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Asymptotics of the critical time in Wiener sausage percolation

with a small radius

Dirk Erhard ∗

Julien Poisat ‡

March 5, 2015

Abstract

We consider a continuum percolation model on R
d, where d ≥ 4. The occupied

set is given by the union of independent Wiener sausages with radius r running up to
time t and whose initial points are distributed according to a homogeneous Poisson
point process. It was established in a previous work by Erhard, Martínez and Poisat [4]
that (1) if r is small enough there is a non-trivial percolation transition in t occuring
at a critical time tc(r) and (2) in the supercritical regime the unbounded cluster is
unique. In this paper we investigate the asymptotic behaviour of the critical time when
the radius r converges to 0. The latter does not seem to be deducible from simple
scaling arguments. We prove that for d ≥ 4, there is a positive constant c such that
c−1
√

log(1/r) ≤ tc(r) ≤ c
√

log(1/r) when d = 4 and c−1r(4−d)/2 ≤ tc(r) ≤ c r(4−d)/2

when d ≥ 5, as r converges to 0. We derive along the way moment estimates on the
capacity of Wiener sausages, which may be of independent interest.
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1 Introduction

Notation. For every d ≥ 1, we denote by Lebd the Lebesgue measure on R
d, whereas | · |

denotes the cardinality of a set. Let cvol = Lebd(B(0, 1)). For a ∈ R, we denote by ⌈a⌉
its upper integer part. The symbol || · || stands for the Euclidean norm on R

d and the
symbol | · |1 stands for the ℓ1 norm on Z

d. The open ball with center z and radius r is
denoted by B(z, r), and the closed ball by B(z, r). We denote by G : Rd × R

d → [0, ∞) the
Green function of the standard Brownian motion. Throughout the paper the letter c will
be used to denote a constant whose precise value is irrelevant (and possibly depending on
the dimension) and which may change from line to line.

1.1 Introduction to the model

Let E be a Poisson point process with intensity λ Lebd, where λ > 0. Conditionally on E , we
define a collection of independent Brownian motions {(Bx

t )t≥0, x ∈ E} such that for each
x ∈ E , Bx

0 = x and (Bx
t −x)t≥0 is independent of E . We refer the reader to Section 1.4 in [4]

for a rigorous construction. We denote by P and E the probability measure and expectation
of Brownian motion, respectively. Given a d-dimensional Brownian motion (Bx

t )t≥0 that
starts at x ∈ R

d, we denote by W x,r
[0,t] =

⋃
0≤s≤t B(Bx

s , r) the corresponding Wiener sausage
running up to time t. When it is more convenient, we shall use Px for a Brownian motion
started at x, and we remove the superscript x from B or W . Also, we will use the symbol
P̃ to refer to an independent copy of a Brownian motion. If A is an event, then E( · ; A)
stands for E( · 1lA). Finally, we use the letter P for the law of the whole process that is
formed by the Poisson points and the Brownian motions.

We study for t, r ≥ 0 the occupied set, which is defined by

Ot,r :=
⋃

x∈E
W x,r

[0,t], Ot := Ot,0. (1.1)

The rigorous construction found in [4] yields ergodicity of Ot,r with respect to shifts in
space. For d ≥ 4, the model also appears in C̆erný, Funken and Spodarev [2] where it
describes the target detection area of a network of mobile sensors initially distributed at
random and moving according to Brownian motions. In a similar spirit Kesidis, Konstan-
topoulos and Phoha [8] study the detection time of a particle that is placed at the origin.
Note that at time t = 0, the set reduces to a collection of balls with randomly located
centers: this goes under the name of Boolean percolation model and was first introduced
by Gilbert [6] to study infinite communication networks. We refer to Meester and Roy [11]
for an introductory overview of this model.

Two points x and y of R
d are said to be connected in Ot,r if and only if there exists

a continuous function γ : [0, 1] 7→ Ot,r such that γ(0) = x and γ(1) = y. A subset of
Ot,r is connected if and only if all of its points are pairwise connected. In the following a
connected subset of Ot,r is called a component. A component C is bounded if there exists
R > 0 such that C ⊆ B(0, R). Otherwise, the component is said to be unbounded. A cluster

is a connected component which is maximal in the sense that it is not strictly contained in
another connected component. Denote by C(x) the set of points in E which are connected
to x through Ot,r.
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A set is said to percolate if it contains an unbounded connected component. In [4] it was
shown that Ot,r undergoes a non-trivial percolation phase transition for all d ≥ 2. More
precisely it was shown that if d ∈ {2, 3}, then for all λ > 0 there exists tc(λ) ∈ (0, ∞) such
that for all t < tc(λ) the set Ot only contains bounded connected components, whereas
for t > tc(λ), the set Ot percolates with a unique unbounded cluster. What happens at
criticality is still unknown. In essence the same result holds for d ≥ 4. However, due to
the fact that the paths of two independent Brownian motions do not intersect (except at
a possibly common starting point), the set Ot,r almost surely (a.s.) does not percolate for
all t ≥ 0. Therefore, the radius r needs to be chosen positive. In this case, denote by λc(r)
the critical value such that the set O0,r a.s. percolates for all λ > λc(r), and a.s. does
not for λ < λc(r), see Section 3.3 in Meester and Roy [11]. Theorem 1.3 in [4] states that
when r > 0 and λ < λc(r), then there is a critical time tc(λ, r) ∈ (0, ∞) which separates a
percolation regime (t > tc(λ, r)) from a non-percolation regime (t < tc(λ, r)). Equivalently,
a phase transition occurs when λ is fixed and the radius is chosen smaller than a critical
radius rc(λ). This formulation is somewhat more relevant for what comes next.

1.2 Main Result

In this work we study the behaviour of the critical time as the radius converges to 0 and
the intensity is kept fixed, say λ = 1. For this reason, we shall now write tc(r) instead of
tc(1, r). Let us mention that no simple scaling argument seems to immediately yield bounds
on tc(r). Indeed, since for each d there are three parameters (λ, t and r), it is not possible
to scale two parameters independently of the third parameter. We expect that tc(r) goes
to infinity as r → 0 since tc(0) = ∞. However, this is not an immediate consequence of
continuity since the event {Ot does not percolate} is not the increasing union of the events
{Ot,r does not percolate} for r > 0. The following theorem determines at which speed the
convergence takes place.

Theorem 1.1. Let d ≥ 4. There is a constant c and an r0 ∈ (0, 1) such that for all r ≤ r0,





c−1
√

log(1/r) ≤ tc(r) ≤ c
√

log(1/r), if d = 4,

c−1r(4−d)/2 ≤ tc(r) ≤ c r(4−d)/2, if d ≥ 5.

(1.2)

1.3 Discussion

Items (1)–(3) below contain comments about the result. Items (4)–(6) are general com-
ments about the model.

(1) For completeness, we state that r 7→ tc(r) stays bounded as r → 0 when d ∈ {2, 3},
since, by monotonicity, lim supr→0 tc(r) ≤ tc(0) < ∞. This follows from [4, Theorem 2].
Continuity at r = 0 is not immediate, but we expect that this follows from a finite-box
criterion of percolation. Theorem 1.1 shows in particular that when d ≥ 4 the critical time
is continuous at r = 0, since tc(0) = ∞.

(2) One motivation to study the small radius asymptotics of the critical time is to gain a
better understanding of the percolation mechanisms when d ≥ 4. Indeed, when d ∈ {2, 3}
percolation can occur because two independent Brownian motions that start close to each
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other eventually intersect, see [4, Lemma 5.1]. This argument however breaks down when
d ≥ 4. The proof of Theorem 1.1 gives some insight on how percolation occurs in that case.

(3) The proof of our result makes use of first and second moment estimates on the capacity
of a Wiener sausage, that we derive in Section 5. When d = 4, these are more subtle and
therefore require a more careful analysis than in the high dimensional case d ≥ 5. This is
due to the logarithmic correction in the increase of the mutual intersection local time in
four dimensions. We conjecture that these estimates carry over to the simple random walk
case. In this framework however, Rath and Sapozhnikov [16] already obtained estimates
when d ≥ 5, so that only the critical dimension d = 4 would provide new insights. Let us
mention that while preparing this manuscript we were getting aware of a work in progress
by van den Berg, Bolthausen and den Hollander [1] who developed simultaneously to us
capacity estimates that are similar in spirit.

(4) In the limit t ր ∞, the model exhibits long-range dependence. Indeed, if A1 and A2

are two bounded sets, then

Cov(1l{A1∩Ot 6=∅}, 1l{A2∩Ot 6=∅}) ∼ c dist(A1, A2)2−d, (1.3)

as dist(A1, A2) ր ∞. This follows from these three facts:

(i) The number of trajectories intersecting a set E is Poisson distributed with parameter∫
Rd dxP(Bx

[0,∞) ∩ E 6= ∅).

(ii) P(Bx
[0,∞)∩(A1∪A2) 6= ∅)−P(Bx

[0,∞)∩A1 6= ∅)−P(Bx
[0,∞)∩A2 6= ∅) = −P(Bx

[0,∞)∩A1 6=
∅, Bx

[0,∞) ∩ A2 6= ∅).

(iii) P(Bx
[0,∞) ∩ A1 6= ∅, Bx

[0,∞) ∩ A2 6= ∅) ∼ ‖x‖2−dcap(A1)cap(A2) dist(A1, A2)2−d, as

‖x‖ ր ∞.

Note that the correlation exponent coincides with that of interlacement percolation, see
Item (5) below.

(5) We expect that, as (i) t ր ∞ (ii) λ ց 0 and (iii) λt stays constant, our model shares
features with a continuous version of random interlacements. The latter is given by the
random subset obtained when looking at the trace of a simple random walk on the torus
(Z/NZ)d, when started from the uniform distribution and running up to time uNd as
N ր ∞, see Sznitman [18]. Indeed, one can argue that in the regime described above,
the number of Brownian trajectories entering a set A is a Poisson random variable with
intensity c λt cap(A), which is a key feature of random interlacements. Consequently, the
product of λ and t serves as an intensity parameter.

(6) Peres, Sinclair, Sousi and Stauffer [13, 14] also study a system of points randomly
distributed in space and moving according to Brownian motions. However, instead of only
looking at Ot,r, they also look at Σt,r = ∪x∈EB(Bx

t , r) at each fixed time t. Nevertheless, in
contrast to our setting, they choose r large enough such that Σt,r contains an unbounded
cluster for all t ≥ 0. In these papers the focus is on three aspects:

(i) detection (the first time that a target point is contained in Σt,r);
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(ii) coverage (the first time that all points inside a finite box are contained in Ot,r);

(iii) detection by the unbounded cluster (the time it takes until a target point belongs to
the unbounded cluster of Σt,r).

1.4 Open questions

(1) Do the upper and lower bounds in Theorem 1.1 match? More precisely, is there a
c∗ ∈ (0, ∞) such that

lim
r→0

tc(r)/f(r) = c∗, with f(r) =

{
r(4−d)/2, d ≥ 5,√

log(1/r), d = 4?
(1.4)

(2) Given f as in (1.4), Theorem 1.1 implies that there is a c0 > 0 such that for all
c ≥ c0 the occupied set Ot(r),r has an unbounded component when t(r) = cf(r) and r is
chosen small enough. In particular in that regime there is a large but finite box B(t(r))
that intersects the unbounded cluster. Denote the size of that box by L(t(r)) and consider
OL,t(r) = L(t(r))−1Ot(t),r . Is it possible to obtain a description of limr→0 OL,t(r), if such
limit exists? If yes, the constant c could be regarded as an intensity parameter of a Brownian
percolation model that undergoes a non-trivial percolation phase transition even when
d ≥ 4.

(3) When r = 0, is there a way to define the model conditionally on 0 being in an unbounded
cluster? One way to go would be to do the conditioning when t = c f(r), with r > 0 and
c large enough and then let r tend to 0. This way is reminiscent of the construction of the
incipient infinite cluster in Bernoulli percolation, see Kesten [9].

1.5 Outline

In Section 2, we recall facts about the Green function and the Newtonian capacity. Section
3 contains the proof of the lower bound, which is guided by the following idea: suppose
that the origin is contained in the occupied set, then perform a tree-like exploration of the
cluster containing the origin and dominate it by a sub-critical Galton-Watson branching
process. Extinction of the Galton-Watson process implies non-percolation of the cluster.
Section 4 contains the proof of the upper bound, which consists in the following coarse-
graining procedure: (i) we split space in an infinite collection of balls all having a radius of
the order

√
t, (ii) each ball is shown to contain with high probability the starting point of

a Wiener sausage whose Newtonian capacity is large enough, and (iii) provided t is large
enough, these Wiener sausages form an unbounded connected component. Finally, Section
5 contains the proof of several capacity estimates that we use along Sections 3 and 4.

2 Preliminaries on Green function and capacity

In this section we introduce the notion of capacity. We refer the reader to Mörters and
Peres [12] and Port and Stone [15] for more detailed surveys on this subject. Let d ≥ 3 and
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denote by Γ the Gamma function. The Green function associated with Brownian motion
on R

d is defined as

G(x, y) =
Γ(d/2 − 1)

2πd/2||x − y||d−2
, x, y ∈ R

d, (2.1)

which can also be rewritten as

G(x, y) =

∫ ∞

0
P(Bx

s ∈ dy) ds. (2.2)

Definition 2.1. Let A ⊂ R
d be a Borel set. The energy of a finite Borel measure ν on A

is defined as

I(ν) =

∫

A

∫

A
G(x, y)ν(dx)ν(dy) (2.3)

and the Newtonian capacity of A is defined as

cap(A) = [inf
ν

I(ν)]−1, (2.4)

where the infimum is over all probability measures on A.

Let A, A′ be bounded Borel sets. The function A 7→ cap(A) is non-decreasing in A, satisfies
the scaling relation

cap(aA) = ad−2cap(A), a > 0, (2.5)

and the union bound

cap(A ∪ A′) + cap(A ∩ A′) ≤ cap(A) + cap(A′). (2.6)

Given a bounded set A ⊂ R
d, let τA be the last exit time of A (with the convention that

τA = 0 if the Brownian motion does not visit the set A). There exists a finite measure eA

on A, the equilibrium measure of A, such that for any Borel set Λ ⊆ A and every x ∈ R
d

(see Chapter 3, Theorem 2.1 in [15]),

Px(BτA
∈ Λ, τA > 0) =

∫

Λ
G(x, y)eA(dy) (2.7)

and such that
cap(A) = eA(A). (2.8)

It moreover has an interpretation in terms of hitting probabilities:

lim
||x||→∞

||x||d−2P(Bx
[0,∞) ∩ A 6= ∅) =

cap(A)

κd
, A ⊂ R

d bounded Borel set, (2.9)

where κd = 2πd/2/Γ(d/2 − 1) is the capacity of the unit ball (see Chapter 3, Theorem 1.10
in [15]).

3 Proof of the lower bound

In this section we use the following important lemma, whose proof is deferred to Section 5:

Lemma 3.1. Let d ≥ 4, t0 > 1 and r0 ∈ (0, 1). There is a constant c > 0 such that for all

t ≥ t0 and all r ∈ (0, r0),

E
[
cap

(
W 0,r

[0,t]

)2] ≤ c ×




t2 r2(d−4) if d ≥ 5(
t

log(tr−2)

)2
if d = 4.

(3.1)
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3.1 Case d ≥ 5

We use a technique that has been used in the context of Boolean percolation, which con-
sists of exploring the cluster containing the origin and comparing it to a Galton-Watson
branching process. For simplicity, we assume that there is a Poisson point at the origin
(which is justified in the proof of Proposition 3.2 below). For that purpose we introduce
P

0 the law of our process after addition of a Brownian motion at the origin. The Wiener
sausages intersecting the Wiener sausage starting at the origin are called first generation
sausages, all other sausages intersecting the first generation sausages constitute the second
generation sausages, and so on. If the process becomes extinct, the cluster contains finitely
many Poisson points, which proves non-percolation.

Let us define
N(t, r) = E

0
∣∣∣
{
x ∈ E \ {0} : W x,r

[0,t] ∩ W 0,r
[0,t] 6= ∅}

∣∣∣, (3.2)

and recall that a Galton-Watson process a.s. becomes extinct if the average number of
offsprings is smaller than or equal to 1.

The idea sketched in the paragraph above is summarized in the following Proposition.

Proposition 3.2. If N(t, r) < 1, then t ≤ tc(r).

Proof. First, we justify why it is enough to consider the cluster containing the Wiener
sausage starting from the origin (even though this can be considered standard, we have not
found a rigorous argument in the literature). Indeed, since E is a Poisson point process, P0

coincides with the Palm version of P, see Proposition 13.1.VII in Daley and Vere-Jones [3].
By definition of the Palm measure, for all bounded Borel sets A ⊆ R

d

P
0(|C(0)| < ∞) =

1

Lebd(A)
E

{
∑

x∈E∩A

1{|C(x)| < ∞}
}

. (3.3)

Therefore, if P
0(|C(0)| < ∞) = 1 then by choosing a sequence of Borel sets (An)n∈N

increasing to R
d, we get that P-a.s. all clusters are finite, which proves non-percolation.

We now sequentially explore the points in C(0). To that end we define

G0 = {0}, Gk+1 =

{
x ∈ E \ ∪k

i=0Gi : W x,r
[0,t]

⋂
(
⋃

y∈Gk

W y,r
[0,t]

)
6= ∅

}
, k ∈ N0 (3.4)

and Gk+1 = ∅ if Gk = ∅. The restriction that Gk+1 does not intersect ∪k
i=0Gi avoids double

counting of a Poisson point when exploring the cluster. Note that

C(0) = ∪k≥0Gk, and E
0(|G1|) = N(t, r). (3.5)

We write for y ∈ Gk,

Gk+1(y) =
{

x ∈ E \ ∪k
i=1Gi : W x,r

[0,t]

⋂
W y,r

[0,t] 6= ∅
}

, (3.6)

so that Gk+1 = ∪y∈Gk
Gk+1(y). Conditionally on ∪k

i=0Gi and for all y ∈ Gk, Gk+1(y) is
stochastically dominated by a Poisson random variable with parameter equal to N(t, r),
because of the geometrical constraint Gk+1∩(∪k

i=0Gi) = ∅. Since N(t, r) < 1 by assumption,
the process (Gk)k≥0 is dominated by a sub-critical Galton-Watson process. Consequently,
t ≤ tc(r) which finishes the proof.
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We are left with estimating N(t, r). This is done in the following Lemma.

Lemma 3.3. Let d ≥ 5, t0 > 1 and r0 ∈ (0, 1). There exists a constant c such that for all

t > t0 and r ∈ (0, r0),
N(t, r) ≤ c t2 rd−4. (3.7)

Proof of Lemma 3.3. Let A be a bounded Borel set of Rd and M = supy∈A ‖y‖. We first
provide an upper bound on

N(A) = {x ∈ E \ {0} : Bx
[0,t] ∩ A 6= ∅}. (3.8)

In a second step we will choose A = W 0,2r
[0,t] and average over W 0,2r

[0,t] , which will eventually

yield an upper bound on N(t, r). Write

E[|N(A)| | E ] = |(E \ {0}) ∩ A| +
∑

x∈E∩Ac

P(Bx
[0,t] ∩ A 6= ∅ | E)

= |(E \ {0}) ∩ A| + S− + S+,

(3.9)

where

S− =
∑

x∈E∩Ac

‖x‖≤3M

P(Bx
[0,t] ∩ A 6= ∅ | E), S+ =

∑

x∈E∩Ac

‖x‖>3M

P(Bx
[0,t] ∩ A 6= ∅ | E). (3.10)

We first bound S−. Using (2.7), we get

S− ≤
∑

x∈E∩Ac

‖x‖≤3M

∫

A
G(x, y)eA(dy) = c

∑

x∈E∩Ac

‖x‖≤3M

∫

A
‖x − y‖2−deA(dy). (3.11)

Hence, an application of Fubini-Tonelli yields

S− ≤ c

∫

A

∑

x∈E∩Ac

‖x‖≤3M

‖x − y‖2−deA(dy). (3.12)

We now average over E . First note that for all y ∈ A,

{x ∈ E ∩ Ac : ‖x‖ ≤ 3M} ⊆ B(y, 4M). (3.13)

Therefore, for all y ∈ A,

E




∑

x∈E∩Ac

‖x‖≤3M

‖x − y‖2−d


 ≤ c

∫ 4M

0
̺2−d × (̺d−1d̺) = cM2. (3.14)

Thus, using (2.8),

E[S−] ≤ c M2
∫

A
eA(dy) = c cap(A) M2. (3.15)

Let us now turn to bound S+ from above. Observe that if ‖x‖ > 3M and Bx
[0,t] intersects

A, then Bx must shorten its distance from the origin to ‖x‖/2 (for that it has to travel a
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distance of at least ‖x‖/2) and then intersect A in the remaining time interval. Note that
after the first step, the Brownian motion is at distance at least ‖x‖/2 from the origin. We
can therefore write, using the Markov property and (2.7),

S+ ≤
∑

x∈E∩Ac

‖x‖>3M

P

(
sup

s∈[0,t]
‖B0

s ‖ ≥ ‖x‖/2
∣∣∣ E
)

sup
z : ‖z‖=‖x‖/2

P

(
Bz

[0,∞) ∩ A 6= ∅
∣∣∣E
)
,

= c
∑

x∈E∩Ac

‖x‖>3M

P

(
sup

s∈[0,t]
‖B0

s ‖ ≥ ‖x‖/2
∣∣∣ E
)

sup
z : ‖z‖=‖x‖/2

∫

A
‖z − y‖2−deA(dy).

(3.16)

Note that in the right-hand side, ‖z − y‖ ≥ ‖z‖ − ‖y‖ ≥ ‖x‖
2 − M . We average over E to

obtain

E[S+] ≤ c cap(A)

∫ ∞

3M/2
P
(

sup
s∈[0,t]

‖B0
s ‖ ≥ ̺

)
(̺ − M)2−d ̺d−1 d̺. (3.17)

Let us choose A = W 0,2r
[0,t] , so that N(t, r) = E

0|N(A)| and, from (3.9)–(3.10),

N(t, r) = E
0
[
|(E \ {0}) ∩ W 0,2r

[0,t] |
]

+ E
0[S−] + E

0[S+]. (3.18)

In this context, M = sups∈[0,t] ‖B0
s ‖∗. We first focus on E

0[S−]. From (3.15) we get

E
0[S−] ≤ c E

[
sup

s∈[0,t]
‖B0

s ‖2 cap
(
W 0,2r

[0,t]

)]
. (3.19)

By the Cauchy-Schwartz inequality,

E
0[S−] ≤ c E

[
sup

s∈[0,t]
‖B0

s ‖4

] 1
2

E
[
cap

(
W 0,2r

[0,t]

)2] 1
2
. (3.20)

Using Lemma 3.1 and the scale invariance of Brownian motion, we get

E
0[S−] ≤ c t2 rd−4. (3.21)

Next, we estimate E0[S+]. From (3.17) and Fubini-Tonelli we obtain that

E
0[S+] ≤ c

∫ ∞

0
E

[(
̺ − sup

s∈[0,t]
‖B0

s ‖
)2−d

cap
(
W 0,2r

[0,t]

)
1
{

̺ ≥ 3
2 sup

s∈[0,t]
‖B0

s ‖
}]

× P
(

sup
s∈[0,t]

‖B0
s ‖ ≥ ̺

)
̺d−1d̺.

(3.22)

The change of variables ̺ = u
√

t gives

E
0[S+] ≤ c t

∫ ∞

0
E

[(
u − sup

s∈[0,t]

‖B0
s ‖√
t

)2−d
cap

(
W 0,2r

[0,t]

)
1
{

u ≥ 3
2 sup

s∈[0,t]

‖B0
s ‖√
t

}]

× P
(

sup
s∈[0,1]

‖B0
s ‖ ≥ u

)
ud−1du.

(3.23)

∗We should actually write M = sups∈[0,t] ‖B
0
s ‖ + r. The reader may check that this slight abuse is

harmless.
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By the Cauchy-Schwartz inequality and Lemma 3.1,

E0[S+]

≤ c t2 rd−4
∫ ∞

0
E
[(

u − sup
s∈[0,t]

‖B0
s ‖√
t

)2(2−d)
1
{

u ≥ 3
2 sup

s∈[0,t]

‖B0
s ‖√
t

}] 1
2
P
(

sup
s∈[0,1]

‖B0
s ‖ ≥ u

)
ud−1du

= c t2 rd−4
∫ ∞

0
E
[(

u − sup
s∈[0,1]

‖B0
s ‖
)2(2−d)

1
{

u ≥ 3
2 sup

s∈[0,1]
‖B0

s ‖
}] 1

2
P
(

sup
s∈[0,1]

‖B0
s ‖ ≥ u

)
ud−1du.

(3.24)
Here, we have used Brownian scale invariance to obtain the last equality. All what remains
to prove is that the integral on the right hand side of (3.24) is finite. To that end note
that

∫∞
0 P(sups∈[0,1] ‖B0

s ‖ ≥ u)ud−1du is finite. Hence, by Jensen’s inequality applied to
the function x 7→ √

x, this integral is at most

c

{∫ ∞

0
E
[(

u − sup
s∈[0,1]

‖B0
s ‖
)2(2−d)

1
{

u ≥ 3
2 sup

s∈[0,1]
‖B0

s ‖
}]

P
(

sup
s∈[0,1]

‖B0
s ‖ ≥ u

)
ud−1du

}1
2

.

(3.25)
By a change of variables, the term in the square root equals

E

[ ∫ ∞
3
2

sup
s∈[0,1]

‖B0
s ‖4−dP̃

(
sup

s∈[0,1]
‖B̃0

s ‖ ≥ u sup
s∈[0,1]

‖B0
s ‖
)
(u − 1)2(2−d)ud−1du

]
, (3.26)

which is finite since (i) the probability is bounded by 1, (ii) there exists a constant c ∈ (0, ∞)
such that E[sups∈[0,1] ‖B0

s ‖4−d] ≤ c E[‖B0
1‖4−d], which is finite, and (iii)

∫∞
3/2 u3−ddu is finite.

This proves that
E

0[S+] ≤ c t2 rd−4. (3.27)

To complete the proof, observe that

E
0
[∣∣∣
(
E \{0}

)
∩W 0,2r

[0,t]

∣∣∣
]

= E
[
Lebd

(
W 0,2r

[0,t]

)]
= c rdE

[
Lebd

(
W 0,1

[0,tr−2]

)]
= c t rd−2 ≤ c t2 rd−4.

(3.28)
where in the two last equalities we have used Brownian scale invariance and the fact that

E[Lebd(W 0,1
[0,t])]

t→∞∼ cap(B(0, 1)) t/2, see [17, 5]. Combining (3.18), (3.21), (3.27) and (3.28),
we get the result.

Proof of the lower bound in Theorem 1.1. Combine Proposition 3.2 and Lemma 3.3.

3.2 Case d = 4

The proof strategy is the same as for d ≥ 5. However, Lemma 3.3 is adapted as follows:

Lemma 3.4. Let d = 4, t0 > 1 and r0 ∈ (0, 1). There exists a constant c such that for all

t > t0 and r ∈ (0, r0),

N(t, r) ≤ c
t2

log(tr−2)
. (3.29)
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Proof of Lemma 3.4. The proof is similar to that of Lemma 3.3, except for the following
point: the argument to prove that (3.26) is finite needs to be adapted, since (iii) below
(3.26) does not hold anymore. Instead, we may estimate using Doob’s inequality

P̃
(

sup
s∈[0,1]

‖B̃0
s ‖ ≥ u sup

s∈[0,1]
‖B0

s ‖
)

≤ e− 1
2

u2 sups∈[0,1] ‖B0
s ‖2

. (3.30)

Thus,

(P × P̃)
(

sup
s∈[0,1]

‖B̃0
s ‖ ≥ u sup

s∈[0,1]
‖B0

s ‖
)

≤ E
[
e− 1

2
u2 sups∈[0,1] ‖B0

s ‖2
]

≤ E
[
e− 1

2
u2‖B0

1 ‖2
]

=
c

(1 + u2)2
,

(3.31)

which is enough to prove that the integral in (3.26) converges.

4 Proof of the upper bound

In this section we prove the upper bound in Theorem 1.1, that is if we set

t = c∗ ×
{

r(4−d)/2 if d ≥ 5√
log(1/r) if d = 4

, r ∈ (0, 1), (4.1)

then there exists c∗ large enough such that for r small enough, there is percolation.

The proof is organized as follows. In Section 4.1, we use a coarse-graining procedure to
prove the existence of an unbounded component with a positive probability. More precisely,
we divide space into boxes indexed by Z

d and we define a notion of good boxes, as well
as a way to connect good boxes. Provided the box at the origin is good, we explore the
cluster of good boxes connected to the origin and prove that with positive probability, this
cluster is unbounded. This implies percolation. The procedure relies on two estimates, one
on the probability for the box at the origin to be good (Lemma 4.1), the other one on
the probability of two neighboring good boxes being connected to each other (Lemma 4.2).
These estimates are proven in Section 4.2.

In this section we use the following notation: for c, r, t > 0, we let

At(c, r; x) =
{

W x,r
[0,t] ⊆ B

(
x, c

√
t
)}

, At(c, r) = At(c, r; 0). (4.2)

4.1 Coarse-graining procedure

Parameters are now chosen as in (4.1). Let cB > 0 be a parameter to be determined later.
Let us consider for z ∈ Z

d the ball Bz = B(2zcB

√
t, cB

√
t). In the following we identify

Z
2 ×{0}d−2 with Z

2. We are going to prove that if c∗ is large enough and r is small enough
then percolation occurs by using only Wiener sausages from the two-dimensional coarse-
grained model ∪z∈Z2Bz.

Definition of a good box. We say that z ∈ Z
2 is good if there exists x ∈ E ∩ Bz such

that

11



(Condition 1) The event At/2(cB , r; x) is fulfilled,

(Condition 2) cap(W x,r
[0,t/2]) ≥ 1

2E[cap(W 0,r
[0,t/2]); At/2(cB , r)].

Construction of a cluster on the coarse-grained model. We now define a clus-
ter on this two-dimensional lattice, starting from 0. Let us define iteratively a sequence
(Cn)n≥0, where Cn is a subset of the ball B1

n = {z ∈ Z
2 : |z|1 = n}, in the following way:

Initialization. If 0 is good then set C0 = {0}, pick one of the Poisson points in E ∩ B0

satisfying conditions 1 and 2 above (let us say, the closest to 0), and call it e(0). If 0 is not
good then set C0 = ∅.
Iteration. Let n ≥ 0. If Cn = ∅, then set Cn+1 = ∅. Otherwise, for each z ∈ Cn, there
is by construction a point e(z) ∈ E ∩ Bz satisfying conditions 1 and 2 which, if n ≥ 1, is
connected to {e(x), x ∈ Cj, 0 ≤ j ≤ n − 1}. Let x ∈ B1

n+1. We declare that x ∈ Cn+1 if
and only if there exists z ∈ Cn such that |z − x|1 = 1 and there exists y ∈ E ∩ Bx satisfying
conditions 1 and 2 (this means in particular that x is good), for which

(Condition 3) W y,r
[t/2,t]

⋂(
∪z∈Cn : |z−x|1=1 W

e(z),r
[0,t]

)
6= ∅. (4.3)

Among all such possible points y, denote by e(x) the one which is closest to the center of
Bx.
We denote by C = ∪n≥0Cn the full cluster, which may be finite or infinite. By construction

∪z∈CW
e(z),r
[0,t] is a connected component. Therefore, this implies that if C is infinite then

there is an unbounded connected component in the original model. We are going to prove
below that C is indeed infinite with positive probability, provided c∗ is large enough and r
is small enough.

For the rest of the proof we rely on the following two key lemmas, which will be proven
in Section 4.2.

Lemma 4.1. Let d ≥ 4 and fix cB > 0. The probability that 0 is good converges to 1 as t
goes to ∞.

Lemma 4.2. Let d ≥ 4, fix cB > 0, let n ∈ N and y ∈ B1
n. On the event {∃x ∈

Cn−1 with |x − y|1 = 1}, we have for t large enough,

P(y /∈ Cn|W e(z), z ∈ Cj , j ≤ n − 1) ≤ exp{−c2
∗θ(cB)}, (4.4)

where θ(cB) becomes positive for cB small enough.

We now explain how to conclude the proof with these two lemmas at hand. For this, we
use the so-called standard Peierls contour argument, see Grimmett [7, Proof of Theorem
1.10]. In what follows, a ∗-path of length N ≥ 2 is a vector (xi)1≤i≤N ∈ (Z2)N such that
|xi+1 − xi|∞ = 1 for all 1 ≤ i < N . If xN = x1 and for all 1 ≤ i, j < N with i 6= j, xi 6= xj ,
then the ∗-path is said to be a ∗-contour. This contour contains x ∈ Z

2 if x belongs to
the bounded component delimited by the contour and x is not on the contour. Denote by
∂extC the exterior boundary of C, that is the set of vertices in the boundary which are the
starting point of an infinite non-intersecting nearest neighbor path with no vertex in C.
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An induction argument which mimicks the construction of C shows that if |C| < ∞, then
∂extC is a ∗-contour. We may write

P(|C| < ∞) ≤ P(0 is not good) +
∑

N≥4

P(|∂extC| = N)

≤ P(0 is not good) +
∑

N≥4

e−c∗θ(cB)N CN ,
(4.5)

where CN is the number of ∗-contours of length N containing the origin. To obtain the
second line in (4.5) we first sum over all possible realisations of ∂extC and thereafter
we use Lemma 4.2 in combination with the conditional independence of events of the
form {yi ∈ ∂extC}1≤i≤N given the realisations of all Wiener sausages contained in the set
delimited by the contour ∂extC. By a standard counting argument (see Grimmett [7, Proof
of Theorem 1.10]) it can be seen that CN ≤ N 7N . We obtain

P(|C| < ∞) ≤ P(0 is not good) + c
∑

N≥4

N
(
7e−c∗θ(cB)

)N
. (4.6)

We conclude as follows. First, fix cB such that θ(cB) is positive. Then, choose c∗ so large
that the sum in the r.h.s of (4.6) is smaller than 1/4. Finally, choose r small enough
(therefore t large enough) such that, by Lemma 4.1, P(0 is not good) ≤ 1/4. At the end,
we get P(|C| = ∞) ≥ 1/2, which finishes the proof.

4.2 Proof of Lemmas 4.2 and 4.1.

Throughout this section we shall make use of the following key lemma, which estimates the
mean capacity of a Wiener sausage confined to a ball with radius of order

√
t. Its proof is

deferred to Section 5.

Lemma 4.3. For all d ≥ 4, there exists a positive constant c such that for all t ≥ 1 and

all r ∈ (0, 1),

E
[
cap

(
W 0,r

[0,t]

)
; At(cB , r)

]
≥ c P(At(cB , r))2 ×

{
t rd−4 if d ≥ 5

t
log(tr−2) if d = 4.

(4.7)

We start with Lemmas 4.4 and 4.5, which are preparatory lemmas. Lemma 4.4 gives a
lower bound on the probability that a Wiener sausage has a capacity larger than a fraction
of its mean capacity, when it is confined to a ball of order

√
t. Lemma 4.5 gives a lower

bound on the probability that a Wiener sausage intersects a set that is at a distance of
order

√
t from its starting point.

Lemma 4.4. Let d ≥ 4. Abbreviate by A the event At(cB , r), see Equation (4.2). There is

a constant c such that,

P
(
cap

(
W 0,r

[0,t]

)
≥ 1

2 E
(
cap

(
W 0,r

[0,t]

)
; A
)
; A
)

≥ c Φ(cB)4(1 + o(1)), (4.8)

where Φ(cB) = P
(

sups∈[0,1] ||B0
s || ≤ cB

)
and the o(1) term tends to zero as t tends to

infinity.
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Proof. The Paley-Zigmund inequality (more precisely: a slight generalization thereof) states
that

P
(
cap

(
W 0,r

[0,t]

)
≥ 1

2 E
[
cap

(
W 0,r

[0,t]

)
; A
]
; A
)

≥ 1
4

(
E
[
cap

(
W 0,r

[0,t]

)
; A
])2

E
[
cap

(
W 0,r

[0,t]

)2] . (4.9)

By Lemma 3.1, there is a constant c such that for all r > 0 small enough

E
[
cap

(
W 0,r

[0,t]

)2]
≤ c





t2 r2(d−4), if d ≥ 5,
(

t
log(tr−2)

)2
, if d = 4.

(4.10)

Moreover, by Lemma 4.3 there is a constant c > 0 such that

E
[
cap

(
W 0,r

[0,t]

)
; A
]

≥ c P(A)2

{
t rd−4, if d ≥ 5,

t
log(tr−2) , if d = 4.

(4.11)

Furthermore, by the scale invariance of Brownian motion

P(A) = P
(
W

0,r/
√

t
[0,1] ⊆ B(0, cB)

)
= P

(
sup

s∈[0,1]
||B0

s || ≤ cB +
r√
t

)
= Φ(cB)(1 + o(1)). (4.12)

Hence, equations (4.9)–(4.12) yield the claim.

Given a measurable set A ⊆ R
d we denote by Ar its r-thickening, i.e.,

Ar =
⋃

x∈A

B(x, r). (4.13)

Lemma 4.5. There is a finite constant c > 0 such that the following estimate holds

uniformly for all r ∈ (0, 1) and all measurable sets A such that A ⊆ B(0, 6cB

√
t),

P
(
W 0,r

[0,t] ∩ A 6= ∅
)

≥ t−d/2+1cap(Ar)

(
c

cd−2
B

− 1

(2π)d/2

)
. (4.14)

Proof. Note that

P
(
W 0,r

[0,t] ∩ A 6= ∅
)

= P
(
W 0,r

[0,∞) ∩ A 6= ∅
)

− P

(
inf
{

s > 0: W 0,r
[0,s] ∩ A 6= ∅

}
∈ (t, ∞)

)
,

(4.15)

so that it is enough to find a lower bound for the first term on the right hand side of (4.15)
and an upper bound for the second term on the right hand side of (4.15). Let eAr be the
equilibrium measure of Ar. The identity in (2.7) yields

P
(
W 0,r

[0,∞) ∩ A 6= ∅
)

= P
(
B0

[0,∞) ∩ Ar 6= ∅
)

=

∫

Ar
G(0, y)eAr (dy). (4.16)

Hence, using that G(0, y) = c ||y||2−d and eAr (Ar) = cap(Ar), the integral on the right
hand side of (4.16) may be bounded from below by

c inf
y∈Ar

||y||2−dcap(Ar). (4.17)

14



Since Ar ⊆ B(0, 6cB

√
t + r), we see that there is a constant c > 0 such that (4.17) is at

least
c t−d/2+1c2−d

B cap(Ar). (4.18)

This is the desired lower bound for the first term on the right hand side of (4.15). An
application of the Markov property shows that the second term on the right hand side of
(4.15) may be written as

E

[
1l
{

B0
[0,t] ∩ Ar = ∅

}
P̃B0

t

(
B̃[0,∞) ∩ Ar 6= ∅

)]

= E

[
1l
{

B0
[0,t] ∩ Ar = ∅

} ∫

Ar
G(B0

t , y) eAr (dy)

]
,

(4.19)

where the equality is a consequence of (2.7) and B̃ is a Brownian motion independent of
B0. Hence, (4.19) is bounded from above by

∫

Ar
E[G(B0

t , y)] eAr (dy). (4.20)

We obtain by the Markov property applied to B0 at time t,

E(G(B0
t , y)) =

∫ ∞

t
P(B0

s ∈ dy) ds =

∫ ∞

t

1

(2πs)d/2
e−‖y‖2/2s ds. (4.21)

Using the substitution w = ||y||2/2s, we see that the right hand side of (4.21) equals

∫ ‖y‖2/2t

0
wd/2−2e−w dw × ‖y‖2−d

2πd/2
, (4.22)

which is bounded from above by (2π)−d/2t−d/2+1 (by bounding the exponential factor by
1). Therefore, (4.20) is bounded from above by

cap(Ar)t−d/2+1(2π)−d/2. (4.23)

Combining (4.15) with (4.18) and (4.23) yields the claim.

Proof of Lemma 4.2. Let n ∈ N, y ∈ B1
n and abbreviate P̄(·) = P(· | W e(z), z ∈ Cj, j ≤

n − 1). Suppose that there exists z ∈ Cn−1 such that |y − z|1 = 1. Let x ∈ E ∩ By. We
first give a lower bound on the probability that x satisfies the conditions 1–3 of Section 4.1,
that is

p0 := P̄




cap(W x,r
[0,t/2]) ≥ 1

2E[cap(W 0,r
[0,t/2]); At/2(cB , r)], At/2(cB , r; x),

W x,r
[t/2,t]

⋂( ∪z∈Cn−1 : |z−y|1=1 W
e(z),r
[0,t]

)
6= ∅


 . (4.24)

Using the Markov property on Bx at time t/2 and that Bx
t/2 ∈ B(2ycB

√
t, 2cB

√
t) this

probability can be bounded from below by

P
(
cap

(
W x,r

[0,t/2]

)
≥ 1

2E
[
cap

(
W 0,r

[0,t/2]

)
; At/2(cB , r)

]
, At/2(cB , r; x)

)

× inf
x0∈B(2ycB

√
t,2cB

√
t)
P̄

(
W x0,r

[0,t/2]

⋂(
∪z∈Cn−1 : |z−y|1=1 W

e(z),r
[0,t]

)
6= ∅

)
.

(4.25)
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Using Lemma 4.4 on the first factor and Lemma 4.5 on the second factor and noticing that

for all x0 ∈ B(2ycB

√
t, 2cB

√
t), ∪z∈Cn−1 : |z−y|1=1W

e(z),r
[0,t/2] ⊆ B(x0, 6cB

√
t), we get that this

probability is larger than

ϕ(cB)t−d/2+1cap
(

∪z∈Cn−1 : |z−y|1=1 W
e(z),r
[0,t/2]

)
. (4.26)

Here, ϕ(cB) := c Φ(cB)4

(
c

cd−2
B

− 1
(2π)d/2

)
(1 + o(1)) is positive provided cB is small enough.

By construction, we know that

cap
(

∪z∈Cn−1 : |z−y|1=1 W
e(z),r
[0,t/2]

)
≥ 1

2E
[
cap

(
W 0,r

[0,t/2]

)
; At/2(cB , r)

]
. (4.27)

Recalling Lemma 4.3 and Equation (4.1), we obtain

p0 ≥ c c2
∗ϕ(cB)Φ(cB)2t−d/2(1 + o(1)). (4.28)

Therefore, the number of points in E ∩ By satisfying conditions 1–3 is a Poisson random
variable with parameter

p0 × Leb(By) ≥ c2
∗ θ(cB), with θ(cB) = c cd

Bϕ(cB)Φ(cB)2, (4.29)

which concludes the proof.

Proof of Lemma 4.1. If x ∈ E ∩ B0 then the probability that x satisfies conditions 1–2 in
Section 4.1 is larger than c Φ(cB)4(1+ o(1)), by Lemma 4.4. Therefore, the number of such
points is a Poisson random variable with parameter:

c cd
B Φ(cB)4 td/2(1 + o(1)), (4.30)

which goes to ∞ as t → ∞. This concludes the proof.

5 Capacity estimates

5.1 Green function estimates

Lemma 5.1. Let d ≥ 4 and t0 > 1. There exists a positive constant c such that for all

t ≥ t0,

E

[ ∫

[t,2t]2

∫

B(0,1)2
G(B0

u + z, B0
v + z′) dz dz′ du dv

]
≤
{

c t, if d ≥ 5,
c t log t, if d = 4.

(5.1)

Proof. Case d ≥ 5.

We start with two estimates. First, let 0 ≤ u ≤ 1. We claim that

E(G(B0
u, z)) ≤ G(0, z) for all z ∈ R

d. (5.2)

Indeed, an application of the Markov property in the second equality shows that

E(G(B0
u, z)) =

∫ ∞

0
E[P̃B0

u
(B̃s ∈ dz)] ds =

∫ ∞

0
P(B0

u+s ∈ dz) ds =

∫ ∞

u
P(B0

s ∈ dz) ds.

(5.3)
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Since the right hand side is bounded from above by G(0, z) we obtain the claim. Now, let
u > 1. In this case we claim that there is a constant c > 0 such that

E(G(B0
u, z)) ≤ c u1−d/2 for all z ∈ R

d. (5.4)

This is a direct consequence of (4.21)–(4.22). To make use of the inequalities (5.2) and (5.4)
we write the left hand side in (5.1) as a sum of three terms:

(1) = E

[ ∫ 2t

t

∫ (v−1)∨t

t

∫

B(0,1)2
G(B0

u + z, B0
v + z′) dz dz′ du dv

]
,

(2) = E

[ ∫ 2t

t

∫ 2t

(v+1)∧2t

∫

B(0,1)2
G(B0

u + z, B0
v + z′) dz dz′ du dv

]
,

(3) = E

[ ∫ 2t

t

∫ (v+1)∧2t

(v−1)∨t

∫

B(0,1)2
G(B0

u + z, B0
v + z′) dz dz′ du dv

]
.

(5.5)

We first estimate the third term. Note that for all x, y ∈ R
d the relation G(x, y) = G(0, y−x)

holds. Hence, a change in the order of integration together with equation (5.2) and the fact
that B0

v − B0
u has the same distribution as B0

|v−u| show that

(3) ≤
∫

B(0,1)2

∫ 2t

t

∫ v+1

v−1
G(0, z − z′) du dv dz dz′ ≤ 2t

∫

B(0,1)2
G(0, z − z′) dz dz′. (5.6)

Hence, it suffices to show that the integral on the right-hand side of (5.6) converges. For
that, first note that by the representation of the Green function in (2.1), there is c > 0
such that the right hand of (5.6) is at most

2ct

∫

B(0,1)

∫

B(z′,1)
‖z − z′‖2−ddz dz′ = 2ct

∫

B(0,1)2
‖z‖2−d dz dz′, (5.7)

where we made the substitution ζ = z − z′ to obtain the last equality. The convergence
of the inner integral on the right-hand side of (5.7) is now a standard fact. Thus, there is
c > 0 such that (3) ≤ ct. It remains to show that the first and the second term in (5.5)
give the correct contribution. Equation (5.4) yields

(1) ≤ c

∫

B(0,1)2

∫ 2t

t

∫ (v−1)∨t

t
|v − u|1−d/2 du dv dz dz′, (5.8)

for some constant c. A simple computation now shows that there is indeed a constant c > 0
such that for all t ≥ 0 the bound (1) ≤ ct holds. The argument for (2) in (5.5) is similar
and will therefore be omitted. This finishes the proof in this case.
Case d = 4. The proof works almost verbatim as in the previous case. The only difference
is that (5.8) becomes

∫

B(0,1)2

∫ 2t

t

∫ (v−1)∨t

t
|v − u|−1 du dv dz dz′, (5.9)

which is upper bounded by ct log t. We omit the details.
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5.2 Lower bounds. Proof of Lemma 4.3.

The proof of Lemma 4.3 makes use of the variational representation (2.4). This representa-
tion implies that to prove Lemma 5.1 it suffices to construct a measure, which is close to the
"true" minimizer in (2.4). It will turn out that it suffices to choose a measure that measures
the local time of the Brownian motion in a neighborhood of a given set. In this way Green
function estimates enter naturally into the picture. They are provided by Lemma 5.1.

Proof of Lemma 4.3. We start with the case d ≥ 5.
1st Step: Let r = 1 and ν be the probability measure supported on W 0,1

[0,t] and defined by

ν(A) =
1

cvol(t/4)

∫ t/2

t/4

∫

B(0,1)
1l{B0

s + z ∈ A} ds dz, A Borel-measurable. (5.10)

Note that by the variational formula (2.4) for the capacity

E
[
cap

(
W 0,1

[0,t]

)
; At(cB , 1)

]
≥ E[I(ν)−1; At(cB , 1)], (5.11)

where

I(ν) =
1

c2
vol(t/4)2

∫

[t/4,t/2]2

∫

B(0,1)2
G(B0

u + z, B0
v + z′) dz dz′du dv. (5.12)

An application of the Cauchy-Schwarz inequality shows that

E[I(ν)−1; At(cB , 1)] ≥ E[I(ν)]−1P(At(cB , 1))2. (5.13)

Finally, by Equation (5.1), there is a constant c > 0 such that the right hand side of (5.13)
is bounded from below by ctP(At(cB , 1))2. This yields the claim in the case r = 1.
2nd Step: Let now r > 0 be chosen arbitrarily. Note that

E
[
cap

(
W 0,r

[0,t]

)
; At(cB , r)

]
= E

[
cap

(r

r
W 0,r

[0,t]

)
; At(cB , r)

]

= rd−2E
[
cap

(
W 0,1

[0,t/r2]

)
; Atr−2(cBr−1, 1)

]
,

(5.14)

where we used Brownian scaling and the capacity scaling relation (2.5) to obtain the sec-
ond equality. Using the result for the case r = 1 and noting that P(Atr−2(cBr−1, 1)) =
P(At(cB , r)) finishes the proof for d ≥ 5.

The proof in the case d = 4 works along similar lines, the only difference being that the
application of Lemma 5.1 is adapted.

5.3 Second moment estimates. Proof of Lemma 3.1

5.3.1 Case d ≥ 5

Proof. 1st Step: In this step we prove Lemma 3.1 under the assumption r = 1. First note
that by Equation (2.6)

cap
(
W 0,1

[0,t]

)
≤ cap

( ⌈t⌉⋃

i=1

W 0,1
[(i−1),i]

)
≤

⌈t⌉∑

i=1

cap
(
W 0,1

[(i−1),i]

)
, (5.15)
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so that by the independence of B0
i − B0

i−1 and B0
j − B0

j−1 for all j 6= i, i, j ∈ {1, 2, . . . , ⌈t⌉},

E
[
cap

(
W 0,1

[0,t]

)2]

≤
⌈t⌉∑

i,j=1
i6=j

E
[
cap

(
W 0,1

[(i−1),i]

)]
× E

[
cap

(
W 0,1

[(j−1),j]

)]
+

⌈t⌉∑

i=1

E
[
cap

(
W 0,1

[(i−1),i]

)2]
.

(5.16)

Consequently, by the stationarity of Brownian motion in time and by the Cauchy-Schwarz
inequality, the right hand side of (5.16) is bounded from above by

⌈t⌉2 × E
[
cap

(
W 0,1

[0,1]

)2]
. (5.17)

To see that the expectation on the right hand side of (5.17) is finite, note that by the scaling
relation (2.5) for any R > 0 the identity cap(B(0, R)) = Rd−2cap(B(0, 1)) holds. Since
E(sups∈(0,1) ‖Bs‖d−2) < ∞, the desired finiteness readily follows. This proves Lemma 3.4
in the case r = 1.
2nd Step: In this step we treat the general case. To that end, note that by Brownian
scaling and by the scaling relation (2.5),

cap
(
W 0,r

[0,t]

)
= cap

(r

r
W 0,r

[0,t]

) (law)
= rd−2cap

(
W 0,1

[0,tr−2]

)
. (5.18)

The claim follows from equation (5.18) in combination with the first step.

5.3.2 Case d = 4

The proof is based on methods presented in [10, Chapter 10]. Fix t > 0, let B be the
Brownian motion driving W 0,1

[0,t].

Proof. We give the proof in the case r = 1. A scaling argument as in (5.18) yields the
general case. We denote by Zt the random variable

Zt = inf
y∈W 0,1

[0,t]

∫ t

0

∫

B(0,1)
G(y, Bu + z) du dz (5.19)

and we write for a constant c0 > 0 to be determined later,

E

[
cap

(
W 0,1

[0,1]

)2
]

= E

[
1l{Zt ≤ c0 log t} cap

(
W 0,1

[0,1]

)2
]

+ E

[
1l{Zt > c0 log t} cap

(
W 0,1

[0,1]

)2
]

=: (1) + (2).
(5.20)

Note that by an application of the Cauchy-Schwarz inequality,

(1) ≤ P(Zt ≤ c0 log t)1/2E
[
cap

(
W 0,1

[0,t]

)4]1/2
. (5.21)

To estimate the right hand side in (5.21) we use the a priori estimate

E
[
cap

(
W 0,1

[0,t]

)4]
≤ c t4, (5.22)
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which may be proven as the corresponding second moment estimate in (5.16) or via a
scaling argument using Brownian scaling and capacity scaling. Hence, it rests to estimate
the probability appearing on the right hand side of (5.21). This is the content of the
following lemma, which will be proven at the end of this section.

Lemma 5.2. For all α > 0, there are cα, tα > 0 such that for all c0 ≤ cα and t ≥ tα

P(Zt ≤ c0 log t) ≤ t−α. (5.23)

Thus, for α > 0 and c0 and t chosen according to Lemma 5.2 we obtain that

(1) ≤ c

(
t

log t

)2

. (5.24)

It remains to estimate (2). We write (2) as (2a) + (2b), where

(2a) = E
[
1l{Zt > c0 log t} 1l{B[0,t] ⊆ B(0, t)} cap

(
W 0,1

[0,t]

)2]
,

(2b) = E
[
1l{Zt > c0 log t} 1l{B[0,t] 6⊆ B(0, t)} cap

(
W 0,1

[0,t]

)2]
.

(5.25)

Note that by the Cauchy-Schwarz inequality,

(2b) ≤ P(B[0,t] 6⊆ B(0, t))
1
2 E

[
cap

(
W 0,1

[0,t]

)4] 1
2 ≤ c e−ct t2, (5.26)

for some constant c > 0. To estimate (2a) let B(1) and B(2) be two Brownian motions
independent of B and of each other, introduce the near-intersection local times

T i
t =

∫ t

0
du

∫ ∞

0
ds 1l{‖B(i)

s − Bu‖ ≤ 1}, i ∈ {1, 2} (5.27)

and set
Tt = T 1

t T 2
t . (5.28)

In what follows, the notation Px,x indicates that B(1) and B(2) start from x. Note that as
a consequence of (2.9),

cap
(
W 0,1

[0,1]

)2
= c lim

||x||→∞
||x||4Px,x

(
⋂

i=1,2

{
B

(i)
[0,∞) ∩ W 0,1

[0,t] 6= ∅
})

. (5.29)

We now derive an upper bound for the probability appearing in (5.29) Using the relation

Px,x

(
⋂

i=1,2

{
B

(i)
[0,∞) ∩ W 0,1

[0,t] 6= ∅
})

= Px,x(Tt > 0), (5.30)

we can write

Px,x

(
⋂

i=1,2

{
B

(i)
[0,∞) ∩ W 0,1

[0,t] 6= ∅
})

=
Ex,x(Tt)

Ex,x(Tt | Tt > 0)
. (5.31)
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To estimate the conditional expectation in (5.31) we introduce for i ∈ {1, 2} the stopping
times

τ i = inf
{

u ≥ 0: B(i)
u ∈ W 0,1

[0,t]

}
(5.32)

Note that almost surely 1l{Tt > 0} = 1l{τ1, τ2 < ∞}. Consequently, we may write, using
the strong Markov property at times τ1 and τ2 in the second equality,

Ex,x(Tt | Tt > 0)

= Ex,x

(∫

[0,t]2

∫ ∞

τ1

∫ ∞

τ2

2∏

i=1

1l{‖B(i)
si

− Bui‖ ≤ 1}
∣∣∣ Tt > 0

)
ds1ds2du1du2

= Ex,x

(∫

[0,t]2

∫

B(0,1)2

∫ ∞

0

∫ ∞

0

2∏

i=1

P̃
B

(i)

τi

(B̃si − Bui ∈ dzi)
∣∣∣ Tt > 0

)
ds1ds2dz1dz2du1du2

= Ex,x

(∫

[0,t]2

∫

B(0,1)2

2∏

i=1

G(B
(i)
τ i , Bui + zi)dz1dz2du1du2

∣∣∣ Tt > 0

)
.

(5.33)
Hence, on the event {Zt > c0 log t} we get that

Ex,x(Tt | Tt > 0) ≥ (c0 log t)2. (5.34)

Fatou’s lemma in combination with (5.29) and (5.31) yields

(2a) ≤ c lim inf
‖x‖→∞

‖x‖4E

(
1l{Zt > c0 log t}1l{B[0,t] ⊆ B(0, t)} Ex,x(Tt)

Ex,x(Tt | Tt > 0)

)
. (5.35)

Consequently, using (5.34),

(2a) ≤ c

(c0 log t)2
lim inf
‖x‖→∞

‖x‖4E(1l{B[0,t] ⊆ B(0, t)}Ex,x(Tt)). (5.36)

Moreover,

E[1l{B[0,t] ⊆ B(0, t)} Ex,x(Tt)] = E

[
1l{B[0,t] ⊆ B(0, t)}

( ∫ t

0

∫

B(0,1)
G(x, Bu + z)dudz

)2
]
.

(5.37)
Since G(x, y) = c ‖x − y‖−2, there is a c > 0 such that for all ‖x‖ ≥ 2t + 1 the right hand
side of (5.37) is smaller than c ‖x‖−4 t2. Plugging this estimate back in into (5.36) shows
that

(2a) ≤ c

(
t

log t

)2

. (5.38)

Finally, (5.20), (5.24), (5.26) and (5.38) finish the proof.

Proof of Lemma 5.2. Define for 1 ≤ i ≤ ⌈t⌉,

Zi
t = inf

i−1<s≤i,‖z‖≤1

∫ t

0

∫

B(0,1)
G(Bs + z, Bu + z′) du dz′ (5.39)
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and note that for i ≤ ⌈t/2⌉,

P(Zi
t ≤ c log t) ≤ P

(
inf

i−1<s≤i,‖z‖≤1

∫ i−1+t/2

i−1

∫

B(0,1)
G(Bs + z, Bu + z′) du dz′ ≤ c log t

)

= P(Z1
t/2 ≤ c log t).

(5.40)
Since a similar argument shows that the same is true for i > ⌈t/2⌉, we may deduce that

P(Zt ≤ c log t) ≤
⌈t⌉∑

i=1

P(Zi
t ≤ c log t)

≤ ⌈t⌉ P(Z1
t/2 ≤ c log t).

(5.41)

Therefore, it is enough to prove that for all α, there exists a cα such that for all t large
enough,

P(Z1
t ≤ cα log t) ≤ t−α. (5.42)

Let α > 0. We decompose

P(Z1
t ≤ c log t) = P

(
Z1

t ≤ c log t, sup
s≤1

‖Bs‖ > log t

)
+ P

(
Z1

t ≤ c log t, sup
s≤1

‖Bs‖ ≤ log t

)

:= (1) + (2).
(5.43)

By a standard Gaussian estimate, (1) ≤ t−α for t large enough, so we may solely focus on
estimating (2).

We first estimate (2) when Z1
t is replaced by Z1

ζt
, where the random times (ζt) are

defined by

ζt = inf{u ≥ 0: ∃s ≤ 1, ‖z‖, ‖z′‖ ≤ 1, ‖(Bu + z) − (Bs + z′)‖ > t}. (5.44)

Thus, ζt is the first time that B reaches distance t from some point inside W 0,2
[0,1].

Note that the ζt’s are in general not stopping times. Indeed, knowing whether ζt ≤ 1/2,
for instance, requires all the information of the Brownian motion up to time 1. Note also
that it is enough to consider t = 2ℓ, with ℓ ∈ N. To that purpose, abbreviate ζ(k) = ζ2k , for
k ∈ N.

Let δ > 0. We are first going to prove that if sups≤1 ‖Bs‖ ≤ log t and k ≥ k0 :=⌈
3 + log(log t+2)

log 2

⌉
, then the following implication holds:

ζ(k) − ζ(k−1) < δ22k ⇒ sup
0≤u≤δ22k

‖Bζ(k−1)+u − Bζ(k−1)‖ ≥ 2k−2. (5.45)

(Note that k0 grows with ℓ, rougly like log ℓ only). Indeed, by definition, there exists s ∈ [0, 1]
and z, z′ ∈ B(0, 1) such that ‖Bζ(k) + z − (Bs + z′)‖ = 2k. Then

∣∣∣‖Bζ(k)‖ − 2k
∣∣∣ ≤ log t + 2, k ∈ N. (5.46)
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Therefore, we obtain

‖Bζ(k) − Bζ(k−1)‖ ≥ ‖Bζ(k)‖ − ‖Bζ(k−1)‖
≥ 2k − 2k−1 − 2(log t + 2)

= 2k−1 − 2(log t + 2),

(5.47)

which is larger than 2k−2 if and only if 2(log t + 2) ≤ 2k−2, i.e. k ≥ k0. This proves the
implication in (5.45).

Even if the ζt’s are not stopping times, we may use the Markov property at times ζ(k)

on the event {sup0≤s≤1 ‖Bs‖ ≤ log t} for k ≥ k0, i.e., if k ≥ k0, 0 < t0 < t1 < . . . < tn,
n ≥ 1, and A0, . . . , An be Borel sets, then

P
(

sup
s≤1

‖Bs‖ ≤ log t, B[0,ζ(k)] ∈ · , Bζ(k)+t0
∈ A0, . . . , Bζ(k)+tn

∈ An

)

= E
[
1l
{

sup
s≤1

‖Bs‖ ≤ log t, B[0,ζ(k)] ∈ ·
}

P̃B
ζ(k)

(B̃t0 ∈ A0, . . . , B̃tn ∈ An)
]
.

(5.48)

Indeed, the l.h.s. writes
∫

u
P
(

sup
s≤1

‖Bs‖ ≤ log t, B[0,u] ∈ ·, ζ(k) ∈ du, Bu+t0 ∈ A0, . . . , Bu+tn ∈ An

)
. (5.49)

Note that for u, v ≤ 1, z, z′ ∈ B(0, 1), ‖Bu − Bv + z − z′‖ ≤ 2(log t + 1) and if k ≥ k0 then
2k ≥ 8(log t + 2) > 2(log t + 1), so necessarily ζ(k) ≥ 1. This implies that we can apply the
Markov property at u in (5.49), which yields (5.48).

Write ε = ε(δ) = P(sup0≤u≤δ ‖Bu‖ > 1/4), and define

Ik = 1l{ζ(k) − ζ(k−1) < δ22k}, 1 ≤ k ≤ ℓ, Iℓ =
ℓ∑

k=1

Ik. (5.50)

Note that by Brownian scaling, for k ≥ 1,

P̃B
ζ(k)

(
sup

0≤u≤δ22(k+1)

‖B̃u − Bζ(k)‖ > 2k−1
)

= ε. (5.51)

Using (5.45), (5.48),(5.51), we may write for k > k0,

P
(

sup
s≤1

‖Bs‖ ≤ log t, B[0,ζ(k−1)] ∈ ·, ζ(k) − ζ(k−1) < δ22k
)

≤ εP
(

sup
s≤1

‖Bs‖ ≤ log t, B[0,ζ(k−1)] ∈ ·
)
.

(5.52)

We may then prove by iteration that for all (in)k0≤n≤k in {0, 1}k−k0+1,

P
(

sup
s≤1

‖Bs‖ ≤ log t, In = in, k0 ≤ n ≤ k
)

≤ P
(

sup
s≤1

‖Bs‖ ≤ log t
)
ε
∑

k0≤n≤k
in

. (5.53)

Therefore, for ℓ large enough and ε small enough we have

P
(

sup
s≤1

‖Bs‖ ≤ log t, Iℓ ≥ ℓ/2
)

≤ P
(

sup
s≤1

‖Bs‖ ≤ log t,
ℓ∑

k=k0+1

Ik ≥ ℓ

2
− k0

)

≤ (2
√

ε)ℓε−(k0+1) ≤ 2−ℓα = t−α.

(5.54)
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On the other hand, on the event {Iℓ < ℓ/2}, we get

Z1
ζ(ℓ) = inf

0≤s≤1
‖z‖≤1

∫ ζ(ℓ)

0

∫

‖z′‖≤1
G(Bs + z, Bu + z′) du dz′ ≥ c

ℓ∑

k=1

2−2k[ζ(k) − ζ(k−1)]

≥ c
∑

1≤k≤ℓ : Ik=0

2−2k[ζ(k) − ζ(k−1)]

= c δ log t.
(5.55)

The first inequality in (5.55) is obtained by cutting the integral over [0, ζ(ℓ)] into sub-
intervals [ζ(k−1), ζ(k)], 1 ≤ k ≤ ℓ, and using (2.1) as well as (5.44) to bound the Green
function from below. We may now conclude thanks to (5.54)–(5.55). For that first fix α > 0,
then choose ε > 0 in accordance with (5.54); this determines δ by the line preceding (5.50),
which by (5.55) provides a value for cα.

It remains to replace (Z1
ζt

) by (Z1
t ). This is done by observing that

P(Z1
t ≤ c log t) ≤ P

(
Z1

ζ
t

1
4

≤ c log t
)

+ P
(
ζ

t
1
4

> t
)
. (5.56)

From the previous observations, the first term on the right hand side of (5.56) decreases
faster than any power of t provided c is chosen small enough. The second term decreases
faster than any power of t by standard small ball estimates. This finally yields the result.
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