dependent. For all

a ∈ Arg(6), (a, a) /∈ R.

Proof Assume that R is conflict-dependent and a ∈ Arg(6) such that(a, a) ∈ R. Since

R is conflict-dependent, then ∃C ∈ C6 such that C ⊆ Supp(a). This means that Supp(a)

is inconsistent. This contradicts the fact that a is an argument. �

Proposition 40 Let (L, CN) be adjunctive and 6 be a knowledge base such that ∃C ∈ C6

and |C | > 2. If R is conflict-dependent and symmetric, then the argumentation system

(Arg(6),R) violates consistency.



Proof Let C be a minimal conflict in a knowledge base6. Consider a partition {X1, X2, X3}

of C . Due to Proposition 17, there exist a1, a2, a3 in Arg(6) such that CN(Supp(ai )) =

CN(X i ) for i = 1...3. For {a1, a2, a3} not to be an admissible extension, either it is not

conflict-free or it fails to defend its elements. Assume that {a1, a2, a3} is not conflict-free,

i.e., aiRa j for some i and j in {1, 2, 3}. Since R is conflict-dependent, there exists C ′ ∈ C6

such that C ′ ⊆ Supp(ai )∪Supp(a j ). Hence, CN(Supp(ai )∪Supp(a j )) = L. However,

CN(Supp(ai ) ∪ Supp(a j )) = CN(CN(Supp(ai )) ∪ CN(Supp(a j ))) = CN(CN(X i ) ∪

CN(X j )) = CN(X i ∪ X j ), meaning that X i ∪ X j is an inconsistent proper subset of C ,

contradicting C ∈ C6 . Otherwise, assume that {a1, a2, a3} fails to defend its elements. It

obviously cannot be the case because R is symmetric: if aRai then aiRa. �

Theorem 41 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R is conflict-dependent. If T satisfies consistency and is closed under

sub-arguments (under naive semantics), then:

• For all E ∈ Extn(T ), Base(E) ∈ Max(6).

• For all E ∈ Extn(T ), E = Arg(Base(E)).

• For all Ei , E j ∈ Extn(T ), if Base(Ei ) = Base(E j ) then Ei = E j .

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R is conflict-dependent. Assume that T satisfies consistency and is closed under sub-

arguments. Let E ∈ Extn(T ). From Proposition 28, Base(E) is consistent.

Assume now that Base(E) is not maximal (for set inclusion) consistent. Thus,

∃x ∈ 6 \Base(E) such that Base(E)∪{x} is consistent. This means that {x} is consistent.

Thus, ∃a ∈ A such that Supp(a) = {x}. Since x /∈ Base(E), then a /∈ E . Since E is

a naive extension, then ∃b ∈ E such that aRb or bRa. Since R is conflict-dependent,

then Supp(a)∪Supp(b) is inconsistent. But, Supp(b) ⊆ Base(E), this would mean that

Base(E) ∪ {x} is inconsistent. Contradiction.

Let E ∈ Extn(T ). It is obvious that E ⊆ Arg(Base(E)) since the construction of

arguments is monotonic. Let a ∈ Arg(Base(E)). Thus, Supp(a) ⊆ Base(E). Assume

that a /∈ E , then ∃b ∈ E such that aRb or bRa. Since R is conflict-dependent, then

Supp(a) ∪ Supp(b) is inconsistent. Besides, Supp(a) ∪ Supp(b) ⊆ Base(E). This

means that Base(E) is inconsistent. Contradiction.

Now let Ei , E j ∈ Extn(T ). Assume that Base(Ei ) = Base(E j ). Then,

Arg(Base(Ei ))=Arg(Base(E j )). Besides, from the second bullet of the theorem, Ei =

Arg(Base(Ei )) and E j = Arg(Base(E j )). Consequently, Ei = E j . �

Theorem 42 Let (L, CN) be adjunctive. Let T = (Arg(6), R) be an argumentation

system over a knowledge base 6 such that R is conflict-dependent. If T satisfies consistency

and is closed under sub-arguments (under naive semantics), then:

• For all S ∈ Max(6), Arg(S) ∈ Extn(T ).

• For all Si ,S j ∈ Max(6), if Arg(Si ) = Arg(S j ) then Si = S j .

• For all S ∈ Max(6), S = Base(Arg(S)).

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R is conflict-dependent. Assume that T satisfies Postulates 24 and 26.

Let S ∈ Max(6), and assume that Arg(S) /∈ Extn(T ). Since R is conflict-dependent

and S is consistent, it follows from Proposition 37 that Arg(S) is conflict-free. Thus,

Arg(S) is not maximal for set inclusion. So, ∃a ∈ A such that Arg(S) ∪ {a} is

conflict-free. There are two possibilities:



(1) S ∪ Supp(a) is consistent. But since S ∈ Max(6), then Supp(a) ⊆ S, and this

would mean that a ∈ Arg(S).

(2) S ∪ Supp(a) is inconsistent. Thus, ∃C ∈ C6 such that C ⊆ S ∪ Supp(a). Let

X1 = C∩S and X2 = C∩Supp(a)with X1 6= ∅ and X2 6= ∅ (sinceS andSupp(a)

are consistent). From Property 11, ∃x1 ∈ CN(X1) and ∃x2 ∈ CN(X2) such that the

set {x1, x2} is inconsistent. Note that (X1, x1) and (X2, x2) are arguments. Moreover,

(X1, x1) ∈ Arg(S) and (X2, x2) ∈ Sub(a). Besides, sinceArg(S)∪{a} is conflict-

free, then ∃E ∈ Ext(T ) such that Arg(S) ∪ {a} ⊆ E . Thus, (X1, x1) ∈ E . Since

T is closed under sub-arguments then (X2, x2) ∈ E . Thus, {x1, x2} ⊆ Concs(E).

From Property 7, it follows that Concs(E) is inconsistent. This contradicts the fact

that T satisfies consistency.

Now let Si ,S j ∈ Max(6) be such that Arg(Si ) = Arg(S j ). Assume that Si 6= S j , thus

∃x ∈ Si and x /∈ S j . Besides, if Si is consistent, so is the set {x}. Consequently, ∃a ∈ A

such that Supp(a) = {x}. It follows also that a ∈ Arg(Si ) and thus a ∈ Arg(S j ). By

definition of an argument, Supp(a) ⊆ S j . Contradiction.

Let S ∈ Max(6). Since S is consistent, then ∀x ∈ S, it holds that the set {x} is consistent

as well (from Property 7). Then, ({x}, x) is an argument inArg(S) (from Property 15). Thus,

S ⊆ Base(Arg(S)). Conversely, let x ∈ Base(Arg(S)). By definition of the function

Base, ∃a ∈ Arg(S) such that x ∈ Supp(a). Besides, by definition of an argument,

Supp(a) ⊆ S. Consequently, x ∈ S. �

Theorem 46 Let T = (Arg(6), R) be an argumentation system over a knowledge base 6

such that R is conflict-dependent, T satisfies consistency and is closed under sub-arguments

(under naive semantics). Output(T ) =
⋂

CN(Si ) where Si ranges over {Si ∈ Max(6) |

∃Ei ∈ Extn(T ) and Si = Base(Ei )}.

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R is conflict-dependent. Assume that T satisfies consistency and is closed under sub-

arguments. From Proposition 34, T enjoys closure under CN (under naive semantics). From

Proposition 25, for all E ∈ Extn(T ),Concs(E) = CN(Base(E)). Besides, from Theorem

41, for all Ei ∈ Extn(T ), ∃!Si ∈ Max(6) such that Base(Ei ) = Si . Thus, Concs(Ei ) =

CN(Si ). By definition, Output(T ) =
⋂

Concs(Ei ), thus Output(T ) =
⋂

CN(Si ). �

Theorem 49 Let T = (Arg(6), R) be an argumentation system over a knowledge base

6 such that R is conflict-dependent. If T satisfies consistency and closure under sub-

arguments (under stable semantics) and Exts(T ) 6= ∅, then:

• For all E ∈ Exts(T ), Base(E) ∈ Max(6).

• For all E ∈ Exts(T ), E = Arg(Base(E)).

• For all Ei , E j ∈ Exts(T ), if Base(Ei ) = Base(E j ) then Ei = E j .

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6

such that R is conflict-dependent. Let E ∈ Exts(T ). Since T satisfies Postulates 22, 24

and 26, then Base(E) is consistent (from Proposition 28). Assume now that Base(E)

is not maximal for set inclusion. Thus, ∃x ∈ 6 \ Base(E) such that Base(E) ∪ {x} is

consistent. This means that {x} is consistent. Thus, from Property 15, ∃a ∈ Arg(6) such

that Supp(a) = {x}. Since x /∈ Base(E), then a /∈ E . Since E is a stable extension,

then ∃b ∈ E such that bRa. Since R is conflict-dependent, then Supp(a) ∪ Supp(b)

is inconsistent. But, Supp(b) ⊆ Base(E), which would mean that Base(E) ∪ {x} is

inconsistent. Contradiction.



Let E ∈ Exts(T ). It is obvious that E ⊆ Arg(Base(E)) since the construction of

arguments is monotonic. Let a ∈ Arg(Base(E)).Thus,Supp(a) ⊆ Base(E).Assume that

a /∈ E , then ∃b ∈ E such that bRa. Since R is conflict-dependent, then Supp(a)∪Supp(b)

is inconsistent. Besides, Supp(a) ∪ Supp(b) ⊆ Base(E). This means that Base(E) is

inconsistent. Contradiction.

Now let Ei , E j ∈ Exts(T ). Assume that Base(Ei ) = Base(E j ). Then,

Arg(Base(Ei )) = Arg(Base(E j )). Besides, from bullet 2 of the theorem, Ei

= Arg(Base(Ei )) and E j = Arg(Base(E j )). Consequently, Ei = E j . �

Theorem 50 It holds that ℜs1 = ∅.

Proof Let T = (Arg(6),R) be an argumentation system over a knowledge base 6 such

that R ∈ ℜs1. Thus, Output(T ) = ∅. Assume that Free(6) 6= ∅. Thus, T violates free

precedence postulate. This contradicts the fact that R ∈ ℜs1. �

Theorem 51 Let T = (Arg(6), R) be an argumentation system over a knowledge base 6

such that R ∈ ℜs2
. Output(T ) =

⋂

CN(Si ) where Si ranges over {Si ∈ Max(6) | ∃Ei ∈

Exts(T ) and Si = Base(Ei )}.

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R ∈ ℜs2. From Proposition 25, for all Ei ∈ Exts(T ), Concs(Ei ) = CN(Base(Ei )).

Thus,Output(T ) =
⋂

CN(Base(Ei ))withEi ∈ Exts(T ). FromTheorem 49, for allEi ∈

Exts(T ), ∃!Si ∈ Max(6) such that Base(Ei ) = Si . Thus, Output(T ) =
⋂

CN(Si ). �

Theorem 52 Let T = (Arg(6), R) be an argumentation system over a knowledge base

6 such that R ∈ ℜs3. For all S ∈ Max(6), Arg(S) ∈ Exts(T ).

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6

such that R ∈ ℜs3. Let S ∈ Max(6). Since |Exts(T )(T )| = |Max(6)|, then from

Theorem 49, ∃E ∈ Exts(T ) such that Base(E) = S. Besides, from the same theorem,

E = Arg(Base(E)), thus E = Arg(S). Consequently, Arg(S) ∈ Exts(T ). �

Theorem 53 Let T = (Arg(6), R) be an argumentation system over a knowledge base

6 such that R ∈ ℜs3. The equality Extn(T ) = Exts(T ) holds. If T satisfies the postulates

under preferred semantics, then Exts(T ) = Extp(T ).

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6

such that R ∈ ℜs3. From Theorem 52, for all S ∈ Max(6), Arg(S) ∈ Exts(T ). From

Theorem 41, |Extn(T )| ≤ |Max(6)|. Thus, Extn(T ) = Exts(T ). Assume now that T

satisfies the postulates under preferred semantics, then from Theorem 60, |Extp(T )| =

|Max(6)| and Exts(T ) = Extp(T ). �

Theorem 58 Let T = (Arg(6), R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency and closure under sub-arguments (under

preferred semantics). For all E ∈ Extp(T ), there exists S ∈ Max(6) such that

Base(E) ⊆ S.

Proof Let T = (Arg(6),R) be an argumentation system such that R is conflict-

dependent and T satisfies consistency and closure under sub-arguments. Let E ∈ Extp(T ).

Due to consistency and closure under sub-arguments, Base(E) is consistent (cf.

Proposition 28). From Property 9, there exists S ∈ Max(6) such that Base(E) ⊆ S.

�



Theorem 60 Let T = (Arg(6), R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency and closure under sub-arguments (under

preferred semantics). For all Ei , E j ∈ Extp(T ), if Base(Ei ) ⊆ Base(E j ) then Ei = E j .

Proof LetT = (Arg(6),R)be an argumentation system such thatR is conflict-dependent

andT satisfies consistency and closure under sub-arguments.Assume thatEi , E j ∈ Extp(T )

and Base(Ei ) ⊆ Base(E j ).

We first show that ∀x ∈ {i, j}, Arg(Base(Ex )) is conflict-free. Assume that

Arg(Base(Ex )) is not conflict-free. Thus, ∃a, b ∈ Arg(Base(Ex )) such that aRb or

bRa. Since R is conflict-dependent, then Supp(a) ∪ Supp(b) is inconsistent. Besides,

Supp(a) ∪ Supp(b) ⊆ Base(Ex ). Thus, Base(Ex ) is inconsistent. This contradicts

Proposition 28.

Assume that Ei \ E j 6= ∅. Let E = E j ∪ (Ei \ E j ). E ⊆ Arg(Base(E j )). Thus, E is

conflict-free (since Arg(Base(E j )) is conflict-free). Moreover, E defends any element in

E j (since E j ∈ Extp(T )) and any element in Ei \ E j (since Ei ∈ Extp(T )). Thus, E is an

admissible set. This contradicts the fact that E j ∈ Extp(T ). The same reasoning holds for

the case E j \ Ei 6= ∅ and having E = Ei ∪ E j \ Ei . �

Theorem 61 Let T = (Arg(6), R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency and closure under sub-arguments (under

preferred semantics). Let S ∈ Max(6). For all Ei , E j ∈ Extp(T ), if Base(Ei ) ⊆ S and

Base(E j ) ⊆ S, then Ei = E j .

Proof LetT =(Arg(6),R)be an argumentation system such thatR is conflict-dependent

and T satisfies consistency and closure under sub-arguments (under preferred semantics).

Assume that there exist two distinct preferred extensions E1 and E2 such that for some S ∈

Max(6), both Base(E1) ⊆ S and Base(E2) ⊆ S hold. Then, Base(E1)∪Base(E2) ⊆ S

andBase(E1)∪Base(E2) is consistent. Since R is conflict-dependent, aRb would demand

that Supp(a)∪Supp(b) be inconsistent. Therefore, aRb is impossible for a and b both in

E1∪E2. That is,E1∪E2 is conflict-free. SinceE1 is an extension, it defends all arguments inE1.

Since E2 is an extension, it defends all arguments in E2. Hence, E1∪E2 defends all arguments

in E1 ∪E2. That is, E1 ∪E2 is an admissible set, and there exists a preferred extension E3 that

contains it (possibly improperly).According to Theorem 60,Base(E1) ⊆ Base(E1∪E2) =

Base(E3) yield E1 = E3, and, similarly, Base(E2) ⊆ Base(E1 ∪ E2) = Base(E3) yield

E2 = E3. Therefore, E1 = E2, contradicting the assumption that E1 and E2 are distinct. �

Theorem 62 Let T = (Arg(6),R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency and closure under sub-arguments (under

preferred semantics). It holds that 1 ≤ |Extp(T )| ≤ |Max(6)|.

Proof LetT =(Arg(6),R)be an argumentation system such thatR is conflict-dependent

and T satisfies consistency and closure under sub-arguments (under preferred semantics).

From Theorem 58, for all E ∈ Extp(T ), ∃S ∈ Max(6) such that Base(E) ⊆ S. From

Theorem 61, there cannot exist two distinct preferred extensions Ei and E j such that for

some S ∈ Max(6), both Base(Ei ) ⊆ S and Base(E j ) ⊆ S. Thus, every S ∈ Max(6)

is captured by at most one preferred extension of T . It follows that 1 ≤ |Extp(T )| ≤

|Max(6)|. �

Theorem 65 Let T =(Arg(6),R) be an argumentation system. If R ∈ ℜp3
then:

• for all S ∈ Max(6), Arg(S) ∈ Extp(T );

• |Extp(T )| = |Max(6)|.



Proof Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp3
. From

Theorem 52, for all S ∈ Max(6), Arg(S) ∈ Exts(T ). Thus, Arg(S) ∈ Extp(T ).

Since R ∈ ℜp3
, thus |Exts(T )| = |Max(6)|. Assume now that there exists

E ∈ Extp(T ) such that Base(E) /∈ Max(6). Thus, ∃S ∈ Max(6) such that

Base(E) ⊆ S. From the previous result, Arg(S) ∈ Extp(T ). From Theorem 60,

E = Arg(S). Consequently, |Extp(T )| = |Max(6)|. �

Theorem 67 Let T = (Arg(6),R) be an argumentation system over a knowledge

base 6 such that R ∈ ℜp2
. Output(T ) =

⋂

CN(Si ) where Si ranges over {Si ∈

Cons(6) | ∃Ei ∈ Extp(T ) and Si = Base(Ei )}.

Proof Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp2
. Let

E ∈ Extp(T ). From Proposition 25, since T is closed both under CN and under sub-

arguments, then Concs(E) = CN(Base(E)). From Definition 19, Output(T ) =
⋂

Concs(Ei ), Ei ∈ Extp(T ). Thus, Output(T ) =
⋂

CN(Base(Ei )), Ei ∈ Extp(T ).

Besides, Free(6) ⊆ Base(E) for all E ∈ Extp(T ) and from Proposition 28, Base(E)

is consistent. Thus, Base(E) ∈ Cons(6). �

Theorem 70 Let T = (Arg(6), R) be such that R is conflict-dependent.

• For all a ∈ Arg(Free(6)), a neither attacks nor is attacked by another argument

in Arg(6).

• Arg(Free(6)) is an admissible extension of T .

Proof Let (Arg(6),R) be such that R is conflict-dependent. Let a ∈ Arg(Free(6)).

Assume that ∃b ∈ A such that aRb or bRa. Since R is conflict-dependent, then ∃C ∈ C6

such that C ⊆ Supp(a) ∪ Supp(b). By definition of an argument, both Supp(a) and

Supp(b) are consistent. Then, C ∩Supp(a) 6= ∅. This contradicts the fact that Supp(a) ⊆

Free(6). Thus, Arg(Free(6)) is conflict-free and can never be attacked. Consequently,

Arg(Free(6)) is an admissible extension of T . �

Theorem 71 Let T =(Arg(6),R) be an argumentation system such that R ∈ ℜp3
.

IE(T ) =
⋂

Ei ∈Extp(T )

Ei = Arg(Free(6)).

Proof Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp3
. Since T

satisfies exhaustiveness, then from Proposition 32, for all Ei ∈ Extp(T ), Ei =

Arg(Base(Ei )). So,

⋂

Ei ∈Extp(T )

Ei = Arg





⋂

Ei ∈Extp(T )

Base(Ei )



 .

From Theorem 65, for all Ei ∈ Extp(T ), Base(Ei ) ∈ Max(6). Moreover, |Extp(T )| =

|Max(6)|. Thus,
⋂

Ei ∈Extp(T ) Base(Ei ) = Free(6). Consequently,

⋂

Ei ∈Extp(T )

Ei = Arg(Free(6)).

From Theorem 70, Arg(Free(6)) is an admissible set of T . Thus, from Property 68,

IE(T ) =
⋂

Ei ∈Extp(T )

Ei = Arg(Free(6)). �



Theorem 73 Let T = (Arg(6),R) be an argumentation system such that R is

conflict-dependent and T satisfies the five postulates (under preferred semantics). If

|Extp(T )| = |Max(6)|, then the output of T under grounded/ideal semantics is:

Output(T ) = CN(Free(6)).

Proof LetT =(Arg(6),R)be an argumentation system such thatR is conflict-dependent

and T satisfies the five postulates (under preferred semantics). Assume that |Extp(T )| =

|Max(6)|.Then, from Corollary 72,IE(T )=GE(T )=
⋂

Ei ∈Extp(T ) Ei = Arg(Free(6)).

Let us first show that T is closed under CN under grounded/ideal semantics, that is

Concs





⋂

Ei ∈Extp(T )

Ei



 = CN



Concs





⋂

Ei ∈Extp(T )

Ei







 .

Let x ∈ CN

(

Concs

(

⋂

Ei ∈Extp(T ) Ei

))

. Thus, for all Ei ∈ Extp(T ), x ∈

CN(Concs(Ei )). Since T satisfies closure under CN, then x ∈ Concs(Ei ). Besides,

since x ∈ CN

(

Concs

(

⋂

Ei ∈Extp(T ) Ei

))

, then there exists a finite set x1, . . . ,

xn ∈ Concs

(

⋂

Ei ∈Extp(T ) Ei

)

such that x ∈ CN({x1, . . . , xn}). Moreover,

CN({x1, . . . , xn}) ⊆ CN

(

Concs

(

⋂

Ei ∈Extp(T ) Ei

))

(by monotonicity of CN). Thus,

x ∈ CN

(

Concs

(

⋂

Ei ∈Extp(T ) Ei

))

.

Let us now show that T is closed under sub-arguments under grounded/ideal semantics.

Assume that a ∈ IE(T ). Thus, a ∈
⋂

Ei ∈Extp(T ) Ei . Since T is closed under sub-arguments

(under preferred semantics), then for all Ei ∈ Extp(T ), Sub(a) ⊆ Ei . Thus, Sub(a) ⊆
⋂

Ei ∈Extp(T ) Ei . So, Sub(a) ⊆ IE(T ).

Since T satisfies closure under sub-arguments and CN (under ideal/grounded

semantics), then from Proposition 25,Concs(IE(T ))=Concs(GE(T ))= Output(T ) =

CN(Free(6)). �

Theorem 76 Let T = (Arg(6),R) be an argumentation system such that R is

conflict-dependent and T satisfies the five postulates under grounded (respectively ideal)

semantics. IfArg(Free(6)) ⊂ GE(T ) (respectivelyArg(Free(6)) ⊂ IE(T )) then there

exists C ∈ C6 such that there exist x, x ′ ∈ C and x ∈ Output(T ) and x ′ /∈ Output(T ).

Proof LetT =(Arg(6),R)be an argumentation system such thatR is conflict-dependent

andT satisfies the five postulates under grounded semantics.Assume thatArg(Free(6)) ⊂

GE(T ). Thus, there exists an argument a ∈ GE(T ) such that a /∈ Arg(Free(6)). Thus,

Supp(a) 6⊆ Free(6). So, there exists x ∈ Inc(6) such that x ∈ Supp(a). Then,

there exists C ∈ C6 such that x ∈ C . Since T satisfies closure under CN and under

sub-arguments, then Output(T ) = Concs(GE(T )) = CN(Base(GE(T ))). Since x ∈

Supp(a), then x ∈ Base(GE(T )). From the expansion axiom, x ∈ CN(Base(GE(T ))).

Since T satisfies consistency, then C 6⊆ Concs(GE(T )). Thus, there exists x ′ ∈ C such

that x ′ /∈ Concs(GE(T )).

The same proof holds for ideal semantics. �

Corollary 43 Let (L, CN) be adjunctive. Let T = (Arg(6), R) be an argumentation

system over a knowledge base 6 such that R is conflict-dependent. T satisfies consistency

and is closed under sub-arguments (under naive semantics) iff there is a bijection between

the naive extensions of Extn(T ) and the elements of Max(6).



Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R is conflict-dependent. Assume that T satisfies Postulates 24 and 26. Then, from

Theorems 41 and 42, it follows that there is a one-to-one correspondence between Max(6)

and Extn(T ).

Assume now that there is a one-to-one correspondence between Max(6) and Extn(T ).

Then, ∀E ∈ Ext(T ), Base(E) is consistent. Consequently, T satisfies consistency. From

Amgoud (2012), T is also closed under sub-arguments. �

Corollary 44 Let T = (Arg(6), R) be an argumentation system over a knowledge

base 6 such that R is conflict-dependent and T satisfies consistency and is closed under

sub-arguments (under naive semantics).

• |Extn(T )| ≤ |Max(6)|

• If 6 is finite, then T has a finite number of naive extensions.

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R is conflict-dependent and T satisfies consistency and is closed under sub-arguments.

From Theorem 41, it follows that |Extn(T )| ≤ |Max(6)|. If 6 is finite, then it has a finite

number of maximal consistent subsets. Thus, the number of naive extensions is finite as

well. �

Corollary 45 Let T = (Arg(6), R) be an argumentation system over a knowledge base

6 such that R is conflict-dependent and T satisfies consistency and is closed under sub-

arguments (under naive semantics). If Extn(T ) = {∅}, then for all x ∈ 6, CN({x}) is

inconsistent.

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R is conflict-dependent and T satisfies consistency and is closed under sub-arguments.

Assume that Extn(T ) = {∅}. Thus, Base(∅) = ∅. From Theorem 41, ∅ ∈ Max(6). Thus,

for all x ∈ 6, CN({x}) is inconsistent. �

Corollary 48 Let (L, CN) be adjunctive. Let T = (Arg(6), R) be an argumenta-

tion system over a knowledge base 6 such that R is conflict-dependent and T satisfies

consistency and is closed under sub-arguments (under naive semantics). Output(T ) =
⋂

Si ∈Max(6) CN(Si ).

Proof It follows immediately from Theorem 42 and Theorem 46. �

Corollary 55 Let T = (Arg(6), R) be an argumentation system over a base 6 such

that R is conflict-dependent and T satisfies consistency, closure under sub-arguments and

free precedence (under stable semantics). It holds that

0 < |Exts(T )| ≤ |Max(6)|.

Proof Let T = (Arg(6), R) be an argumentation system over a knowledge base 6 such

that R is conflict-dependent and T satisfies consistency, closure under sub-arguments and

free precedence. From Theorem 49, |Exts(T )| ≤ |Max(6)|. From Theorem 50 ℜs1 = ∅,

then |Exts(T )| > 0. �

Corollary 56 If 6 is finite, then the set Exts(T ) is finite, whenever T = (Arg(6),R)

satisfies consistency and closure under sub-arguments (under stable semantics).

Proof It follows from Corollary 55. �



Corollary 57 Let T = (Arg(6), R) be an argumentation system over a base 6 such

that R is conflict-dependent and T satisfies consistency, closure under sub-arguments and

free precedence (under stable semantics). The equality Exts(T ) = Extss(T ) holds.

Proof Let T = (Arg(6), R) be an argumentation system over a base 6 such that R

is conflict-dependent and T satisfies consistency, closure under sub-arguments and free

precedence (under stable semantics). From Corollary 55, |Exts(T )| > 0. From Caminada

(2006b), Exts(T ) = Extss(T ). �

Corollary 59 Let T = (Arg(6),R) be an argumentation system such that R is

conflict-dependent and T satisfies consistency, closure under sub-arguments and free prece-

dence (under preferred semantics). There exists E ∈ Extp(T ) such that Base(E) ∈

Max(6).

Proof LetT =(Arg(6),R)be an argumentation system such thatR is conflict-dependent

and T satisfies consistency, closure under sub-arguments and free precedence (under

preferred semantics). Thus, T satisfies the same postulates under stable semantics since

Exts(T ) ⊆ Extp(T ).Then, |Exts(T )| > 0.Thus,∃E ∈ Exts(T ) and thusE ∈ Extp(T ).

From Theorem 49, Base(E) ∈ Max(6). �

Corollary 63 If a knowledge base 6 is finite, then for all T = (Arg(6),R) such

that R is conflict-dependent and T satisfies consistency and closure under sub-arguments,

Extp(T ) is finite.

Proof This follows from the compactness of the knowledge base and Theorem 62. �

Corollary 66 Let T =(Arg(6),R) be an argumentation system such that R ∈ ℜp3
.

Output(T ) =
⋂

Si ∈Max(6)

CN(Si ).

Proof Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp3
. From

Theorem 65, for all E ∈ Extp(T ), Base(E) ∈ Max(6). Moreover, since T is closed under

both CN and sub-arguments, then Concs(E) = CN(Base(E)). Thus, Output(T ) =
⋂

Si ∈Max(6) CN(Si ). �

Corollary 72 Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp3
.

IE(T ) = GE(T ) = Arg(Free(6)).

Proof Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp3
. From

Theorem 71, IE(T ) = Arg(Free(6)). Moreover, from Theorem 70, Arg(Free(6)) ⊆

GE(T ) (since arguments of Arg(Free(6)) are not attacked). Thus, GE(T ) = IE(T ). �

Corollary 75 Let T = (Arg(6),R) be an argumentation system such that R ∈ ℜp2
.

The inclusions Arg(Free(6)) ⊆ GE(T ) ⊆ IE(T ) ⊆ S hold for some S ∈ Max(6).

Proof Follows from Theorem 70, Property 9 and Property 68. �


