N

N

A comparative evaluation of wavelet-based methods for
hypothesis testing of brain activation maps
Jalal M. Fadili, E. T. Bullmore

» To cite this version:

Jalal M. Fadili, E. T. Bullmore. A comparative evaluation of wavelet-based methods
for hypothesis testing of brain activation maps.  Neurolmage, 2004, 23 (3), pp.1112-1128.
10.1016/j.neuroimage.2004.07.034 . hal-01123845

HAL Id: hal-01123845
https://hal.science/hal-01123845
Submitted on 5 Mar 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01123845
https://hal.archives-ouvertes.fr
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Wavelet-based methods for hypothesis testing are described and their
potential for activation mapping of human functional magnetic
resonance imaging (fMRI) data is investigated. In this approach, we
emphasise convergence between methods of wavelet thresholding or
shrinkage and the problem of hypothesis testing in both classical and
Bayesian contexts. Specifically, our interest will be focused on the
trade-off between type I probability error control and power
dissipation, estimated by the area under the ROC curve. We describe
a technique for controlling the false discovery rate at an arbitrary level
of error in testing multiple wavelet coefficients generated by a 2D
discrete wavelet transform (DWT) of spatial maps of fMRI time series
statistics. We also describe and apply change-point detection with
recursive hypothesis testing methods that can be used to define a
threshold unique to each level and orientation of the 2D-DWT, and
Bayesian methods, incorporating a formal model for the anticipated
sparseness of wavelet coefficients representing the signal or true image.
The sensitivity and type I error control of these algorithms are
comparatively evaluated by analysis of “null” images (acquired with the
subject at rest) and an experimental data set acquired from five normal
volunteers during an event-related finger movement task. We show
that all three wavelet-based algorithms have good type I error control
(the FDR method being most conservative) and generate plausible
brain activation maps (the Bayesian method being most powerful). We
also generalise the formal connection between wavelet-based methods
for simultaneous multiresolution denoising/hypothesis testing and
methods based on monoresolution Gaussian smoothing followed by
statistical testing of brain activation maps.

Keywords: Wavelet-based methods; Brain activation maps; False discovery
rate

Introduction
Wavelet shrinkage

Nonparametric regression has been a fundamental tool in data
analysis over the past two decades and is still an expanding area of
research. The goal is to recover an unknown process, say g, based
on sampled data that are contaminated with noise. It has been
proven that wavelet “shrinkage” methods for nonparametric
regression are optimal for this purpose, in the sense of closely
approximating the minimax risk, assuming only that g belongs to a
general class of functions with a prescribed regularity. It has also
been shown empirically that wavelet-based denoising techniques
can provide a very effective and simple way of finding structure in
a variety of data sets without the imposition of a parametric
regression model, see overview in Antoniadis et al. (2001).
Wavelet shrinkage methods are a new subset of a prior class of
nonparametric regression estimators, namely orthogonal series
methods, and can be rapidly computed using fast algorithms
(Mallat, 1989).

The seminal papers on wavelet shrinkage by Donoho and
Johnstone defined it algorithmically as follows: the discrete
wavelet transform of a noisy realisation of g is computed; the
wavelet coefficients are thresholded by a universal threshold value
/ applied identically to each coefficient according to a hard or soft
thresholding rule #; the inverse wavelet transform of the
coefficients that survive thresholding is used to estimate the
denoised image g (Donoho and Johnstone, 1994, 1995; Donoho et
al., 1995). Several variants or refinements of this basic scheme
have since been proposed, including level-specific or data adaptive
thresholding operators (see, e.g., Percival and Walden, 2000;
Vidakovic, 1999 and references therein), and Bayesian approaches
by which a prior distribution is specified to model the sparseness of
the coefficients of the true image and the posterior probability is
thresholded (Abramovich et al., 1998; Achim et al., 2001; Chang et
al., 2000; Chipman et al., 1997; Clyde and George, 1999, 2000;
Crouse et al., 1998; Johnstone and Silverman, 1998; Huang and
Lu, 2000; Simoncelli and Adelson, 1996; Vannucci and Corradi,
1999; Vidakovic, 1998). In terms of mean squared error in finite



sample situations, it has been shown that Bayesian wavelet
shrinkage rules often outperform “classical” thresholding algo-
rithms, which operate on wavelet coefficients one at a time and
without a prior distribution for coefficients of the true image. A
detailed study involving recent classical and Bayesian methods in
the development of high-performance wavelet shrinkage algo-
rithms and their finite sample properties was reported by
Antoniadis et al. (2001).

Brain activation mapping

Many difficulties must be addressed when processing fMRI
data including the generally low signal-to-noise ratio and the
multiple sources of artefacts. To detect activated brain regions, the
most widely adopted data analytic procedures are based on linear
(or, less often, nonlinear) regression theory. The experimental
effects of interest are included in a design matrix that often also
incorporates some other “nuisance” variables, e.g., low-frequency
drift, head movements, etc. Then, the time course vector at each
pixel (m, n) can be expressed as a linear combination of some
covariates x; via an additive linear model:

Ymn = Xﬁmn + Emn, Emn ~N(O-, Zmn) (1)
where ¢,,, is a zero mean random vector with covariance matrix
Y X is the design matrix whose columns are the x;’s. The
classical assumption is that the errors ¢,,, are independent and
normally distributed, which is not generally realistic for fMRI time
series with autocorrelated errors. There is also an extended
literature on modelling ¢,, as a short-memory process (AR,
ARMA, ARIMA; see Bullmore et al., 2001 and references
therein). Recently, we have proposed a new wavelet-based
estimator of such linear models that is robust to the presence of
long-memory (1/f) error processes (Bullmore et al., 2001; Fadili
and Bullmore, 2001).

Whatever method is used for regression model estimation, the
output will be a 3D spatial map representing the linear model
parameter of interest (often divided by its standard error) at each
voxel in the image. Various statistical maps, including Student’s ¢
maps, Fisher—Snedecor ' maps or Gaussian Z maps, have been
reported in the neuroimaging literature. In the following, we will
consider exclusively Gaussian statistical maps, although this is
without loss of generality because any other standardised statistic
map can be transformed to a Z map using appropriate integral
transformations. Given such a spatial brain map of time series
statistics, the problem at the heart of this paper is how best to
estimate the true activation map from its noisy realisation? Almost
universally in current practice, this problem is approached in two
steps.

The first step is to reduce the noise in the observed map. This
is most often done using a monoresolution Gaussian filter whose
width must be arbitrarily specified. This will generally entail loss
of resolution of spatially detailed features in the map and will
cost sensitivity to detect any spatial features of the true image that
do not conform in size or shape to the Gaussian kernel.
Multiresolution Gaussian scale-space methods have been used
by Poline and Mazoyer (1994) and revisited by Worsley et al.
(1996a,b), but may be problematic due to the continuous nature
of the scale parameter (which and how many scales should be
used?), the overcompleteness or redundancy of Gaussian scale-
space, and difficulties in knowing the distribution and covariance

structure of non-Gaussian noise after Gaussian smoothing. For
these reasons, it is easier to work with orthonormal transforms
such as the discrete wavelet transform (DWT) that correspond to
bases or tight frames.

The second step is to decide which voxels in the smooth map
are activated, for a prespecified type I probability error «. This
amounts to a binary decision problem where each voxel is
compared to the «-level critical threshold. This decision step is
currently implemented at the level of individual voxels or spatial
clusters of contiguous suprathreshold voxels surviving a pre-
liminary voxel-level test (Bullmore et al., 1999; Worsley et al.,
1995). At voxel level, the search volume V, or total number of
tests to be conducted, will typically be in the order of 1E4 and
false-positive error may be controlled for multiple comparisons
in terms of the family-wise error (FWE) rate or the false
discovery rate (FDR); (see Friston et al., 1991; Hayasaka and
Nichols, 2003; Nichols and Holmes, 2002; Worsley et al.,
1996a,b for reviews).

Wavelet shrinkage and brain activation mapping

The overall aim of this paper is to advocate wavelets as a
framework for combining the traditionally separate steps of
denoising and hypothesis testing in a single operation. To put this
another way, we will reformulate probabilistic wavelet shrinkage as
a method for multiresolution denoising and hypothesis testing. The
main advantages, in principle, of this approach are the following:
(i) the discrete wavelet transform effects a multiresolution
decomposition of spatial statistic maps, so denoising in the wavelet
domain should be more adaptive to a range of spatial features in
the true image than imposition of a monoresolution Gaussian
kernel; and (ii) the wavelet transform often has whitening or
decorrelating properties, meaning a set of hypothesis tests on
wavelet coefficients may generally be regarded as independent of
each other, which may confer some benefits in optimal control of
type I error.

In the neuroimaging literature, some authors have already
proposed using wavelet domain denoising to obtain an estimate of
activation maps in fMRI (Brammer, 1998; Desco et al., 2001) and
positron emission tomography (PET) (Ruttimann et al., 1994;
Turkheimer et al., 1999; see also the review in Bullmore et al.,
2003). However, these approaches have shared the drawback of
applying a simple universal threshold to all wavelet coefficients
without assigning any probability risk to the resulting activation
maps, and the multiple comparisons problem has not always been
explicitly addressed. To our knowledge, Ruttimann et al. (1995,
1996, 1998) were the first group to propose a wavelet-based
hypothesis testing approach for brain activation mapping using
Bonferroni-corrected thresholds unique to each level of the 2D-
DWT of spatial statistic maps. In the same spirit, Feilner et al.
(1999, 2000) advocated fractional spline wavelets for analysis of
time series statistic maps, using the fractional order of the spline to
control the smoothness of the reconstructed image. Raz and
Turetsky (1999) combined ANOVA and wavelet-based false
discovery rate thresholding for the analysis of single and group
neuroimaging fMRI data, using a method very closely related to
Ruttiman’s approach. However, there has been no previous attempt
to evaluate various wavelet shrinkage algorithms rigorously in
terms of their relative sensitivity and type I error control, to apply
such methods to mapping data derived from event-related experi-
ments, or to formalise the conceptual links between wavelet



shrinkage and the prevailing alternative approach of Gaussian
smoothing followed by a separate hypothesis testing step (with
possible correction for multiple comparisons). Rather than being
exhaustive, we concentrate our efforts on three algorithms because
they are representative of the prior literature; one controlling the
FDR, one the FWER and one Bayesian with no multiple
comparison correction.

The rest of this paper is organised as follows: in the next
section, we define wavelet shrinkage or nonparametric regression
and introduce some notational aspects. In the third section, we
specify three algorithms for probabilistic wavelet shrinkage: an
algorithm using a universal threshold to control the false discovery
rate; an algorithm using level-adaptive thresholds recursively to
test coefficients; and a Bayesian algorithm for thresholding the
posterior probability of the null hypothesis given the observed
coefficients. We also briefly review some details of receiver
operating characteristic (ROC) methodology that will be used to
compare the performance of these algorithms. Then, we describe
experimental procedures and preliminary data analysis and
simulations. In “Results”, we present some experimental results
on null and experimental fMRI data sets, using ROC methods to
compare performance of wavelet based hypothesis testing algo-
rithms. Finally, some conclusions and directions of future work are
briefly summarised.

Wavelet shrinkage or nonparametric regression

Let gpp, m,n =0, ..., N — 1 be equally spaced samples of a
real-valued image; without loss of generality, N is considered as a
power of 2 (N = 2”). Now consider the standard nonparametric
regression model:

Yimn = &mn + €mn (2)

where €,,, are iid normal random variables with mean zero and
variance ¢ independent of g,,,. The goal is to recover the
underlying function or true image g from the observed noisy data
YVmn, Without assuming any particular parametric structure for g.
Let y, g and € denote the matrix representations of the
corresponding entities and let D = Wy, S = Wg and V = Wk,
where )V is the two dimensional dyadic orthonormal wavelet
transform (DWT) operator (Mallat, 1999); for background
material on wavelets and fMRI, see reviews by Bullmore et al.
(2003). In a two-dimensional setting, the subbands HH;, HL; and
LH;, j = J., ..., J — 1 correspond to the detail coefficients in
diagonal, horizontal and vertical orientations, and the subband
LL,. is the approximation or the smooth component. J. is the
coarsest scale of the decomposition that will usually be specified
as J, = log, log N + 1 from asymptotic considerations. Let s%, be
the detail coefficient of the true image g at location (m, n), scale j
and orientation o, and similarly for d%,and v%, Due to the
orthogonality of the DWT, the wavelet coefficients of white noise
will also be white noise with the same variance. It follows from
Eq. (2) that:

d7 =s% 4%

mn Y mn mn? J=

e =15 mn=0,.,27 — 1 (3)

The sparseness of the wavelet expansion makes it reasonable
to assume that essentially only a few large detail coefficients in
D contain information about the underlying image g, while
small values can be attributed to the noise that uniformly

contaminates all wavelet coefficients. It is also advisable to keep
the approximation coefficients intact because they represent low-
frequency terms that usually contain important features about
the image g. By thresholding or shrinking the detail coefficients
and inverting the DWT, one can obtain an estimate of the
underlying image g. So the resulting three-step wavelet-based
estimation procedure can be summarised by the following
diagram:

DWT Nonlinear thresholding operator # ~ IDWT .
y— D {S=nD)}—¢§

where # is a nonlinear (shrinkage or thresholding) operator.
Examples of such an operator are the hard and soft thresholding
rules with the universal threshold (Donoho and Johnstone,
1994).

These rules are given, respectively, by:

Hard [ joj \ __ 0 if |d/(:{n ‘ <7 oft ( joj
n, " (dy) = : . if d
] ( mn) { d;:{n otherwise ’ '# ( mn)

) ) mn
d%, —sign(d?,)/ otherwise.

mn

B {o if |d? | <

where / is the threshold value.

Wavelet shrinkage as a hypothesis testing problem

The main idea here is simply to reformulate wavelet shrinkage
as a hypothesis testing problem.

Classical approach

We mean by “classical” that no prior distribution is imposed on
the true unknown wavelet coefficients, in contrast to the Bayesian
approach where a prior density is specified to capture the
sparseness of wavelet coefficients of the true image g. In both
the classical hypothesis testing algorithms described below, the
investigator has some control on the smoothness of the recon-
structed image by prespecification of an arbitrary type I error
probability threshold, e.g., o < 0.05.

Controlling false discovery rate

For each observed wavelet coefficient at each scale, orientation,
and location, we test the following hypothesis:
Hy:s% =0vs. Hy:s% #0
The observed detail coefficient is distributed according to d%,/
s%,~N(s%,, a%). This detail coefficient is retained in the recon-
struction if H) is rejected with a risk o; otherwise, it is discarded.
Classical approaches to multiple hypothesis testing face serious
problems because of the large number of hypotheses being tested
simultaneously. In other words, if the error is controlled at an
individual level, the test is too permissive and the chance of
erroneously retaining a coefficient over the search volume is
extremely high; whereas if the family-wise error is controlled, the
test is too conservative and the chance of falsely discarding a
coefficient is extremely high. Abramovich and Benjamini (1995,
1996) and Shen et al. (2002) have proposed a way to control such
dissipation of power based on type I error control in terms of the false
discovery rate (FDR). From an estimation point of view, Abramo-



vich et al. (2000) showed recently that FDR thresholding provides a
near-optimal way of adapting to unknown sparsity of the signal to be
recovered; in other words, imposing an asymptotically negligible
FDR level is asymptotically optimal in terms of the minimax risk.

Let T be the number of observed wavelet coefficients that are
retained by the thresholding procedure. From these T coefficients,
TP (true positives) are correctly retained and FP = 7 — TP (false
positives) are erroneously retained. The error in such a procedure is
expressed in terms of the random variable FPF = FP/T, i.e., the
proportion of the retained wavelet coefficients that should properly
have been rejected. Obviously, FPF is defined as zero when 7 =0
because no error of this type can be made when no coefficient is
retained. The FDR of empirical wavelet coefficients can now be
defined as the expectation of FPF, i.e., the expected proportion of
false positives among the total number of coefficients surviving the
threshold.

Following Abramovich and Benjamini (1995, 1996), we propose
maximizing the number of retained wavelet coefficients subject to
the constraint FPF < o, which can be operationalised in terms of
Algorithm 1 to calculate the global threshold of the map.

Algorithm 1 (Classical wavelet shrinkage with FDR control)

1: For each of the nd = N X N — 1 observed wavelet
coefficients {d,,”7 :j=0,...,J —1;m,n=0,...,2 —1;0=HH,
HL, LH}, calculate the corresponding double-sided p value, p,,”

under Hy:

mafi-o[15)

where @ (x) is the cumulative normal distribution of a standard
normal variable. In general, the wavelet coefficient variance ¢ can
be estimated from the coefficients in the horizontal HH orientation
at the finest scale using the popular robust estimator (Donoho and
Johnstone, 1994):

. MAD(d/)
C = T0.6745 (©6)

where MAD is the median absolute deviation. In the context of this
paper, we are dealing with normalised Gaussian scores that have
unit variance by definition.

We can see that all the N> — 1 wavelet detail coefficients of the
image are being tested in this step. In the context of fMRI, one is
usually interested only in voxels representing brain tissue and not
skull, scalp, or surrounding air. These noncerebral elements of the
image are therefore discarded in a preliminary image preprocessing
step (thresholding and then morphological closing); it follows that
the number nd has to be reduced by taking into account only the
number of intracranial voxels V.

2: Sort the p,,? in an ascending order, p; <p, < ... <pp

3: Find the p value p; such that i = max; (p; < (i/V)a).

4: Calculate the critical threshold corresponding to this double-
sided p value p;:

AFDR :aqu(l —%) (7)

5: Use Zgpr and apply classical hard (kill or keep) or soft (kill
or shrink) thresholding rules to the observed wavelet coefficients
up to coarsest level J..

6: Apply the inverse DWT to obtain an estimate of the image g.

Clearly this is a procedure in which the same threshold
value Appr is applied to coefficients at all scales and
orientations of the decomposition. Note that Donoho’s use of
a universal threshold value can also be viewed as a (highly
conservative) multiple hypothesis testing procedure rejecting
each null hypothesis at a critical threshold Z,. Using the
well-known asymptotics @ (x) ~ 1— ¢ (x)/x for x large, one
can easily verify from Eq. (5) that the corresponding signifi-
cance level for all tests will be 1/(N?y/mlogN?) for N large.
Thus, as mentioned by Abramovich and Benjamini (1995),
Donoho’s procedure is equivalent to the “panic” procedure of
controlling the probability of even one erroneous inclusion of a
wavelet coefficient at the level 1/(N%\/mlogN? ). The level at
which this error probability is controlled goes to"zero as N gets
larger.

Thresholding as a change-point detection problem

Rather than seeking to include as many wavelet coefficients as
possible (subject to constraint in terms of type I error), the
recursive hypothesis testing procedure (Ogden and Parzen, 1996)
includes a wavelet coefficient only when there is strong,
affirmative evidence that it is needed in the reconstruction. Here
we use prior work by Ogden and Parzen (1996) to develop a
recursive procedure for multiple hypothesis testing that uses level-
dependent thresholds /.

For any orientation (and for sake of readability, we will omit the
superscript o in the following notation), let d/ = (d{/c) be
independent random variables N G4 N, i={1,..., n;} that
represent the observed wavelet coefficients at any level j, where
n; = 2% if all detail coefficients at scale J are tested. For fMRI data,
and for the same reason as above, n; is actually the number of
intracranial voxels at scale j. Let /, represent a non-empty subset
of indices {1, ..., n;}. Then, the multiple hypothesis testing
problem can be expressed as:

Ho: 5] = 0,ic 1, vs. H 25{9&0,i€1,1] and §/ = 0.iel, (8)
To test this set of hypotheses, we can use the standard
likelihood ratio test (LRT) (Ogden and Parzen, 1996). If the
cardinality of the set 7, is not known, which is the case in
practice, the LRT for the above hypotheses could be based on
the test statistic >, | | , which is distributed as A,,? under
H,. However, this may not be the most appropriate test statistic
as only a few of the §/°s are non-zero, resulting in poor power
of detection when 7, contams only a few coefficients. If one
knows the cardmahty ¢ of 1,,, then the LRT would more
properly be based on the sum of squares of the ¢ largest d?’s
Because ¢ is not known in practice, Ogden and Parzen (1996)
suggested a recursive testing procedure for /, containing one
element each time. The LRT statistic would then be the largest
|d,’ [>. It has been shown that the corresponding critical threshold
at level o is equal to:

_ 1/n; 2
il = { @7 [“)f“” ©)

Ogden and Parzen (1996) then proposed the recursive Algo-
rithm 2 for choosing the threshold 4/, which we extend to the
2D case for each level and orientation.



Algorithm 2 (Wavelet shrinkage and recursive hypothesis testing)

1: At each level and orientation, calculate | pf|* using Eq.
(9) and compare the largest |d/|* with this critical value.

2:  If the square value of d7 is larger than threshold, this indicates
that there is still signiﬁcant signal among wavelet coefficients.
Remove this d ,’ , set n; — 1 and return to Step 1.

3. If |df| < |{rr], then there is no strong evidence of signal in
the remaining coefficients. Set the threshold 4; of the current
level and orientation to the largest remaining |d7|.

4:  Apply the soft thresholding scheme using A; so that small
coefficients (indistinguishable from pure noise) are shrunk
to zero and the significant coefficients included in the
reconstruction are shrunk toward zero by the maximum
absolute value of the small coefficients. This is accom-
plished in an adaptive data-driven way at each scale and
orientation.

5:  Apply the inverse DWT to obtain an estimate of the image g.

It is worth noting that Ogden’s procedure is based on the square
of the maximal statistic and could suffer from lack of power. Some
alternatives that control the FWER could be used. We here cite the
method of Hochberg (1979), also known as Bonferroni step-down
(very similar to the Bonferroni but only a /ittle less stringent), the
Hochberg (1988) procedure or other related procedures (e.g.,
Hommel, 1988; Rom, 1990), which is the step-up analog of the
Holm procedure. However, we stress the fact that our goal was not
to use and compare all existing multiple testing procedures but
rather to chose some that are representative of the wavelet/
hypothesis testing literature.

A Bayesian approach

In contrast to these classical multiple hypothesis testing
procedures, a Bayesian method for probabilistic wavelet shrinkage
was considered by Vidakovic (1998). This method also involves
testing the following hypothesis Hy: di,= 0 vs. Hy;: dj,# 0.
However, the Bayesian framework here imposes a prior that
describes the variability of the wavelet coefficients s,/ of the true
image g.

In Bayesian testing of hypotheses, one usually specifies the
prior probabilities 1 — p; for H, being true and p, for H, being
true. This requires a prior distribution that has a point mass
component; otherwise, the testing is impossible (Berger et al.,
1996). Then, we will choose the prior mixture model according to
Clyde et al. (1998) and Abramovich et al. (1998):

Ji(8) = pi () + (1 =) 3(s) (10)

where p; is the mixing propomon d (s) is a point mass at zero and
f(v) describes the behaviour of s;,,, under (when Shn 18 nonzero),
which occurs with probability p;. Considering f(s) as a Gaussian
pdf with zero mean and variance r?, Abramovich and Sapatinas
(1999) proposed the ratio test (RT) statistic as the Bayes thresh-
olding rule:

J ( l/ mn) Tl

Mo = (Ho/dmn) (11)

This quantity compares the posterior probabilities of the null
hypothesis and its alternative (conditionally on the observation). If
there is no evidence for presence of signal, i.e., only noise in the
observed data, then the null hypothesis is more probable (condi-
tionally) and the RT statistic will be correspondingly small
(typically <1).

In contrast to previous authors, we will apply a threshold value
tpost fOr the posterior probability of the null hypothesis conditional
on the observation, namely P(Hy/d,;). This posterior conditional
probability is closely connected to the p values in a conditional
frequentist approach (Berger et al., 1996).

Using the Bayes rule, this probability can be expressed:

P(d},/Ho)P(Hy) (1 —p;)p(dy,:0°)
HO mn) = . i = 12
( / ) fa’ (dl{m) fd ( mn) ( )

where f, (d},) is the marginal pdf of the observed wavelet
coefficient:

Ja(d},) = pif o/Hi (d},) + (1 = p)fa/Ho(d),)

_pj¢(dnm,rj? to ) +(1=p)o(d),;:0%) (13)
and ¢(x; 6°) is the centered Gaussian pdf with variance o>.

To test for the presence of signal, for arbitrary, prespecified
posterior probability threshold value oy, we then apply a hard
thresholding rule to the estimated probability of the null hypothesis
given the data:

mn_d;ml( (HO/ mn))SO(PC’St (14)

where 1(x) is the indicator function. Arbitrary prespecification of
Upost < 0.05 will provide some control over the smoothness of the
reconstructed map.

Estimation of hyperparameters

To apply this Bayesian thresholding rule, the hyperpara-
meters p;, t; and ¢ must be appropriately estimated. Several
solutions have been proposed in the literature. For example, one
could use the robust estimate Eq. (6) for ¢ and an iterative
expectation-minimisation (EM) algorithm to get maximum like-
lihood estimates (MLE) of p; and 7; (Clyde and George, 1999;
Johnstone and Silverman, 1998). In our case, ¢ = 1 because
normalised Gaussian maps are used, and only p; and 7, need to be
estimated. This suggests Algorithm 3 for the Bayesian hypothesis
testing approach.

Algorithm 3 (Bayesian wavelet shrinkage)

1: Calculate the DWT up to coarsest level J. then for each
orientation and level of the decomposition.

2:  Use the EM algorithm to estimate the hyperparameters p; and
7; based on the intracranial wavelet coefficients (see Clyde and
George, 1999; Johnstone and Silverman, 1998 for operational
details).

3: Using these level-adapted hyperparameters, calculate the
posterior probability of the null hypothesis conditional on
each wavelet coefficient Eq. (12).

4:  Apply the hard thresholding rule in Eq. (14) to the posterior
probability of the null hypothesis.

5: Apply the inverse DWT to obtain an estimate of the image g.



Specification of prior distributions

It should be noted that other forms for f in the mixture model of
Eq. (10) have been considered. In their so-called BAMS method,
Vidakovic and Ruggeri (2001) chose a standard exponential prior
on the unknown ¢, and obtained a double exponential pdf for 7.
Their results can be easily exploited to derive a closed-form
expression for 1,,/. For reasons of robustness, Vidakovic (1998)
also suggested the use of central Student’s ¢ distributions (more
heavily tailed than the normal) as a prior. However, no closed form
expression is available for the corresponding Bayesian thresh-
olding rule. In fact, many other prior distributions can be used
provided that they are unimodal, centered and peaked at zero, and
symmetric. Complicated prior pdfs can become useless in
practice, although theoretically powerful, because closed-form
expressions are not generally available for them, thus necessitat-
ing intensive numerical integration. It is also worth noting that
the distribution of any Bayesian rule decision statistic quickly
becomes a complicated function of d,,} as the complexity of the
prior increases, so that its distribution under H, may not be
theoretically tractable. In this case, one must resort to (computer-
intensive) resampling techniques such as the bootstrap to estimate
the distribution of the decision rule statistic.

ROC methods

The Receiver Operating Characteristic (ROC) is a well-known
signal detection methodology for quantifying the detection accuracy
of a test. A ROC curve is simply a plot of the sensitivity vs. the
specificity of the test at different sizes of a probability threshold. The
area under the ROC curve 4. is commonly regarded as a good single
criterion for characterizing detection accuracy: the larger this area is
(or the closer it is to unity), the better the detection accuracy of the
test.

An ROC curve can be estimated from observed data using two
main approaches. The first is fully parametric and has been well
developed in the literature (Dorfman and Alf, 1969; Metz, 1986);
the key assumption entailed is that the observed statistics are
distributed according to a binormal mixture of distributions under
the null and alternative hypotheses. Here, we will prefer a
nonparametric method (Genovese et al., 1997), the main advantage
of which is that it circumvents any assumptions about the
distributional properties of the thresholded statistics.

To apply this method, we must begin by replicating the fMRI
experiment K times and estimating the standardised GLM
parameter vector f§ at each voxel in each replication. Then, we
can use any hypothesis testing algorithm, applied over a range of
sizes of test, to generate K thresholded maps in which each voxel
has been labeled as either active or inactive. The probability that a
voxel is labeled active 0 < k < K times is given by the following
mixture model:

plk) = 2Bk (k) + (1 = 1) B, ) (k) (15)

where B pyis the binomial pdf with parameters K and P; pyand p o
are, respectively, the probabilities that a truly inactive or active voxel
is labeled active at the given threshold; that is, these probabilities are
the observed FPF and TPF; and / is the mixing proportion (here also
the proportion of inactive voxels). Some assumptions underlying
formulation of a binomial mixture model to estimate ROC curves
based on thresholded statistic maps are summarised in Appendix A.

Experimental methods and preliminary analysis
fMRI data acquisition

(1) “Null’ data sets: Five gradient echo echoplanar imaging
(EPI) data sets were acquired from a single, healthy volunteer who
was repeatedly scanned while lying quietly in the scanner with his
eyes closed for 6 min. For each data set, 72 T,*-weighted images
were acquired at each of 26 contiguous oblique axial slices using a
GE LX EchoSpeed system (General Electric, Milwaukee WI)
operating at 1.5 T at CHU in Caen, France, with the following
parameters: time to echo (TE) = 60 ms, time to repetition (TR) =
5's, 64 X 64 voxel slices (N = 64 implying J = 6 scales in the 2D-
DWT of these data), in-plane resolution 3.5 X 3.5 mm, slice
thickness = 5 mm. In each time series, the first four volumes were
eschewed to ensure magnetisation stabilisation.

(2) Event-related finger-movement datasets: We studied five
male subjects during a discrete-trial or event-related (ER) experi-
ment. The task was simply to oppose finger and thumb of the right
hand repeatedly. The experiment was of 6-min duration and
consisted of 11 trials, with a fixed interstimulus interval (ISI) of 30
s. Each trial was 5 s in duration. During this experiment, 26 slices
of gradient echo echoplanar imaging data were acquired using the
same scanner and acquisition parameters as for the null data
acquisition. This simple experiment was designed to activate areas
of the brain that are important in motor tasks.

Preliminary data analysis and simulation

Following correction for head movement, regression model
parameters were estimated in each fMRI time series using wavelet-
generalised least squares (Fadili and Bullmore, 2001). For the
event-related experiment, the design matrix X comprised a vector
simply coding the images acquired during finger movement. For
the null data sets, three variants of X were specified, each
comprising a periodic function of variable frequency [high
(0.032 Hz), intermediate (0.016 Hz), or low (0.008 Hz)] and a
unitary constant vector. Before parameter estimation, each column
of all design matrices was convolved with a Poisson kernel (4 =
4s), to emulate the hemodynamic response function.

In evaluating the sensitivity of our methods, activation patterns
with realistic spatial distribution were simulated in the null data
sets. The spatial extent of the simulated clusters was defined by
activation mapping of the event-related finger opposition task. A
simulated periodic function (at high, intermediate or low
frequency) was added to the “biological noise” of the null fMRI
time series at voxel coordinates corresponding to locations of
voxels activated by the finger-tapping experiment. The amplitude
of simulated signal was expressed as a percentage of the mean
value of the null time series.

Results
Type I error control

We assessed the relative performance of the three algorithms in
terms of type I error control using the null fMRI data sets. For all
three algorithms, the 2D-DWT of individual Z maps was
implemented using the Daubechies wavelet with R = 4 vanishing
moments and setting the coarsest level of the decomposition J,. =2.



We tested the null hypothesis over a range of critical values
corresponding to probabilities of type I error 0 < o < 0.5. For a
valid hypothesis testing method, the number of positive tests
generated by analysis of “null” data should be less than or equal to
the number of positive tests expected under the null hypothesis,
oV.

As shown in Fig. 1, all three algorithms demonstrated generally
acceptable type I error control by this criterion. The FDR control
algorithm was most conservative and the Bayesian algorithm was
least conservative; indeed, the Bayesian method yielded slightly
more than the predicted number of positive tests at the smallest size
of posterior probability threshold.

Sensitivity

We assessed the relative performance of the three algorithms
in terms of their power to detect simulated periodic signals of
variable frequency and amplitude. In Fig. 2, the area under the
ROC curve 4. is plotted as a function of signal amplitude. It can
be seen that all three methods demonstrate improved sensitivity
with increased signal amplitude but the Bayesian method is
consistently most sensitive; the FDR controlling algorithm out-
performs the recursive testing method for all but the smallest
signal amplitudes.

Effects of DWT options

The 2D-DWT can be applied to spatial Z maps using wavelets
of variable regularity (number of vanishing moments R) and
the thresholding operations can be applied up to an arbitrary
(coarsest) level of decomposition J.. We systematically
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explored the impact of these options on both the specificity
and sensitivity of probabilistic wavelet shrinkage.

(1) Effect of wavelet regularity: First we varied the regularity
of the Daubechies wavelet, while maintaining the lowest level of
the decomposition fixed at J. = 2. As shown in Fig. 3, the false-
positive fraction (FPF) observed by analysis of null data with o =
0.05 tended to decrease as the regularity of the wavelet was
increased in all three algorithms. In other words, increasing the
number of vanishing moments tends to increase the conservative-
ness of all probabilistic wavelet shrinkage algorithms. There is also
some evidence, in Fig. 4, for a monotonic decrease in sensitivity as
R is increased, although this is a relatively minor trend compared to
the regularity-related change in FPF. These findings agree with
those reported by Desco et al. (2001).

An interpretation of this behaviour comes from the fact that
more regular wavelets have better decorrelating properties. Hence,
the assumption of independence for coefficients tested simulta-
neously in the wavelet domain is more valid. As far as the
detection accuracy is concerned, it does not exhibit major change
with increasing R, except for the FDR method applied to the low-
frequency design matrix. Thus, as the wavelet becomes more
regular, the method performs better in controlling the FPF but
could suffer from a slight loss of detection power. However, a
trade-off can be negotiated by choosing a Daubechies wavelet with
4 vanishing moments. This value keeps the FPF low without
penalizing the detection power unduly (less than 2% loss).

(2) Effect of the coarsest level: In our notation, the resolution
levels are numbered from 0 to J — 1, with 0 being the coarsest level
(see “Wavelet shrinkage or nonparametric regression”). From Fig. 5,
the observed FPF systematically decreases as the decomposition
level increases for all the thresholding methods presented. This is

Recursive hypothesis method

10"
102 €
10° -
10
o level

Fig. 1. Observed FPF (false-positive fraction) vs. prespecified risk o for the FDR and change-point detection (recursive hypothesis testing) approaches. For the
Bayesian method, FPF is represented as a function of the posterior probability. Each dashed curve corresponds to results of thresholding a time series statistic
map based on analysis of a single null fMRI data set with an arbitrary design matrix. The black filled circles correspond to the average curve. The solid line is
the identity line. Number of vanishing moments R = 4 and coarsest level of decomposition J,. = 2.
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of decomposition J,. = 2.

not surprising as the number of wavelet coefficients, and thus the
number of hypotheses being tested simultaneously, increases as the
decomposition level decreases. Meanwhile, as shown in Fig. 6, the
area under the ROC curve shows a stable behaviour until level J,. =
3 and then decreases noticeably as the coarsest level increases
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further. Again, a trade-off between type I error control and power
dissipation is suggested empirically by setting the coarsest level of
decomposition J. = 3. This choice keeps the FPF much less than
the prespecified o level while ensuring good sensitivity. It is
encouraging that this empirical choice of J,. is in agreement with
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Fig. 3. Observed FPF (for a probability threshold of 0.05) as a function of the number of vanishing moments of the Daubechies wavelet. The coarsest
decomposition level was 2. Each dashed line corresponds to a data set with an arbitrary design matrix (5 null data sets X 3 design matrices). The filled circles

represent the average curve.
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Fig. 4. Detection power 4., measured by the area under the ROC curve, as a function of the number of vanishing moments of the Daubechies wavelet. The
coarsest decomposition level was 2 and the relative signal change was 1%; probability threshold was set o = 0.05.

the coarsest level asymptotically prescribed by the formula J,. =
log, log N + 1 (Antoniadis et al., 2001).

Probabilistic wavelet shrinkage compared to Gaussian smoothing

These simulation results can also be interpreted by formal links to
the theory of Gaussian smoothing, which has been central to
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inference using Statistical Parametric Mapping (SPM) software; see
http://www.fil.ion.ucl.ac.uk/spm. Recently, VandeVille et al. (2003)
have presented a first attempt to establish a link between SPM and
the fractional splines wavelet transform, which involved investigat-
ing how well the scaling function (corresponding to the low-pass
band) approaches a Gaussian. Here we generalise this approach to
consideration of the compactly supported Daubechies wavelet with
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Fig. 5. Observed FPF (for a probability threshold of 0.05) as a function of coarsest thresholded scale. The Daubechies wavelet with 4 vanishing moments was
used. Each dashed line corresponds to a data set with an arbitrary design matrix (5 null data sets X 3 design matrices).
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Fig. 6. Detection power 4., measured by the area under the ROC curve, as a function of coarsest thresholded scale. The Daubechies wavelet with 4 vanishing
moments was used and the relative signal change was 1%; probability threshold was set o = 0.05.

R vanishing moments for which the Fourier transform of the
corresponding low-pass QMF filter 4 can be written as:

Rp_1

IT (1 —are™)

(16)

H(w) =const e % (cos %)

where a, are roots inside the unit circle of a polynomial in ¢’ of
degree p — 1. This filter can be approximated as @ — 0 by:

R—-1 )2
H(w) = constkl:IO (1 - ak)eJT

(17)
The Fourier transform of the scaling function up to a coarse scale
0 < J. < J can then be approximated by:

. R 2 4J —Je 1
H(2’w)a exp e S (18)
8 3

By identifying this approximation to the Fourier transform of a
Gaussian kernel, we can derive:

J—Je
FWHM = 26/2In ::«2m2¢§w344§441

where FWHM denotes the full width at half maximum of the
Gaussian kernel. A closed form expression was derived for
fractional splines in VandeVille et al. (2003). Actually, following
these steps, similar expressions can be calculated for Battle—
Lemarié, b-spline, symmlet or coiflet wavelets.

From Eq. (19), the FWHM depends on the coarsest decom-
position level and the regularity of the wavelet. The equivalent
FWHM increases very fast (exponentially) as we go coarser in
scales J. — 0, and slowly (square root) as the number of vanishing
moments increases. This means that for a given R and J,. setting, if
the signal is reconstructed from only the low-pass subband, forcing
the detail subbands to zero, this would be equivalent to applying a

(19)

Gaussian smoothing with a FWHM as given by Eq. (19).
Nonetheless, this approximation must be used very carefully as
the approximation error, e.g., as measured by the L* norm of the
residuals, also increases with J. and R, as shown in Fig. 8.
Consequently, the scaling function converges better to a Gaussian
at coarser scales and smaller R. These findings provide a formal
justification for previous results (Desco et al., 2001), which
indicated that lower wavelet orders and resolution depths gave
the optimal results in terms of sensitivity. However, these authors
only used isotropic activation patterns for which Gaussian filters
are optimal.

Fig. 7a shows the Fourier transform ¢ (w) of the Daubechies
scaling function and its Gaussian approximation for each number of
vanishing moments. The coarsest scale was set J. = 3. Fig. 7b
depicts the same results when varying J,. while setting R =4. In Fig.
8, we have plotted the L,-norm residual error between the exact ¢
(w) and its Gaussian approximation as a function of the coarsest
decomposition scale and the number of vanishing moments. A
Daubechies wavelet is compactly supported while a Gaussian kernel
is not; this is one explanation for the lack of fit in Figs. 7a,b.

We can see that as we get coarser in scales (J.\), or as the
wavelet gets more regular (R /), the equivalent FWHM increases.
On the one hand, this “oversmoothing” naturally yields an increase
in the observed FPF, which has been observed in Fig. 5. On the other
hand, it is known that the sensitivity of Gaussian smoothing-based
methods depends on the size of the Gaussian filter relative to the size
of the signals to be detected (matched filter theorem). Our
simulations included activation clusters whose isotropic equivalent
size' ranged from 2 to 6 pixels with an average of 5 (a4, = 1.5).
The FWHMs calculated from Eq. (19) corresponding to J,. € [2,5]
with R = 4 are, respectively, 18.5, 7.9, 3.3, 1.6 in pixel dimensions

! The isotropic equivalent size is the diameter of the disc with the same
surface area as that of the simulated activation cluster.
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Fig. 7. (a) The Fourier transform ¢ (w) of the Daubechies scaling function (solid line) and its Gaussian approximation (dashed line) for each number of
vanishing moments. The coarsest scale J. was set equal to 3. (b) ¢ (w) and its Gaussian approximation when varying J. while keeping R = 4. It can be seen
that the Gaussian approximation to the Fourier transform of the scaling function is best when both /. and R are smaller. The same point is illustrated by the

approximation error surface in Fig. 8.

(the FWHMs were corrected to account for the error in the
Gaussian approximation). Using a matched filter argument, one
can then easily predict that the sensitivity will decrease as J.
increases, which is what we have observed in Fig. 6. Owing to its
inherent multiscale nature, the wavelet transform with at least J,. =
3 is very efficient in detecting such activation clusters of different

sizes. If we apply the same arguments when varying R < [2, 10]
with J. = 3, it turns out that the corrected equivalent FWHM
increases slightly to around a value of 7.9 (in pixels). Again, this
corroborates the loss of power as a function of the wavelet
regularity observed in Fig. 4. Finally, if the corrected equivalent
FWHM is calculated for each possible pair of parameters (J,., R)



L2 error

Fig. 8. L,-error between the Daubechies scaling function and its Gaussian
approximation in the Fourier domain. Error is smallest when both coarsest
scale of decomposition J.. and regularity of wavelets R are small; and error
increases rapidly as J,. increases.

[2, 5] x [2, 10], (J. = 3, R = 4) gives a FWHM of 7.9, which
corresponds to the size of most clusters in our simulations.
Furthermore, for (J. = 3, R = 4), the Gaussian approximation
has proved good.

Functional MRI: activation mapping

All three wavelet-based methods gave broadly similar results
for analysis of the event-related fMRI data. As shown in Fig. 9,
areas of activation were located mainly in contralateral motor and
somatosensory cortex and ipsilateral cerebellum (x < 0.01 for all
maps). Overall, the Bayesian method appears to provide a
somewhat richer or more sensitive characterisation of the cerebral
response, echoing the superior sensitivity of this method demon-
strated by ROC curve analysis of simulated data. The activation
maps generated by the FDR method are relatively conservative,
which is also consistent with the ROC analysis results. The
performance of the recursive hypothesis testing method is
intermediate.

For comparative purposes, and to highlight the multiresolu-
tion adaptive nature of the wavelet methods, we also show in
Fig. 10 activation maps for the same experimental data set
analysed with SPM after three different Gaussian kernels have
been applied (with FWHM = 6, 10 and 18 mm). A height
threshold corrected for family-wise error o = 0.01 was used for
hypothesis testing. The strongest signal (in contralateral soma-
tosensorimotor cortex) is significantly activated in all three
monoresolution maps but the impact of arbitrary kernel size is
demonstrated by the absence of cerebellar signal after smooth-
ing with the largest kernel.

Discussion and conclusion

In this paper, we proposed a fully wavelet-based hypothesis
testing framework for activation mapping based on functional
magnetic resonance images of the human brain. Algorithms from
the statistical theory of wavelets were adapted to the case of
analysing 2D spatial maps of linear model parameters estimated
by analysis of the fMRI time series observed at each voxel. Two

classical methods and one Bayesian method for hypothesis
testing were presented. Our results are promising and offer a
naturally multiscale alternative to single scale Gaussian filtering
as widely used in the neuroimaging community before hypothesis
testing.

We have shown by ROC curve analysis of simulated data
that a Bayesian thresholding algorithm (incorporating one of
several possible priors for the sparse distribution of wavelet
coefficients under the alternative hypothesis) has greater
sensitivity than classical methods controlling the false discovery
rate or recursively testing the coefficients for significance at
each level of the wavelet decomposition. This result is
consistent with prior work indicating greater sensitivity of
wavelet thresholding by a Bayesian approach, and also with
the results of applying all three methods to an experimental
event-related data set. Our results are also broadly consistent
with recent work indicating superior sensitivity of Bayesian
compared to frequentist methods for multiple hypothesis testing
of fMRI statistic maps in the spatial domain (Marchini and
Presanis, in press).

We have systematically investigated the performance of our
methods as a function of two critical factors—the regularity of
the wavelet R and the coarsest level of the wavelet decomposition
J.. We have shown empirically that increasing J,, i.e., decreasing
the depth of decomposition, tends to improve the specificity of
the methods at the expense of some sensitivity. Increasing the
regularity of the wavelet was associated with the same effects on
type I and type II error. A reasonable trade-off between these
effects was found to exist with J. = 3, as predicted asymptoti-
cally, and R = 4. However, we suggest that a more compelling
argument in favor of this specification can be made by relating
the low-pass filtering properties of the wavelet transform to the
FWHM of an approximately equivalent Gaussian kernel. In this
way, we showed that our empirically preferred choice of wavelet
decomposition was approximately equivalent to smoothing by a
Gaussian kernel with FWHM = 7 voxels, which was close to the
mean size of activated clusters of voxels in our simulated data,
predicting superior sensitivity of this algorithm by the matched
filter theorem.

The comparison with monoresolution methods of smoothing,
followed by hypothesis testing of regression coefficients in the
spatial domain, was also pursued empirically. Analysis of
experimental data following application of one of three different
Gaussian kernels demonstrated again the familiar observation that
results of activation mapping by this approach are conditional on
the choice of kernel. A kernel much larger than the spatial extent
of cerebellar signal obliterated evidence for significant activation
in that region. All three multiresolution wavelet-based methods
circumvent the need to specify a priori the size of signals
expected, and therefore the optimal choice of smoothing kernel.
Empirically, the wavelet-based methods seemed to provide a
richer characterisation of distributed brain activation in the
experimental data set.

However, several limitations are still to be addressed by
further developments of this methodology. For example, due to
critical sampling, the orthogonal bases used in the DWT are not
translation invariant. Thus, “ringing” or Gibbs-like oscillation
may occur at the boundaries of isolated activation clusters. To
cope with this, a possible solution is to use overcomplete
transforms, e.g., the undecimated DWT. Invariance to rotation
could also be an important issue as the activation patterns in



fMRI will generally not be isotropic. However, decimated DWT-
based analysis is sensitive to the orientation of the objects in the
image under consideration, i.e., the wavelet coefficients of the
original image and its rotated version are not the same ones
rotated by the same angle, except for rotation angles that are
multiple of (n/4) (horizontal, vertical and diagonal orientations).
To address this issue may necessitate the use of transforms that
adapt the orientation of their atoms to the geometry, such as
curvelets or bandelets. Such new transforms (highly redundant)
are the area of a very active current research in the image
processing and harmonic analysis communities. However, the

(@)

atoms involved in this type of analysis are frames but not bases,
yielding a high redundancy and correlated coefficients under the
null hypothesis. One must then adapt our methodologies to the
case of non-independent tests.

Another important issue is anisotropic spatial resolution of
fMRI data. Due to the separable nature of the DWT, only
isotropic data sets can be processed efficiently. However, data
acquired with fMRI are usually isotropic in-plane but the
slice thickness is generally coarser. It is mainly for this
reason that we did not use a 3D separable DWT transform
immediately. To deal with anisotropic structures, one possible

Fig. 9. Functional MRI data acquired during event-related right-handed finger-tapping experiment. (a) Example of an original statistical map representing linear
model parameters estimated by wavelet-generalized least squares at each voxel of the 2D image. Estimated activation maps with o = 0.01 using: (b) the FDR
method, (c) the recursive hypothesis testing method, and (d) the Bayesian thresholding estimator. The right side of each map represents the right side of the
brain; the z-coordinate of each slice in mm above or below the intercommissural plane in the space of Talairach and Tournoux is indicated by the number in
bottom left corner of each panel. The activation task was repeated right index-thumb opposition that is expected to activate contralateral regions of motor and
somatosensory cortex, supplementary motor area, and ipsilateral cerebellum. This pattern of activation is most clearly seen in the map obtained by the Bayesian
thresholding operation. Number of vanishing moments R = 4 and coarsest scale of decomposition J. = 2.
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Fig. 9 (continued).

solution would consist in using different decomposition scales
for X, Y and Z directions to compensate for the anisotropy.
This can be clearly seen from Eq. (19). An alternative based
on the 2D + Z quincunx wavelet transform has been proposed
(VandeVille et al., 2003). Furthermore, because of the separable
nature of the DWT, only isotropic activation patterns can be
detected efficiently. A possible solution to this problem would
consist in using one of the geometrical X-let transforms (X stands
for any of these transforms), which adapt their shape to the pattern
to be estimated. All these issues are the focus of ongoing work in
our group.

Appendix A. ML estimation of the binomial mixture model

While the following algorithm can be generalised easily to any
number of binomial mixture components, we only derive here the

expressions for the two components case. Let @ = (pa, p1, 4)
denote the parameter vector defining the binomial mixture model.
The ML estimate of @ based on a set of N independent
observations k; is:

N
Oy = arg max Zlog(ﬂ.B(K_pl)(k,-) + (1= 2)Bpy (k) (20)
=

This equation has no closed-form simple solution but it can be
efficiently solved using the EM algorithm (McLachlan and
Krishnan, 1996).

A.1. E-step

Compute the expected value of the complete likelihood, condi-
tioned on the observed data and the current hyperparameter vector
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Fig. 10. Functional MRI data acquired during event-related right-handed
finger-tapping experiment. Activation maps produced by SPM after different
Gaussian kernels have been applied: (a) Gaussian kernel FWHM = 6 mm;
(b) FWHM =10 mm ; and (¢) FWHM = 18 mm. A corrected critical height
threshold at the significance level o = 0.01 was applied. The right side of
each map represents the right side of the brain; the z-coordinate of each slice
in mm above or below the intercommissural plane in the space of Talairach
and Tournoux is indicated by the number in bottom left corner of each panel.
Note that significance of the ipsilateral cerebellar signal is conditional on
kernel size and that plausible signals in medial premotor cortex and
ipsilateral somatosensorimotor cortex recovered by multiresolution analysis/
multiple hypothesis testing in the wavelet domain are not evident in these
results of monoresolution smoothing followed by multiple hypothesis
testing in the spatial domain.

estimate @ For this mixture model, this reduces to calculating
the posterior probabilities P(//k;) and P(A4/k;), i.e., the probability
of having an inactive voxel or an active voxel, conditioned on the
observed data and the current hyperparameter vector estimate @;

208 o (k)

PO/ = — . @)
2By ) + (1= 20) By oy (k)

PO(A/k) =1 = PO(1/k) (22)
A.2. M-step

Update the hyperparameter vector estimate according to:

1 &
i+1_ 4 (1) _
= > PO(1/k) (23)

i=1

S kPO( k)

p(/‘l) — 17}\7 (24)

KX PO(/K)

i=1

Note that under the null hypothesis, i.e., in the absence of true
activation (null fMRI data), only p; can be estimated. The ML
estimate in Eq. (24) then simply reduces to calculating the mean of
the counts k;, which coincides with calculating the observed FPF
for each thresholded statistical map (replication) and then averag-
ing these FPFs over replications.

A critical point of the EM algorithm is initialisation. Here we
give some arguments to support our intuitive choice of the
initialising set of hyperparameters. For instance, in our simulations,
/ is known a priori as we know exactly the truly inactive and active
voxels. Otherwise, one knows that, in the case of fMRI data, most
voxels are inactive and only a few voxels are expected to be active.
One should then expect a high value of /4, say 90%. As far as the
probability p, is concerned, it is should be of the same order as the
FPF. One can then use as an initialisation a very conservative value
obtained from the Bonferroni correction o/nd. For the parameter
Pa, 1t is difficult to devise any automatic initialisation procedure as
we do not have any prior knowledge about the sensitivity of the
statistical estimation method in use. One can then use an arbitrary
starting value of 0.5.

Another important issue is how to calculate the standard errors
of the mixture hyperparameters (these provide some sense of how
confident we should be about the parameters). One could use
computer-intensive resampling methods such as the bootstrap.
Alternatively, under regularity conditions, the standard errors can
be estimated from the inverse of the expected information matrix.
However, in the binomial mixture model, this involves nontrivial
calculations. We here propose another way to proceed by
approximating the information matrix within the EM framework
(Basford et al., 1997). For independent observations, this
approximation is given in terms of the gradient of the log-
likelihood function:

1(6)= AZ V LL:(6)V'LL(8) (25)

i=1



where VLL; (@) is the gradient of the log-likelihood function
based on the single observation k;: V'LL; (®) = (dLL,/0/, OLL,/
dpi, OLL,/OpA)

oL (1 —p)* i — (1= pa)* (26)
0% (1= p)*TFpf 4 (1= 2)(1 = pa)*Fpl
ALL _ — (1 —p)* ™ pl T (Kpy = k) (1= p)* o pf — (1 = p)* T P)
% (30 =) Hpk o+ (1= = pa) k)

(27)
o, (1=20 —pa) P (K fk.)((l —p)*hpl - (lpr)K‘k’pf‘)
O (200 =Pl (1= 21 = pa) )’

(28)

In our simulations, as 4 is known and fixed, Eq. (26) can be
ignored and the known A can be substituted in Egs. (27) and (28).

A.3. Assumptions of binomial model for ROC curve estimation

» Each voxel can only have two states (active or inactive).

* The mixing proportion (amount of inactive voxels) is
supposed constant across replications and thresholds. In our
experiments, we have not constrained this proportion to be
constant across thresholds. This has been done for the sake of
simplicity in the model and its solution by the EM algorithm.
Nevertheless, a multinomial mixture including this supple-
mentary constraint can be formulated and its EM solution
derived. The convergence of the EM algorithm in this case is
much slower (the number of parameters to be estimated jointly
is 2 X M — 1 for M threshold levels). In addition, from our
experiments, we have observed that the estimated mixing
proportion is stable when varying the rating scale threshold.

» The replications (experiments) are supposed independent.
Moreover, the number of replications K must be >3 for
identifiability purposes (three parameters to estimate).

* When two or many estimation methods will be compared,
their respective statistical maps will be assumed independent.
This is the so-called independence model discussed by
Genovese et al. (1997).
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