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Abstract

The convex onion-peeling of a set of points is the organization of these points into a sequence of interpolating
convex polygons. This method is adequate to detect the shape of the “center’” of a set of points when this shape is
convex. However it reveals inadequate to detect non-convex shapes. Alternatively, we propose an extension of the con-
vex onion-peeling method. It consists in representing a set of points with a sequence of non-convex polylines which are
computed using the .o/-shape descriptor. This method is applied to robust statistical estimation. It is shown that it
makes the estimators robust to the presence of outliers by removing suspect samples from the available population.

© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The convex onion-peeling method is a popular
tool of computational geometry organizing a finite
non-organized set of points in a sequence of strips
(Chazelle, 1985; Preparata and Shamos, 1985;
Abellanas et al., 1992; Okabe et al., 1992; Bois-
sonnat and Yvinec, 1995). The first strip is the
convex hull of the set of points, the second one is
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the convex hull of the set of points minus the
points on the first strip. The remaining strips are
computed similarly. The process continues until
the empty set is reached. Building this method is
motivated by the need of efficient methods allow-
ing to organize a set of points and to extract the
convex shape embedded in their center. This
problem is of prime importance in computational
geometry and has several applications, e.g. in sta-
tistics (Preparata and Shamos, 1985).

An important problem in statistics is the esti-
mation of a population parameter, such as the
mean, by observing only a sample of size n drawn
randomly from the population. While the sample
mean is an unbiased estimator of the population
mean, it is extremely sensitive to outliers, obser-
vations that lie abnormally far from most of the



others. It is adequate to reduce the effects of out-
liers because they often represent spurious data
that would otherwise introduce errors in the
analysis. A related property that a good estimator
should enjoy is that of robustness, i.e. insensitivity
to deviations from the idealized assumptions for
which the sample estimator is optimized.

Statisticians have developed various sorts of
robust statistical estimators. An important class of
such estimators are those known as the Gastwirth
estimators (Gastwirth, 1966) (also called the L- or
o-trimmed estimators). They are based on the fact
that we tend to trust observations more the closer
they are to the center of the samples. In higher
dimensions, a convex-peeling method is used (see
Huber, 1979, 1981; Abellanas et al., 1992; Cha-
zelle, 1985; Preparata and Shamos, 1985). It con-
sists on stripping away the convex hull of the set,
then removing the convex hull of the remainder,
and continuing until (1 —2ax) fraction of the n
points remains. Here, « is the proportion of out-
liers among available samples. However, the con-
vex hull-based method is inadequate when the
points are on a concave region.

In this article, we propose a generalization of
the convex onion-peeling algorithm. We organize a
finite points set as a sequence of strips, where each
strip is a closed non-convex interpolating polyline.
The novelty of this approach is that the strips are
not constrained to be convex and the method
makes possible the extraction of a non-convex
shape embedded in the center of a cloud of points.
These properties are essential for the estimation of
parameters with o-trimmed estimators.

In our method the strips are computed using the
o/ -shape concept (Melkemi and Djebali, 2000,
2001). The first strip corresponds to an .«/-shape of
the set of points where .o/ is the set of vertices of
elongated Voronoi polygons. The points interpo-
lated by the first strip are added to .o/ and deleted
from the original set of points, the new .o7-shape of
the remaining set of points corresponds to the
second strip. The other strips are computed itera-
tively according to the same process.

This article is organized as follows: in Section 2,
we present geometrical concepts used to build the
onion-peeling algorithm. Section 3 is devoted to
the non-convex onion-peeling algorithm based on

the .o/-shape concept. Section 4 presents the
application of non-convex onion-peeling to robust
statistical estimation.

2. Voronoi diagram and Delaunay triangulation

Let S={pi,p>,...,p.} be a set of n distinct
points of the plane, d(p,q) is the Euclidean dis-
tance between two points p and ¢g. We define a
Voronoi polygon of a point p; by:

R(S,p) = {p € R%d(p,p)
< d(p,p;)Vj such that i # j} (1)

The set V(S) ={R(S,p1),-..,R(S,p,)} defines a
partition of the plane. This set is called Voronoi
diagram of §. The Delaunay triangulation of S,
denoted DT(S), is a decomposition of the convex
hull of S by triangles. For each triangle having its
vertices in T (T is subset of S and contains three
points), there exists an open disc b such that
bNS =0 and 0bNS =T, where 0b is the circle
bounding b (0b is called the Delaunay circle).

3. .o/-shape onion-peeling
3.1. o/-shape definition

Consider again a finite set of points S =
{p1,p2,---,Pu}, and o is a finite set of points. The
following definitions introduce the concept of
o/-shape of the points set S:

Definition 1

e An edge [pp;] of the Delaunay triangulation
DT(S U .«7) is .o/-exposed, if there exists a trian-
gle (BPa) in DT(S U .«/) where a belongs to .<7.

e o/-shape of S, F(S, /), is the set of .«Z-exposed
edges extracted from DT(S U 7).

e JF(S,.o/) denotes the vertices set of F(S,.o7).

Varying the positions of the points of o7, .o/-
shapes of a set S describe a family of graphs which
represents S with different levels of details. Some
examples of .oZ-shape spectrum are presented in
Fig. 1. Figures in the top row correspond to the
Voronoi diagrams of the union of the points set S



Fig. 1. Examples of .«/-shape spectrum obtained with different choices of .o7.

(black discs) and three different examples of the set
<o/ (white discs). The .o/-shapes associated to these
choices of .o/ are shown respectively in the bottom
row of Fig. 1. When the points of .7 are outside
the union of the Delaunay discs circumscribing the
triangles of the Delaunay triangulation of S, and
when the set of vertices of the convex hull of S U .o/
is equal to the set of .7, then .o7/-shape of S simply
reduces to the convex hull of S.

3.2. Computing the first strip: computing the set </

In this section, we present the method to com-
pute the points of the set .7, which is at the heart
of the non-convex onion-peeling algorithm. Let us
consider the bounded Voronoi polygons, R(S,x)
x € S, adjacent to the unbounded ones.

Definition 2. (Definition of <f)

Let rpax(x) be the maximum distance from x to
the boundary of the polygon R(S,x), rmin(x) de-
notes the minimal distance, and g(x) is the center
of gravity of R(S,x).

e The bounded polygon R(S,x), adjacent to an
unbounded polygon, is said to be an elongated
polygon if and only if ryax(x)/Fmin(x) > ¢ (¢ is a
fixed real number).

e A(x) is the set of the Voronoi vertices v of the
elongated Voronoi region R(S,x) which verify
the relationship:

(0, 2(0))* Sd(0, )" + 5d(x,g()) @

e Let .o/’ be a finite set of points which are outside
the union of the Delaunay discs circumscribing
the triangles of the Delaunay triangulation of S.
The vertices of the convex hull of S U.</" are the
points of the set .7’

e .o/ is the union set of .o/’ and the sets A(x), for
all x € § with R(S,x) bounded and adjacent to
an unbounded polygon.

e The .o/-shape of S is the first strip of the .o7-
shape onion-peeling sequence.

An example of non-elongated and elongated
polygons are shown in Fig. 2. When ¢ =3, the
polygon of Fig. 2(a) is non-elongated (rpax(x)/
rmin(¥) = 1.33 < ¢+ =3) and the polygon of Fig.
2(b) is elongated (Fmax (x)/7min (x) = 10.01 > ¢ = 3).

The vertices of 4(x) are located in the half-space
containing the gravity center g(x) and defined by
the radial axis of the weighted points (g(x),

\/%d(x, g(x))) and (x, 0) (see Fig. 3 for illustration).
Referring to Definition 2, the set .«/ depends on
a single parameter ¢; a positive real number greater



(a) (b)

Fig. 2. (a) A non-elongated polygon, (b) an elongated polygon.

than 1. When ¢ is sufficiently large such that all the
polygons are considered non-elongated, then the
sets A(x) are empty. Thus .o/ is the set .«/’. In this
case, the .o/-shape of a set of points S is the convex
hull of S (Fig. 4(b)). Otherwise, .«7-shape reflects
concave shapes. The finer shape reflected by
<o/ -shape is achieved when ¢ is equal 1. In this case,
all the polygons adjacent to the unbounded ones

(a)

o A point of A(x)

Fig. 3. The points of the set 4(x).

are considered elongated. Two examples of finer
shapes are illustrated in Fig. 4(c) and (d). In our
experiments, we employ the threshold ¢ =3. In
Figs. 5(b) and 6, we depict an example of the
points set .o/ used to compute the first strip.

(b)

(o)

Fig. 4. Examples of .«Z-shape computed according to different choices of the parameter ¢. (a) The set of points S, (b) .«/-shape of S

(t = 20), (c) .«/-shape of S (¢t = 3), (d) .«/-shape of S (1 = 1.3).
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Fig. 5. (a) The points set S and (b) construction of the points of the set .o7.

(a)
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Fig. 6. Continuation of Fig. 4. .«Z-shape onion-peeling sequences associated to the thresholds (a) ¢ = 20, (b) t = 3 and (c) t = 1.3.

3.3. .o/-shape onion-peeling algorithm

The .o/-shape onion-peeling algorithm com-
putes iteratively a sequence of strips. The first
one is computed following the method presented
in Section 3.2. The vertices of the first strip are
added to the initial set .o to obtain the set o7, and

they are removed from S to obtain S;. The .«/,-
shape of S| represents the second strip, the fol-
lowing strips are computed according to the same
process. Formally, this iterative process is as fol-
lows:

We start with So =S8 and .&7p=.&/, and
we  compute  Sii = Sy — VF(Sk, k), and



A1 = VF (S, /) Uy, for all k=0,..., until
the empty set is reached. The graphs F (S, .<7;) are
the strips of the set and the process of iteratively
removing the strips is the .o/-shape onion-peeling.
Examples of different .o7-shape onion-peeling se-
quences, obtained with different choices of the
threshold ¢, are shown in Fig. 4. In our experi-
ments, it seems that the adequate value of ¢ is in
the range (3,4). Specifically we here used the value
t = 3. Another illustrative example of the .«7-shape
onion-peeling sequence is shown in Fig. 7(d). For
comparison purposes, an example of the convex
hull onion-peeling is depicted in Fig. 7(b). In the
one hand, one can legitimately conclude that the
obtained convex hull sequence is inadequate in this
case as it fails to detect the ‘“‘cross’-like shape
embedded in the center of the set of points. In the
other hand, this shape is properly recovered using
the .o/-shape onion-peeling.

(a)

(c)

The following steps summarize our proposed
<o/ -shape-based onion-peeling algorithm:

Algorithm 1. .«/-shape onion-peeling
Inputs: The set of Sy = S, the threshold ¢.
Output: The sequence F(Sy, Zy), F(S1,.%1),. ..

1. Compute the Voronoi diagram of S.
Compute the points of the set .o7.
Compute the Voronoi diagram of S U .<7.
Extract F (S, .«Z¢) from V (S, U .«Zy).

Sy = So — VF(So, ), &1 = VF(So, o) U

/oy and k = 1.

6. While S, # () do.

7. Compute F(S;,.<Z;) as the set of the edges
[pgl, (p,q) € Si x S; such that p and ¢ have
a neighbor x € .«Z; in the Voronoi diagram
of SU J?{(].

8. Sk+1 = Sk — W(Sk, ,Q{k) and -dk+1 = W(Sk,
oAU oA

w ok W

(b)

(d)

Fig. 7. (a) A point set, (b) onion-peeling using convex hull algorithm, (c) the Voronoi diagram of SU .27, (d) onion-peeling using

o/ -shape concept.



9. k=k+1.
10. end while

This algorithm is based on the computation of
the Voronoi diagram, which is efficiently com-
puted in computational geometry (Okabe et al.,
1992; Boissonnat and Yvinec, 1995). A large
fraction of time is spent in computing the Voronoi
diagram of S U .Zy. The resulting complexity of
this step is O(nlogn). The rest of the running-time
is employed to extract the strips from the Voronoi
diagram S U .o7 (the complexity of this sub-step is
O(n)). Therefore, the overall complexity of this
non-convex onion-peeling algorithm is O(nlogn).

We also point out that the presented algorithm
can be easily extended to any d-dimensional space
(d = 3). We employ the d-dimensional .o/-shape
and Voronoi diagram. The definition of the onion-
peeling sequence does not change. Only the com-
putation of the first strip (the first .o7-shape of the
sequence) should be slightly modified. Particu-
larly, the notion of elongated polygons should be
adapted to the shape of polytopes in higher dimen-
sions. The complexity of the algorithm is the
complexity of computing the Voronoi diagram in a
d-dimensional space which is O(nlogn + n?/?).

4. Application to robust statistical estimation

The connection between statistics and geometry
is a close one as multivariate samples can be
viewed as points in Euclidean space. Problems in
statistics such as robust estimation are then
equivalent to purely geometric ones. Outliers can
be stripped away using the convex hull concept.
However, this approach is clearly inadequate and
shows serious limitations in the case of non-convex
points sets, which occurs very often in real life
datasets. Motivated by the .o/-shape peeling con-
cept which is well adapted to the non-convex case,
we now turn to the robust statistical estimation
problem.

There are many, if not most, statistical methods
where insensitivity to outlying points is required.
Among these methods, one can cite examples such
as population statistics estimators (e.g. moments,
quantiles, cumulants, etc.), linear and non-linear

regression, non-parametric function estimation,
hypothesis testing, model selection, etc. (Staudte
and Sheather, 1990).

Let us consider the problem of linear regression
in the presence of outliers. Our goal in this paper is
to illustrate the usefulness of the .oZ-shape onion-
peeling for robust statistical estimation. To reach
this goal, we will consider examples where the
geometrical shape formed by the points (i.e.
bivariate samples) in the 2D Euclidean space are
not necessarily convex. Such an example is de-
picted in Fig. 8(a). The true curve, which is a
superposition of two sine functions Eq. (3), is
shown with a solid line:

y(t) = sin2nt + 0.75sin nt, t € [0,0.2] (3)

This true curve has been contaminated with an
additive Gaussian white noise with a standard
deviation ¢ =0.3. Finally, bivariate uniform
deviates have been introduced to simulate outliers.
The proportion of outliers was 23% (n = 130 data
points with 30 outliers).

Fig. 8(b) and (c) show respectively the onion-
peeling using the convex hull and the .o7/-shape
concepts. The latter clearly outperforms the con-
vex hull-based peeling reflecting the shape of the
true points set. Furthermore, the convex hull
onion-peeling is unable to track outliers when they
are in the cavities.

A Fourier basis (at frequencies 1 and 0.5) has
been fitted to these data. The corresponding design
matrix X has five columns, corresponding to two
sines, two cosines and a constant. This yields five
coefficients to be estimated. The least squares
estimator was used in three configurations: with-
out onion-peeling (LS), with convex hull (CHP)
and .o/-shape (ASP) onion-peeling. The usual
value of o = 5% was used. The results are shown in
Fig. 7(d) and Table 1. As expected, the classical
least-squares estimator has poor performances. It
yields biased estimates with variances higher than
the expected variances shown in parentheses in the
first column of Table 1. The variances have been
estimated from the diagonal of the classical
covariance matrix:

Cov(p) = (X x)" (4)
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Fig. 8. (a) Points set obtained using superposition of two sine functions (shown with a solid line) contaminated with an additive
Gaussian white noise with a standard deviation 0.3. Bivariate uniform deviates have been introduced to simulate outliers. (b) Onion-
peeling using convex hull. (c) Onion-peeling using .«/-shape. (d) A Fourier basis (at frequencies 1 and 0.5) fitted to the points with and
without onion-peeling. For the onion-peeling a-trimmed estimators, the usual value of o = 5% was used.

Table 1

True (first column) and estimated model parameters using the three approaches
True data ASP estimates CHP estimates LS estimates
0 (0.0293) —0.0293 (0.0495) 0.0154 (0.0747) -0.0266 (0.1010)
1 (0.0417) 0.9012 (0.0673) 0.7854 (0.1039) 0.8501 (0.1426)
0 (0.0413) —0.0734 (0.0705) —0.1126 (0.1066) 0.0507 (0.1427)
0.75 (0.0417) 0.6370 (0.0671) 0.5260 (0.1072) 0.2846 (0.1468)
0 (0.0413) 0.0660 (0.0729) 0.0231 (0.1040) 0.0040 (0.1388)

Shown in parentheses are the standard deviations of the estimates calculated using Eq. (4).

where ¢ is the standard deviation of the residuals.
One can also clearly see the higher performance
of the ASP estimator yielding lower bias and
variance levels. The variances given by the ASP are
closer to the ideal Cramer—-Rao bounds, shown in
parentheses in the first column, than the CHP
estimator.

5. Conclusion

We have presented an alternative algorithm to
the convex onion-peeling method. The layers in
the .«Z-shape onion-peeling method are not neces-
sarily convex. The method takes into account non-
convex shapes embedded in a points set. The



algorithm is fast, simple to implement and is
promising for robust statistical estimation. It can
be used in a variety of situations in statistics to
robustify the estimators against the presence of
undesirable outliers. Furthermore, the presented
technique can be easily applied to multivariate
statistics even for higher dimensions than 2.

References

Abellanas, M., Garcia, J., Hernandez, G., Hurtado, F., Serra,
0., 1992. Onion polygonizations. In: 4th Canadian Confer-
ence on Computational Geometry, Canada. pp. 127-131.

Boissonnat, J., Yvinec, M., 1995. Comput. Geomet. Springer,
Cambridge.

Chazelle, B., 1985. On the convex layers of a planar set. IEEE
Trans. Inform. Theory 31, 509-517.

Gastwirth, J., 1966. On robust procedures. J. Amer. Stat. Assn.
65, 929-948.

Huber, P., 1979. Robust statistical procedures. SIAM, Phila-
delphia.

Huber, P., 1981. Robust Statistics. Wiley, New York.

Melkemi, M., Djebali, M., 2000. Computing the shape of a
planar points set. Pattern Recogn. 33, 1423-1436.

Melkemi, M., Djebali, M., 2001. Weighted a-shape: a des-
criptor of a finite points set. Pattern Recogn. 34, 1159-
1170.

Okabe, A., Boots, B., Sugihara, K., 1992. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Texts and
Monographs in Computer Science. John Wiley & Sons,
England.

Preparata, F., Shamos, M., 1985. Computational Geometry:
An Introduction. Texts and Monographs in Computer
Science. Springer-Verlag, New York.

Staudte, R., Sheather, S., 1990. Robust Estimation and Testing.
Wiley, New York.



