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Traditional search engines return ranked lists of search results. It is up to the user to scroll this list, scan within different documents, and assemble information that fulfill his/her information need. Aggregated search represents a new class of approaches where the information is not only retrieved but also assembled. This is the current evolution in Web search, where diverse content (images, videos, etc.) and relational content (similar entities, features) are included in search results.

In this survey, we propose a simple analysis framework for aggregated search and an overview of existing work. We start with related work in related domains such as federated search, natural language generation, and question answering. Then we focus on more recent trends, namely cross vertical aggregated search and relational aggregated search, which are already present in current Web search.

INTRODUCTION

Context and Definitions

In response to a query, traditional information retrieval systems return a list of ranked documents that match the query. In general, the user looking for relevant material browses and examines the returned documents to find those that are likely to fulfill his need. If lucky, the user will find in this list the document that satisfies completely his/her need. However, when one document alone is not enough (i.e., the relevant information is scattered in different documents), the user has to collect and aggregate information coming from different documents to build the most appropriate response to his/her need. Combining this different information to achieve, at the same time, better focus and better organization within the search results is the scope of aggregated search, which is defined to go beyond the uniform ranking of snippets. Its goal is to assemble useful information from one or multiple sources through one interface [START_REF] Murdock | Workshop on aggregated search[END_REF][START_REF] Kopliku | Approaches to Implement and Evaluate Aggregated Search[END_REF]].

If we think of a perfect search engine, we will soon realize that it cannot answer all possible queries in the same way. For some queries, we just need a precise answer (e.g., weight of Nokia e72). For some others, we need a list of features (e.g., features of Nokia e72). For the query "Nokia e72," the useful content may include images, videos, a description, features, the Nokia homepage, dedicated pages to the Nokia e72 phone, and so on. Another interesting query can be the name of a person, for example, the US president, Barack Obama. It would be interesting to see in response to the query a short bio of the president, associated news, as well as associated entities with the name of the concerned association (president of the United States, married to Michelle Obama, adversary of Mitt Romney, visiting this month Great Britain, etc.). Answering every query perfectly is impossible because the user will not explain his/her need in an unambiguous and detailed fashion, and often the user does not even know what he/she is exactly looking for. However, for many queries, it is possible to do better than a simple uniform list of document snippets. Major search engines are moving on from this approach toward aggregated search. They pay more attention to search result snippets, they include images, videos, news, and so on, and in recent months, they also group on a separate frame related information. For instance, for the query "Barack Obama," Google1 provides a frame that groups a description, images, and a very short bio (see Figure 1). The query is answered with traditional Web search results, vertical search results and relational content provided by the Google Knowledge Graph [START_REF] Singhal | Introducing the Knowledge Graph: Things, Not Strings[END_REF]]. Upon query, search engines should be able to integrate diverse content, provide precise answers, put together related content, and so on. In this perspective, aggregated search fits naturally in an effort to group all IR approaches that aim more than ranking. It pushes research effort toward result aggregation and query interpretation, and it helps in understanding current IR evolution.

Aggregated search is not purely a new research area, as it derives from many previous works from many IR subfields such as federated search, metasearch, natural language generation, question answering, semantic search, and entity-oriented search. At first sight, one might find it hard to see that all these domains fit in aggregated search. We will later show how they all can be integrated in one framework that enables having more relevant content, more focus, and better result aggregation. There are, however, some research directions that directly come within the aggregated search paradigm and that concern the major recent trends in IR. We will highlight here two research directions that group many existing and current research, namely, crossvertical Aggregated Search (cvAS) and Relational Aggregated Search (RAS).

-Cross-vertical Aggregated Search (cvAS) is almost omnipresent in Web search nowadays. It consists of including diverse content such as (images, videos, news, etc.) within traditional search results through the use of vertical search engines. Vertical search engines are specialized search engines which work well for a specific kind of content (maps, video, image, news, etc.). Research in this direction includes studies on the interest of the inclusion of vertical content, the proposal of different approaches on reassembling or reranking search results, as well as ideas surrounding evaluation. Federated search is the ancestor of this field and has inspired most of the approaches. However, we find here many unanswered research questions given the specificity of Web search and vertical search engines. -Relational Aggregated Search (RAS). Relational information can often be useful to answer queries right away and/or to structure search results. For instance, the relation triple ("Paris," capital of , "France") can be used to answer the query "capital of France." On the other hand, the results for the query "Oscar Wilde" may contain a list of his books shown with a title and description each. This is a simple example where relations such as ("X," written by, "Y") and ("A," description of , "B") come into play. Relations can be the implicit output of a vertical search (e.g., "I", image of , "Y") can be seen as the output of image search), but most of relations are to be extracted explicitly from the documents content (Information Extraction) or to be identified within existing relational sources (knowledge graphs, databases). Forms of relational aggregated search are already met in major search engines, where features, descriptions, and related entities are being shown aside search results (see Figure 1). RAS is thus complementary to cvAS where no explicit result aggregation is done and where search results remain a list of unrelated items from different sources with some grouping (by content type).

In its broadest definition, we say that aggregated search aims at retrieving and assembling information nuggets, where an information nugget can be of whatever format (text, image, video, etc.) and granularity (document, passage, word, etc.). The key problem that makes the aggregated search complex comes mainly from the fact that the assembly of information is topic dependent (i.e., aggregated results cannot be built a priori). Indeed, one cannot predict and construct all possible combinations that can potentially answer user queries. The composition of information nuggets that meet the query constraints is made upon the query. This leads to several research issues including the identification of candidate information nuggets for aggregation, the ways to assemble content, and a theoretical framework that may support the evaluation of the quality of an aggregated result.

The contribution of this article can be summarized in some main points:

-We group in one class (aggregated retrieval class) multiple approaches that do not fit well in the Boolean or ranked retrieval paradigm. The rest of the article is structured as follows. In the next section, we introduce the motivation behind aggregated search. Then, in Section 3, we present a general framework for aggregated search decomposed in three main components. In Section 4, we provide an overview of existing approaches organized in broad classes such as federated search and natural language generation. From the existing approaches, we select cross-vertical aggregated search and relational aggregated search as most promising and novel. Approaches of these two classes are analyzed in detail in Sections 5 and 6. Then, in Section 7, we discuss how the evaluation of aggregated search is carried out in the literature. The last section is about conclusions and future research directions.

MOTIVATION FOR AGGREGATED SEARCH

Most of current Information Retrieval (IR) systems fall into the ranked retrieval paradigm, that is, in response to a query they return a list of ranked documents that match the query. Typically, results are ranked by scoring functions that combine different features generated from the query and the documents. This matching process is driven by different theoretical models such as the vector space model [START_REF] Salton | A vector space model for automatic indexing[END_REF]], the probabilistic model [START_REF] Robertson | Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval[END_REF], language models [START_REF] Ponte | A language modeling approach to information retrieval[END_REF], or fuzzy models [START_REF] Baziz | Fuzzy logic and ontologybased information retrieval[END_REF]]. However, in all these models, the relevance score is computed at the document level (i.e., we assume that the entire document is relevant or not).

Different arguments exist with respect to the definition of relevance at document level and its impact on system performance [START_REF] Boyce | Beyond topicality: A two stage view of relevance and the retrieval process[END_REF][START_REF] Sp Ärck-Jones | Ambiguous requests: Implications for retrieval tests, systems and theories[END_REF][START_REF] Murdock | Workshop on aggregated search[END_REF]. In this section, we will list some of the limitations and challenges of the ranked document retrieval paradigm:

-Data dispersal: The relevant information can be scattered in different documents [START_REF] Murdock | Workshop on aggregated search[END_REF]. The ranked list for these cases is inadequate, because the user has to scan within different documents to satisfy his information need. This can be a time-consuming and burdensome process. -Lack of focus: Ranked retrieval approaches provide a ranked list of uniformly presented results. Typically in Web search, each result is a snippet composed of the result title, a link to the document, and a summary of the linked document. Instead of directing the user to the whole document, for queries when the answer is just a part of document, it might be better to return this part of document right away. The uniform snippets usually returned by search engines might not always be appropriate. -Ambiguity: Many queries can be ambiguous in terms of information need. The reference example is Jaguar, which can refer to a car, an animal, an operating system, and so on. Diversity can help to disambiguate, especially when multiple sources are used to compose the answer. Ideally, we should return one answer per query interpretation [Sp ärck [START_REF] Sp Ärck-Jones | Ambiguous requests: Implications for retrieval tests, systems and theories[END_REF]]. This can be multiple ranked lists or linked sets of results.

Data dispersal, lack of focus and ambiguity are just some of the limitations of traditional ranked retrieval. In aggregated search (aggregated retrieval), the final result is not necessarily a ranked list of documents or snippets, but it can be whatever combination of content that can turn useful to the user. Aggregated search can thus propose more focus, more organization, and more diversity in search results.

A GENERAL FRAMEWORK FOR AGGREGATED SEARCH

The first definition of aggregated search was given at the SIGIR 2008 workshop [START_REF] Murdock | Workshop on aggregated search[END_REF]:

Definition: Aggregated search is the task of searching and assembling information from a variety of sources, placing it into a single interface.

In a broad interpretation, aggregated search concerns at the same time the retrieval and the assembly of search results. Here, we propose a unified framework for aggregated search that facilitates the analysis of the many and diverse approaches related to aggregated search. The framework, shown in Figure 2, involves three main components, namely, Query Dispatching (QD), Nuggets Retrieval (NR), and Result Aggregation (RA). In other terms, a query is processed and sent to potentially multiple sources of information. Each source returns information nuggets of some granularity and media type, which are to be assembled in the final answer. The answer can be whatever sensed organization of information (though not just the ranked list). This framework has the following multiple purpose: It enables a top-down view of aggregated search, it generalizes well most existing approaches and identifies the main components of aggregated search, it helps to classify and analyze existing approaches; and it makes a clear distinction of the result aggregation process.

Two terms are important to be well-defined at this point for the understanding of this framework: (i) an information nugget2 is a generalization of content of some granularity and multimedia format, and (ii) a source refers to a search engine that relies on at least one collection and one search algorithm. A good definition of the term "source" is important here because we use it to classify aggregated search systems as monosource or multisource. When there are multiple sources, it is up to the query dispatching step to select the sources to be used.

Each of the three components of this framework will be detailed further in the next subsections.

Query Dispatching

In the query dispatching step, we include the actions that precede query matching, that is, initial interpretation of the query (query analysis) and other actions that depend mainly on the query and knowledge about the collections. We can also see this step as deciding which solutions should be triggered for a given query. We distinguish between the approaches that aim at selecting the right sources to be used, the approaches that try to understand more about the query, and the approaches that try to extend the query to have more chances to find good search results. We will list here briefly well-known problems in this context:

Source selection: Source selection is one of the most well-known problems in aggregated search with multiple sources. Given a set of sources, its goal is to select the sources that are likely to answer the query. Identification of key terms can, for instance, be used to select sources. The presence of special keywords is often useful to understand the type of answer the user is expecting. For example, the presence of words such as "weather" or "definition" is a useful clue that is used by major search engines to trigger a personalized answer. Facebook graph search recognizes terms such as "likes," "friends," and "photos." Named entities have also been shown to be very frequent within search queries [START_REF] Guo | Named entity recognition in query[END_REF]]. Identifying the named entities and their types can assist the IR process. For instance, if the query is "Oscar Wilde," we can query a knowledge base to provide the user a description and an extract of important features on the writer. As well, we can propose similar authors or authors of the same period. We will discuss this task in more detail when we will discuss multisource aggregated search approaches and, in particular, cross-vertical aggregated search.

Question intent: In question answering, queries are analyzed to find what type of question is being asked (why, where, when, yes/no questions) and to identify syntactic or semantic relations that might exist between the answer and entities or events mentioned in the question [START_REF] Hirschman | Natural language question answering: The view from here[END_REF]. Queries can also be decomposed to ease the retrieval process [START_REF] Moriceau | FIDJI: Using syntax for validating answers in multiple documents[END_REF][START_REF] Lin | An analysis of multi-focus questions[END_REF][START_REF] Katz | Syntactic and semantic decomposition strategies for question answering from multiple resources[END_REF]. Understanding the query intent can also be of interest for some sources: One can, for example, cite some approaches that try to correctly interpret queries with little text on knowledge bases [START_REF] Pound | Interpreting keyword queries over web knowledge bases[END_REF][START_REF] Tran | Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data[END_REF].

Query reformulation: Depending on the sources that will be queried, some adaption/personalization of the query may be needed. For instance, in a data integration perspective, the user only sees the general schema (i.e., the unified view of the different sources of data). A reformulation step is needed: The query on the global schema has to be be reformulated in a set of queries on the different sources [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF]].

Nugget Retrieval

Nugget retrieval, as presented here, is situated between query dispatching and result aggregation, that is, it corresponds basically to the definition of a source which takes as input a query and matches it with a (scored) set of potentially relevant information nuggets. In IR, there are many types of nugget retrieval mostly depending on the type of nugget being returned. We enumerate here some of the most well-known approaches.

As mentioned earlier, it is possible to retrieve entire documents or parts of documents. This corresponds to the distinction between document retrieval and passage retrieval (also called focused retrieval in semistructured collections) [Geva et al. 2009;[START_REF] Kamps | Report on the SIGIR 2008 workshop on focused retrieval[END_REF][START_REF] Trotman | Current research in focused retrieval and result aggregation[END_REF][START_REF] Sauvagnat | Answering content-and-structurebased queries on XML documents using relevance propagation[END_REF]]. The retrieval process also depends on the multimedia type (text, image, video). We distinguish here textual retrieval and multimedia retrieval. Some search engines such as Web search engines retrieve content of heterogeneous type (Webpages, images, news articles, videos). When the one-size-fits-all solution does not work well, vertical search solutions, which are specialized on a media type, query type, task, result type, and so on, are commonly used. We should also mention the approaches that retrieve information from relational databases, knowledge graphs, or extracted information. They deal with relational information, that is, information with some explicit semantic. The results can be tables, table lines, semantic triples, and the like.

In aggregated search systems with multiple sources, each source triggers its own nugget retrieval process. The retrieved results will not necessarily have comparable scores. Assembling search results from multiple sources has been an intensive research area for at least two decades. It starts with federated search (Distributed Information Retrieval) [START_REF] Callan | Distributed information retrieval[END_REF]] in the context of distributed data collections (hidden Web, databases, etc.). Then, it evolved into areas such as metasearch [START_REF] Selberg | Multi-service search and comparison using the MetaCrawler[END_REF][START_REF] Srinivas | A survey on the performance evaluation of various meta search engines[END_REF]] and more recently into cross-vertical aggregated search [START_REF] Arguello | Sources of evidence for vertical selection[END_REF][START_REF] Lalmas | Advanced topics on information retrieval[END_REF]. Today, the latter represents the most successful class of approaches and it is applied by almost all major Web search engines. To distinguish between these approaches, it is important to have a clear definition of the term "source." The terminology in literature is a little messy, as terms such as search engine, resource, and collection are often used as synonyms. We recall that we prefer using the term "source" to refer to a search engine or a component of a search engine that uses at least one collection and one search algorithm. This enables us to classify multisource retrieval approaches such as metasearch, federated search, mashups, and cross-vertical aggregated search. We will describe multisource approaches in detail in Section 4.

To conclude, we can say that the nugget retrieval output depends on the type of sources and the number of sources being used. This affects the focus and the diversity within retrieved information nuggets.

Result Aggregation

Result aggregation starts at the moment we have a set of potential relevant information nuggets. It involves the different ways of putting content together. In this section, we list the most generic actions that can be applied on candidate search results before showing them to the user. The goal is to show that we can do more than ranking (one possible action). More details on specific result aggregation approaches will be provided later. We could identify five basic aggregation actions: sorting, grouping, merging, splitting, and extracting. These actions can be met alone or combined (for instance, sorting can be applied on nuggets or group of nuggets). We will detail each of them in the following:

-Sorting: Given a set of information nuggets n 1 , n 2 . . . n m , the sorting action produces another list of nuggets n l 1 , n l 2 . . . n l m where all elements are ranked with respect to some features. These features can be relevance scores, as well as time, author, location, popularity scores, and so on. Although we mention that the goal of aggregated search is to go beyond the ranked list approach, ranking (sorting) by relevance or by other features remains fundamental for most IR systems. -Grouping: Given a set of information nuggets n 1 , n 2 . . . m , the grouping action produces groups (sets) of nuggets G 1 , G 2 . . . G i where elements of the same group share some property. A group of results can be composed of results with similar content, results that have happened in the same period in time, or results with a common feature. Among grouping approaches, we can mention clustering [START_REF] Hearst | Reexamining the cluster hypothesis: Scatter/gather on retrieval results[END_REF] and classification [START_REF] Manning | Introduction to Information Retrieval[END_REF] as special and illustrative cases. -Merging: We refer to merging as an action that takes a set of information nuggets n 1 , n 2 . . . n m and produces a new cohesive aggregation unit. This is different from grouping because it produces one final grouped unit and not multiple groups. The output of this action can be a new document, a book, a summary, or an object. For instance, multidocument summarization [START_REF] Tang | Overview of DUC 2006[END_REF]] takes multiple documents and produces one new aggregate unit, the summary. In object-level search [Nie et al. 2007a[Nie et al. , 2007b]], information is merged around named entities (e.g., Nokia e72, France, Paris, . . . ) into so-called objects. -Splitting: Given some content, we can do the opposite action of merging. We can decompose the content in other smaller nuggets. The result of this decomposition can be one smaller nugget or a set of smaller nuggets. Given some content n, the result of splitting is a set of information nuggets n 1 , n 2 . . . n m with m ≥ 1. Typically, splitting can produce a total partition over the initial content n such that

n 1 ∪ n 2 ∪ • • • ∪n m = n.
Splitting can be as simple as decomposing pure text into passages or sentences, but it quickly becomes a complex task when markup language is present (e.g., HTML pages). -Extracting: Extracting is more about identifying one or more semantically sound information nuggets within some content. This can be part-of-speech items (e.g., nouns, verbs, pronouns), named entities (e.g., Italy, Rome, Roberto Carlos, Hotel Bellagio), images, videos, and so on. The target of this action is not a total partition of the initial content rather than specific type of stand-alone content (i.e., content that can exist alone). The last two actions are not simply useful to decompose some content, but they can precede some sensed re-use of the content.

Whatever the generic actions applied on candidate nuggets, the resulting aggregate should be coherent, with complementary nuggets, and without redundancy. Finding the same nugget several times can, however, help to determine its importance. Probabilistic sampling can, for instance, be used as a way to select appropriate nuggets [START_REF] Downey | A probabilistic model of redundancy in information extraction[END_REF]].

In the next section, we list different forms of aggregated search listed around research domains.

ANALYSIS OF AGGREGATED SEARCH APPROACHES

In this section, we overview work from different IR domains related directly to the definition of aggregated search or may be inspiring to its future development. In natural language generation, we find interesting approaches that focus on result aggregation (generation of documents from scratch). In question answering, there are inspiring case studies with respect to query interpretation and result aggregation. On the other hand, we will see how work from federated search naturally evolves to a specific and promising research direction we call cross-vertical aggregated search. In the quest of aggregation, we group together all approaches that retrieve relations in one broad class named relational aggregated search. The latter is claimed complementary to cvAS because relations can indeed bring to real assembly of information. We will not forget to mention here domain-specific case studies. All of the approaches will be analyzed in the light of our framework.

Natural Language Generation

The goal of Natural Language Generation (NLG) is similar to the broad goal of aggregated search, that is, it aims to avoid the user the burden to browse several documents through the automatic generation of answers in an appropriate linguistic form [START_REF] Paris | Focused and aggregated search: A perspective from natural language generation[END_REF]]. Let us analyze NLG in the light of our framework. NLG cares less about query dispatching. Indeed, the query is not always present, that is, some NLG approaches start from an information need input as a query and others are designed starting from a known context of use (information need is implicit). In [START_REF] Grice | Logic and conversation[END_REF] and [START_REF] Paris | Focused and aggregated search: A perspective from natural language generation[END_REF], the final goal is the generated document, and this goal is to be decomposed in subgoals. The query can also be manually decomposed in subqueries (beforehand) [START_REF] Paris | Focused and aggregated search: A perspective from natural language generation[END_REF]]. Nugget retrieval is not the major goal either. In some approaches, the content to be assembled is known beforehand or filtered in a pipeline [START_REF] Paris | Scifly: Tailored Corporate Brochures on Demand[END_REF]. In others, we rely on existing search engines or information coming from databases or XML collections [START_REF] Paris | Generating personal travel guides-and who wants them?[END_REF][START_REF] Paris | Enhancing Dynamic Knowledge Management Services-Tailored Documents[END_REF]. The assembly of content in a coherent linguistic fashion is indeed the main goal of NLG. The retrieved content is aggregated using prototypical ways of organizing information known also as discourse strategies (result aggregation). This prototypical structures can be observed (e.g., from linguists) or learned. Returned facts can be organized based on their relationships. For instance, they can be ordered chronologically, they may have a causeeffect relation, background information is shown first, and so on [START_REF] Cécile | Tailoring object descriptions to a user's level of expertise[END_REF]]. Discourse strategies can be static (i.e., known beforehand) or dynamic. The dynamic strategies depend not only on the information need but also on the availability of information.

To illustrate this, we provide some examples from literature across different application domains [START_REF] Paris | Scifly: Tailored Corporate Brochures on Demand[END_REF][START_REF] Paris | Generating personal travel guides-and who wants them?[END_REF][START_REF] Paris | Enhancing Dynamic Knowledge Management Services-Tailored Documents[END_REF]. In [START_REF] Paris | Enhancing Dynamic Knowledge Management Services-Tailored Documents[END_REF], NLG is applied on a surveillance context. Instead of having monitors poll from different sources, authors propose an NLG approach. Here, data comes from various public-domain information sources (databases, reports, etc.), and it is assembled as a multipage Web site for port surveillance operators. There is no explicit query, but the abundant information that comes from different sources in different interfaces is put together into one aggregate answer. The second application [START_REF] Paris | Generating personal travel guides-and who wants them?[END_REF]] concerns traveling. The user can input its travel destination and optionally budget constraints. Using samples of travel guides, a discourse strategy is learned and then applied to generate coherent travel guides from scratch upon query. In [START_REF] Paris | Scifly: Tailored Corporate Brochures on Demand[END_REF], the NLG approaches are used to produce brochures that give summaries on given organizations. Another interesting example is met in [START_REF] Sauper | Automatically generating Wikipedia articles: A structure-aware approach[END_REF]. Authors propose an approach to automatically generate Wikipedia-like documents through machine learning on Wikipedia pages of the same class (e.g., diseases, actors). The learned document structure (e.g., causes, treatment, symptoms) is then used to automatically build new documents for other instances of the class extracting missing passages from the Web.

NLG is an interesting case study in particular for result aggregation. Its limits relate to query dispatching and nugget retrieval, which might be the reason NLG approaches are more successful in domain-specific applications rather than in uses through free natural language querying. We do not focus more on this class of approaches, but we recommend the interested reader a qualitative survey in [START_REF] Paris | Focused and aggregated search: A perspective from natural language generation[END_REF].

Question Answering

Question Answering (QA) differs from traditional ranked retrieval, as it does not aim a list of documents, but one or multiple answers. It represents an interesting case study for aggregated search because these answers might not exist-they have to be produced, extracted, assembled [START_REF] Dang | Overview of the TREC 2007 Question Answering Track[END_REF].

In QA, we also find the three main components of our AS framework. Concerning query dispatching, queries in QA are not any free text rather than question-like queries. For questions, there exist different taxonomies, and it is in the interest of the QA system to understand the query type. We can list here some well-known question types such as the "Who," "What," "Where," "When" questions or the "Yes/No" questions. As well, existing approaches look for named entities and other helpful facts within the query, for example, "Where in Africa did the scientists sent by Napoleon find Rosetta Stone?" This question contains different named entities (Napoleon, Africa, Rosetta Stone) and facts (in Africa, scientists). Interesting case studies and observations of the relation between aggregation search and QA can be found more detailed in [START_REF] Moriceau | FIDJI: Using syntax for validating answers in multiple documents[END_REF].

Nugget retrieval is not the major target of QA, that is, experimenting the different query matching algorithms is not the primary goal. Given a set of documents that match the query or queries derived from the initial question, QA approaches go within the documents to find and assemble answers. This task is not easy. Often, wrong passages are selected and the result is useless.

From the perspective of result aggregation, there are multiple ways to put results together and the result is often dependent on the query. As providing one unique answer may be risky, QA systems often return a list of candidate answers. Answers are often juxtaposed with supporting texts extracted from the documents. A different approach is presented in [START_REF] Wu | Supporting the Answering Process[END_REF]. Instead of returning a list of documents to answer questions and instead of very focused answers, we propose different intermediary approaches that can assist the answering process. This corresponds to five different result aggregations: (i) an abstract and a document, (ii) sentence fragments with keywords highlighted and a document, (iii) an abstract with one document and other related documents, (iv) sentence fragments and multiple documents, and (v) a set of paragraphs.

Federated Search

Most of the work in IR with multisources is classified as federated search [START_REF] Truong Avrahami | The FedLemur project: Federated search in the real world[END_REF][START_REF] Aditya | Leveraging query association in federated search[END_REF][START_REF] Callan | Distributed information retrieval[END_REF]] also known as distributed information retrieval. In federated search, instead of having one central collection indexed by one search engine, there are many distributed text collections each indexed by a search engine [Arguello et al. 2012]. 3 We may have as many query match algorithms as the number of subcollections (see the left side of Figure 3). At query time, the federated search system has to select the sources that are likely to be useful for the query. To do so, local representations of significantly reduced size of each collection are used. The obtained results from different sources are then assembled with each other. Typically, the final answer is a ranked list.

The FedLemur project [START_REF] Truong Avrahami | The FedLemur project: Federated search in the real world[END_REF]] is an illustrate example of federal search engine that is built on top of statistical data issued from 100 US federal agencies. Instead of building a centralized collection, which can quickly get outdated, authors show that it is better to build local search engines in many distributed nodes (one per agency).

Federated search approaches with multiple distributed collections have not been shown to produce very significant improvement with respect to approaches with one unique index. Nevertheless, they are commonly used when the sources are too heterogeneous or when some collection is hidden behind some API. In all approaches with multiple sources, we can easily identify the query dispatching step, nugget retrieval step, and result aggregation step.

Metasearch can be seen as a form of federated search in the context of Web search [START_REF] Lalmas | Advanced topics on information retrieval[END_REF]]. Initial metasearch engines used to wrap different Web search engines with the goal of improving precision and recall of Web search [START_REF] Selberg | Multi-service search and comparison using the MetaCrawler[END_REF]. This was reasonable at the time because the indexes of the existing web search engines covered small fractions of the Web. Though, the chances to have other relevant results in another source were high.

The sources in metasearch are typically black-box search engines that receive queries and return a ranked list of results. The returned results from different sources are then combined into one interface [START_REF] Selberg | Multi-service search and comparison using the MetaCrawler[END_REF][START_REF] Manoj | Information retrieval on Internet using meta-search engines: A review[END_REF][START_REF] Srinivas | A survey on the performance evaluation of various meta search engines[END_REF]. Typically results are sorted by source, but they can also be ranked with each other in one list. In contrast with most federated search work, sources can target the same task and collection (see Figure 3,center).

Mashups

Mashups are an interesting case study from the perspective of aggregated search. A mashup is a Web application that integrates data as well as services (databases, search engines, Web services, etc.) into a single tool. Thus, it allows combining applications and data from different sources. The aim is to provide a new service to the user. For instance, Yahoo! Pipes4 is a well-known mashup tool.

Manually coding mashups, we can build documents on demand, where we predefine where to put content coming from each component of a mashup. Although they are an interesting case study, mashups are mostly used for expert tasks rather than for search [START_REF] Greenshpan | Autocompletion for mashups[END_REF][START_REF] Ranganathan | Mashup-based information retrieval for domain experts[END_REF]].

Cross-Vertical Aggregated Search

Cross-vertical Aggregated Search (cvAS) [START_REF] Arguello | Sources of evidence for vertical selection[END_REF][START_REF] Lalmas | Advanced topics on information retrieval[END_REF][START_REF] Kopliku | Approaches to Implement and Evaluate Aggregated Search[END_REF] is the task of searching and assembling information from vertical search and Web search (see Figure 3,right). This is usually done in a Web search context. A vertical is a specialized subcollection [Diaz 2009a;[START_REF] Zhou | Evaluating aggregated search pages[END_REF], such as images, video, and news. cvAS is met in literature as an instance of both federated search [START_REF] Aditya | Leveraging query association in federated search[END_REF] and metasearch [START_REF] Gulli | Building an open source meta-search engine[END_REF]. In cvAS, however, verticals are a core concept [Arguello et al. 2012]. Since the definition of aggregated search, a lot of recent work [START_REF] Arguello | Sources of evidence for vertical selection[END_REF][START_REF] Lalmas | Advanced topics on information retrieval[END_REF][START_REF] Sushmita | A task-based evaluation of an aggregated search interface[END_REF][START_REF] Kopliku | Aggregated Search: Potential, Issues and Evaluation[END_REF]Kopliku et al. , 2011c] ] is classified within this later direction. We will concentrate on cross-vertical aggregated search in Section 5.

Relational Aggregated Search

We define Relational Aggregated Search (RAS) as a broad class of approaches that involve retrieving and aggregating information nuggets using their relations. For example, the query "all about iPhone 4S" would clearly benefit from this approach. We may assemble related attributes (e.g., weight, price), related products, related images, and so on. So defined, RAS can be complementary to cvAS. If cvAS provides diversity within search results, RAS can find the sense of aggregation and provide more related content within search results.

Let relational information be whatever triple that puts into relation two information nuggets. A relation can be deduced as simply as by performing a vertical search (e.g., image search, video search). However, a huge amount of relations exist in the Web, and it can be extracted (with, for instance, Information Extraction techniques). As well, huge amounts of relational information already exist within knowledge graphs or databases. Being able to extract and use these relations in the context of IR is the goal of RAS.

So defined, RAS has to rely on advances of many well-known fields including information extraction, entity-oriented search, object-level search, semantic search, IR from databases, and so on. The definition of RAS and its situation in research work might seem vague, but we will get back to RAS in a dedicated Section 6.

Domain-Specific Applications

Instances of aggregated search can be found in domain-specific applications. These approaches can sometimes be too specific, but they remain interesting to study because some of the work can be generalized to larger use. [START_REF] Kaptein | Focused retrieval and result aggregation with political data[END_REF] investigate focused retrieval and result aggregation on political data. Their documents are long (50-80 pages), containing transcripts of the meetings of the Dutch Parliament. Instead of returning entire documents, authors choose speeches as best entry points into documents. For a given query, they provide a summary of the results as a graph with three axes: year, political party, and number of search results. Search results can be browsed through three facets: person, political party, and year. Each speech is summarized in both terms of structure and content. The latter corresponds to word clouds and interruption graphs. We may observe at least four different aggregation formats within this work: interruption graph (structure summary), content summarization, facets, and results graph with three axes.

Another application is met in social science [START_REF] Ou | Aggregating search results for social science by extracting and organizing research concepts and relations[END_REF]. Here, authors provide search across academic papers. They extract and aggregate research concepts, their relations, research methods, and contextual information. The results can then be browsed by method, relation, or research concept. For each research concept, the user is provided a summary of contextual information. [START_REF] Strotmann | Bibliometric maps for aggregated visual browsing in digital libraries[END_REF] also focus on academic papers. They introduce two graph-based structures to help browsing search results. The first is an aggregated graph on authors. The second is a graph on authors linked through co-citation analysis. Academic research is also considered in sites such as Microsoft Academic Research (http://academic.research.microsoft.com/) or Google Scholar citations (http://scholar.google.com/citations), which aggregate information about a given researcher: publications, conferences, related keywords, co-authors, global indicators such as number of publications and h-index. News search aggregators represent good examples of result aggregation that go beyond the ranked list visualization. News articles with similar topic and publication time are often clustered into news stories [START_REF] Sahoo | Incremental hierarchical clustering of text documents[END_REF][START_REF] Hennig | Incremental clustering of newsgroup articles[END_REF]. This can also help users focus their search within a topic or time interval. In addition, [START_REF] Rohr | Aggregated cross-media news visualization and personalization[END_REF] propose an interesting timeline visualization showing the evolution of the topic. As well, we can attach to the news stories related multimedia [START_REF] Rohr | Aggregated cross-media news visualization and personalization[END_REF]. This is the case for Google News (http://news.google.com/) and Ask News (http://www.ask. com/news).

Geographic information retrieval is another interesting case study. It corresponds to search on geographic entities mainly through free text queries [START_REF] Vaid | Spatio-textual indexing for geographical search on the web[END_REF][START_REF] Jones | Geographical information retrieval[END_REF]. Usually a list of candidate results is returned unless the query is specific enough to identify exactly one result. The list of results is shown in a map juxtaposed with the corresponding ranked list. This is the case for major search engines such as Google Maps (http://maps.google.com/). In addition geographic proximity can be used to group and organize search results [START_REF] Bouidghaghen | Dynamically Personalizing Search Results for Mobile Users[END_REF][START_REF] Mccurley | Geospatial mapping and navigation of the web[END_REF]. If the query is good enough to identify one single geographic entity or the user clicks on one of the proposed results, a geographic search engine can support the user with more information about the entity. For instance, for a hotel, it is possible to provide a phone number, reviews, images, and so on. In fact, geographic entities can be associated with other types of content such as images [START_REF] Naaman | Assigning textual names to sets of geographic coordinates[END_REF][START_REF] Kennedy | Generating diverse and representative image search results for landmarks[END_REF], related named entities [START_REF] Vallet | Inferring the most important types of a query: A semantic approach[END_REF], news articles, and so on. This is useful to enrich and organize search results.

CROSS-VERTICAL AGGREGATED SEARCH

Cross-vertical aggregated search already has a consecrated place within aggregated search to the extent that it is often used as a synonym of aggregated search [START_REF] Lalmas | Advanced topics on information retrieval[END_REF]], [START_REF] Arguello | Sources of evidence for vertical selection[END_REF]]. The most well-known examples of cross-vertical aggregated search are met in the major Web search engines. In recent years, these search engines do not return uniform lists of Web pages. They also include results of different type such as images, news, videos, definitions, and so on (see Figure 4). A simple definition of cross-vertical aggregated search is met in [START_REF] Lalmas | Advanced topics on information retrieval[END_REF]:

[Cross-vertical aggregated search] attempts to achieve diversity by presenting search results from different information sources, so-called verticals (image, video, blog, news,etc.), in addition to the standard Web results, on one result page.

Motivations for cross-vertical aggregated search are multiple. Here, we list some of the main highlighted advantages already identified in literature:

-First, Web data are highly heterogeneous, and keeping a fresh index of all realtime data is difficult [Arguello et al. 2012]. Specialized search engines that focus on particular types of media are thus required. -Second, from an user point of view, it has been shown that vertical search intent is often present among Web search queries [START_REF] Arguello | Sources of evidence for vertical selection[END_REF][START_REF] Liu | A probabilistic model based approach for blended search[END_REF]Kopliku et al. 2011c]. For example, queries such as "Avatar trailer" or "Eiffel Tower images" can be found in Web search logs, although these queries might have been issued for videos and images. [START_REF] Liu | A probabilistic model based approach for blended search[END_REF] analyzed 2,153 generic Web queries into verticals, using query logs. They found that 12.3% have an image search intent, 8.5% have a video search intent, and so on. [START_REF] Arguello | Sources of evidence for vertical selection[END_REF] classified 25,195 unique queries, randomly sampled from search engine logs, into 18 verticals. Of the queries (mostly navigational), 26% were assigned no vertical, 44% of the queries were assigned one vertical, and the rest of the queries were assigned more than one vertical. The latter were mostly ambiguous. Cross-vertical aggregated search allows the user to search multiple specialized collections with a single-query access. -At last, it has been shown that cvAS increases the diversity of relevant results [START_REF] Sushmita | A task-based evaluation of an aggregated search interface[END_REF]Kopliku et al. 2011c;[START_REF] Rodrygo | Aggregated search result diversification[END_REF]. Results from different relevant sources have been shown to be often complementary with each other and they have been shown useful in the presence of ambiguous queries [Kopliku et al. 2011c].

Cross-vertical aggregated search can be seen as a "divide and conquer" approach, where customized search engines are used to answer queries on specific collections and where a complete answer is then built to meet the user need.

Cross-vertical aggregated search in the aggregated search framework. In crossvertical aggregated search it is easy to identify the components of our general framework for aggregated search. Query dispatching will correspond to the selection of sources. Each source will perform its nugget retrieval process and finally retrieved nuggets (e.g., Web pages, images, videos) will have to be assembled in one interface. Although the tasks are well distributed, the problem is far from being solved. It is not easy to decide which sources should be used and how the retrieved results should be assembled and presented. In particular, we can list some major issues which have the attention of current research:

-Source representation and selection. Which source should be used? How should they be represented internally in terms of features? -Result aggregation. How should search results from different sources be assembled (e.g., ranking by item, ranking by block)? -Result presentation. Which are adequate interfaces for cross-vertical aggregated search?

We will describe each of the aforementioned issues in more detail.

Source Representation and Selection

Some aggregated search systems make use of all sources they can reach for all queries, while others are source selective (i.e., they make use only of the sources considered useful for the query). Most of major Web search engines are source selective. This is done to avoid a long answering time: Querying many sources and waiting for all results can be too slow for standard Web search. The goal of source selection is to predict the query intent combining evidence from the query, user profiles, query logs, and sources themselves. This problem is also known as the vertical selection problem [Arguello et al. 2011].

To enable efficient source selection, sources have some internal representation in the cvAS systems. This representation can be as simple as a textual description of the source, but in general it contains representative terms and features for the source extracted from sampling or other mining techniques. Some techniques of source selection can be met in federated search [START_REF] Gravano | STARTS: Stanford proposal for Internet meta-searching[END_REF][START_REF] Callan | Distributed information retrieval[END_REF][START_REF] Shokouhi | Using query logs to establish vocabularies in distributed information retrieval[END_REF]], but we will focus here on the approaches met specifically for cvAS.

Source selection demands the collection of evidence that associates the potential information need behind a query to one source. This evidence is turned into features that can be used with some classification or ranking algorithm. Tables I and II represent an overview of the experimented features in literature. They can be split into preretrieval and postretrieval features, because there exist approaches that select sources after having some search results in return. Within the preretrieval features, we account for simple features such as the presence of terms with strong vertical intent evidence such as "image," "video" (feature f 1), the occurrence of named entities of a given type (location, organization, etc.) (feature f 2), the length of the query (feature f 3). Evidence is collected from query logs (features f4 and f 5) in vertical search engines and clickthrough analysis in Web search (feature f6). As well, the query can be matched to feature/term sampled representations of the source collection (feature f 7) or of given categories/subjects (feature f 8). As well, it has been shown useful to apply a classifier that can tell if a query hides a navigational intent (feature f 9).

Postretrieval features include different scores computed on search results for a given query. We find relevance scores as computed by each source (feature f 10) as well as match scores computed on search results in a uniform fashion across all sources (feature f 11). We find also the use of simpler features such as the number of search results (feature f 12) and the freshness of search results (feature f13). Features related to the location and context of a user/task (features f 14 and f 15) can be used to rerank This feature indicates how often the query has been met in a source query log recently. f6

Clickthrough analysis [Arguello et al. 2011;[START_REF] Kumar Ponnuswami | On composition of a federated web search result page: Using online users to provide pairwise preference for heterogeneous verticals[END_REF][START_REF] Li | Learning query intent from regularized click graphs[END_REF] These features are generated from the documents that have been clicked for the query. The click is considered implicit feedback. f 7

Source representation [START_REF] Diaz | Adaptation of offline vertical selection predictions in the presence of user feedback[END_REF] This feature is computed based on explicit and implicit feedback on the query and its intent. f 8

Category representation [START_REF] Arguello | Sources of evidence for vertical selection[END_REF] This feature is generated through classification of the query into predefined domains such as sport, arts, and technology. f 9

Evidence for navigational need [START_REF] Kumar Ponnuswami | On composition of a federated web search result page: Using online users to provide pairwise preference for heterogeneous verticals[END_REF] This feature indicates the chances of the query to come from navigational needs.

Table II. Postretrieval Features

Feature based on Description f 10

Vertical relevance score [Diaz 2009b] This feature corresponds to the relevance score of the vertical source itself for a result or a block of results. f 11 Uniform Match Score [Arguello et al. 2011;[START_REF] Kumar Ponnuswami | On composition of a federated web search result page: Using online users to provide pairwise preference for heterogeneous verticals[END_REF][START_REF] Li | Learning query intent from regularized click graphs[END_REF] This feature corresponds to match scores on the results computed uniformly across multiple sources.

f 12 Number of results [Arguello et al. 2011] This feature corresponds to the results count of a source.

f 13 Freshness of documents [Arguello et al. 2011;Diaz 2009b] This feature indicates how fresh are search results for the query within a source. f 14 Contextual score of results [START_REF] Kopliku | Filtering and ranking for social media monitoring[END_REF] These features indicate the relatedness of search results with respect to some context. f 15 Geographic-context score of results [START_REF] Kopliku | Filtering and ranking for social media monitoring[END_REF] These features indicate the relatedness of search results with respect to some geographic context.

or filter search results, that is, the vertical search engine is personalized for a given contextual use and geographical location.

There are different interesting works with respect to source selection. Diaz [2009a] studies the integration of news search results within Web search. He estimates newsworthiness of a query to decide whether to introduce news results on top of the Web search results. They make use of clickthrough feedback to recover from system errors. [START_REF] Li | Learning query intent from regularized click graphs[END_REF] also rely on clickthrough data to extract implicit feedback for source selection. They represent queries and documents as a bipartite graph, and they propagate implicit feedback in this graph. Their approach is experimented for the integration of product search and job search results. [START_REF] Arguello | Sources of evidence for vertical selection[END_REF] list various sources of evidence that can be used to tackle source selection such as query-log features, vertical intent terms, and corpus features. In later work, [START_REF] Diaz | Adaptation of offline vertical selection predictions in the presence of user feedback[END_REF] show how they can integrate implicit and explicit feedback for vertical selection. From a set of 25,195 labeled queries, they propagate implicit feedback across about 10 million queries. [START_REF] Arguello | Vertical selection in the presence of unlabeled verticals[END_REF] show how to adapt source selection methods to new unlabeled verticals.

Result Aggregation

There are different ways to assemble results in cross-vertical aggregated search. The most simple approach is to rely only on source selection [START_REF] Li | Learning query intent from regularized click graphs[END_REF]Diaz 2009b;[START_REF] Arguello | Sources of evidence for vertical selection[END_REF], that is, search results from one source are integrated only when the source is considered potentially useful. In this case, results are placed in predefined locations, usually on top of traditional Web results. We have mentioned related approaches in the previous section.

The task becomes more complex when we want to rank results of different sources with each other. Two main approaches exist, namely, block ranking and single-result ranking.

In block-ranking, results are ranked in blocks of results of the same source [START_REF] Kumar Ponnuswami | On composition of a federated web search result page: Using online users to provide pairwise preference for heterogeneous verticals[END_REF]Arguello et al. 2011] (e.g., three images versus three videos, whereas in single-result ranking, results may be interleaved (e.g., one image versus one Web page for instance) [START_REF] Liu | A probabilistic model based approach for blended search[END_REF].

In [START_REF] Kumar Ponnuswami | On composition of a federated web search result page: Using online users to provide pairwise preference for heterogeneous verticals[END_REF] and Arguello et al. [2011], search results are ranked in blocks of vertical content (e.g., three images versus three Web search results). In both cases, ranking functions are trained using pairwise preferences between blocks. [START_REF] Kumar Ponnuswami | On composition of a federated web search result page: Using online users to provide pairwise preference for heterogeneous verticals[END_REF] propose a machine-learning framework that can assist the way search results are ranked in blocks by major search engines. Arguello et al. [2011] compare different algorithms for block-ranking, namely, classification, voting, and learning to rank techniques. The latter (learning to rank) outperforms other algorithms.

Ranking results of different sources one by one (not in blocks) has not been widely adapted and or studied. Although ranking results from very different systems is a difficult problem, interleave results from different vertical search engines may be of interest. Indeed, results in verticals are not equally relevant. A user issuing the query "French military intervention in Mali" may be interested in a result page showing first the last news about Mali intervention and then a Wikipedia article on the Northern Mali conflict, before seeing other less recent news on the subject. Images of the intervention are also more relevant than images of a speech of the French president. [START_REF] Liu | A probabilistic model based approach for blended search[END_REF] propose a probabilistic framework for this purpose that also lists different useful features for this task. Current evolution of major Web search engines is showing that we can go beyond block ranking. For instance, for some queries, the user is answered with focused information or Wikipedia extracts.

Result Presentation

Whereas result aggregation deals with the ranking of results, result presentation concerns the presentation interface. One way to aggregate vertical searches is to place content of the same type into predefined layout panels: This type of approach is called unblended. This is the approach chosen by Yahoo! Alpha5 some years ago and by Kosmix. 6 Whenever a minimal amount of vertical content is available for a query, the various predefined slots are filled and displayed around the natural search listings. The advantage of such an approach is that the user knows where the vertical content is shown. On the other hand, vertical content is almost always shown even if there is nothing relevant for such a type of content. Other approaches, called blended, merge search results from different sources with each other in the same panel (see Figure 4). This was first introduced by major search engines who started integrating vertical content only on the top or bottom of their search results list (Web search results are ranked as usual). When it is likely that the user is looking for other types of content such as images, news, or video, this content is placed in the bottom or the top of the Web results list. One of the advantages of such presentation is that vertical search results are added only when needed and visualization remains simple.

Nowadays, major search engines still use a blended approach, but results are ranked by blocks, that is, groups (blocks) of results from each source are ranked with each other. Within the block, results are usually ranked, that is, they are shown in the order they are returned from the origin source (Figure 4). For instance, we may have a block of three Web search results followed by a block of images, followed by a block of news search results, and then Web search results again. The advantage of this approach is that it is simple and at the same time flexible. We can add as many vertical searches as needed and only show those that are more relevant.

In the Web, we can also find other picturesque applications such as Spezify,7 which proposes an original way to exploit visualization space. Spezify aggregates results from different vertical sources with a slight preference for content with immediate visual impact, such as images and videos. Each result fills a rectangle and rectangles are placed side to side to fill the visualization space. The results expand in all directions (up, down, left, right), and it looks as a mosaic filled with content. Google has also launched a new application called "What do you love?"8 This application aggregates results from several verticals as well as from other Google applications such as Google Translator, search term popularity measures, and so on. The Google Knowledge Graph introduced in 2012 by Google [START_REF] Singhal | Introducing the Knowledge Graph: Things, Not Strings[END_REF]] is another example of the use of relational facts. The Graph is constructed using public sources such as Freebase or Wikipedia, as well as some real-time sources from the Web. It currently contains 500 million objects and 3.5 billion facts, as well as relationships between them. The Google Knowledge Graph is used by Google to disambiguate results, to present a summary of an entity (the right panel in Figure 1) to help the user to go deeper in his/her query by chowing him/her new facts or new connections related to the result (explorative search suggestion).

RELATIONAL AGGREGATED SEARCH

All these applications show, however, that we can foresee another way of assembling search results based on fine-granularity information and relations.

Relational aggregated search as defined here intersect with many research directions including entity-oriented search, semantic search, object-level search, database information retrieval, . . . In the next sections, we will provide main definitions and then we will analyze the related work to show that there is much to rely on in this promising research direction.

Definitions and Framework

-Query dispatching: Inspired by the work in [START_REF] Michael | Relational Web Search[END_REF] and Kopliku et al. [2011b], we distinguish three types of information needs where benefits from relational aggregated search are obvious. We call them relational queries:

-attribute query ("GDP of UK," "address of Hotel Bellagio") -instance query ("Samsung Galaxy S," "Scotland," "Oscar Wilde") -class query ("Toshiba notebooks," "British writers")

Each of these queries may demand a different treatment. From this perspective, query dispatching becomes important to detect the query type and to trigger the appropriate solution.

-Relation retrieval: In relational aggregated search, we are interested in all nuggetnugget relations that can be useful for information retrieval. However, we highlight three types of relations that are particularly interesting and useful, namely:

-instance-class relation: for example, ("France," is a, "country"); ("Bill Clinton," is a, "US president") -instance-instance relation: for example, ("Paris," relates to, "France"); ("Roger Federer," plays against, "Rafael Nadal") -instance-attribute relation: for example, ("France," has attribute, "(motto:Liberty, Equality, Fraternity)"); ("France," has attribute, "population density: 116/km 2 ") -Result aggregation: Relations can enable new ways to assemble search results.

When the query is specifically asking for an attribute, the best choice can be returning its value right away. When the query is an instance, we may show not only a summary of salient attributes but also images, related instances, and so on. When the query is a class of instances, the result can be a comparative table of the class instances with their attributes (as it is done for instance in Google Squared).

We will now detail the novel issues of relational aggregated search focusing on relational queries, relation retrieval, and result aggregation.

Relational Queries

To build relational aggregated search, we need to identify the queries that benefit the most from this paradigm. [START_REF] Michael | Relational Web Search[END_REF] present one of the first query taxonomies for relational search. For these queries, named entities and their relations find a crucial role.

-Qualified-list queries retrieve a list of instances that share multiple properties (e.g., west coast liberal arts college). -Unnamed-item queries retrieve single object whose name the user does not know or cannot recall (e.g., the tallest inactive volcano in Africa). -Relationship queries retrieve the relation(s) between two objects (e.g., Microsoft ? Bill Gates). -Tabular queries retrieve a set of objects annotated by their salient properties (e.g., inventions annotated by their inventor and year of announcement).

In the previous list, the query type and the type of result are bound (i.e., the query definition includes the type of expected result).

In Kopliku et al. [2011b],we proposed a simpler taxonomy of queries inspired by Cafarella et al. [2006]. The type of query is binded to the semantic notion of instance, class and attribute, while it is not binded with the type of expected result:

-attribute query ("GDP of UK," "address of Hotel Bellagio") -instance query ("Samsung Galaxy S," "Scotland," "Oscar Wilde") -class query ("Toshiba notebooks," "British writers") Most of the aforementioned queries benefit from relations. We will use the last taxonomy because it is simpler and it does not bind with the type of answer.

Relation Retrieval: How to Acquire Relations?

The major sources of relational content are (i) the Web, (ii) knowledge graphs/ontologies, and (iii) relational databases. We will focus less on relational databases because they are less frequently used in broad IR applications. The Deep Web is, however, a good provider of databases, and challenges such as data integration are a very important research area. In the following, we detail Information Extraction (IE) techniques and knowledge bases (ontologies, linked data) as the major sources for relations.

IE techniques correspond to rules that can be applied to sites, documents, or parts of documents to automatically extract classes, instances, attributes, and their relations [START_REF] Suchanek | SOFIE: A self-organizing framework for information extraction[END_REF]]. Most of the extraction rules have the form of LxMyR, where x and y are meant to be two information extracts and L, M, and R are meant to be patterns that are found, respectively, before, in between, and after the two extracts. For instance, the rule "the x of y is" can be used to identify attributes of instances, for example, "the capital of France is Paris." Rules that rely only on lexicon (words, phrases) and part-of-speech tags are also referred as lexico-syntactic rules, while rules that are based on tag sequences are usually known as wrappers. Extraction rules can be hard-coded or learned [START_REF] Chang | LIBSVM: A Library for Support Vector Machines[END_REF].

Information extraction techniques are quite heterogeneous, and they make use of various evidence such as statistics on terms, tags, decoration markup, part-of-speech tags, and so on. This evidence is then combined to define rules that match classes, instances, attributes and their relations. In the following, we provide just a short taxonomy of features (evidence) that are commonly used for this purpose:

-Word statistics [START_REF] Etzioni | Unsupervised named-entity extraction from the web: An experimental study[END_REF][START_REF] Agichtein | Snowball: Extracting relations from large plain-text collections[END_REF][START_REF] Valter Crescenzi | RoadRunner: Towards Automatic Data Extraction from Large Web Sites[END_REF]]: Some terms are more frequent within or around information extracts. Statistics on words (often in conjunction with part-of-speech tags) are helpful to learn common lexico-syntactic patterns for information extraction. -Part-of-speech tags [START_REF] Bellare | Lightly-supervised attribute extraction for Web search[END_REF]]: Information extracts are usually nouns or compound noun phrases surrounded by verbs, adjectives, prepositions, and so on. Part-of-speech tags are helpful to learn possible patterns. -Tags (HTML, XML) [START_REF] Valter Crescenzi | RoadRunner: Towards Automatic Data Extraction from Large Web Sites[END_REF][START_REF] Michael | Data Integration for the Relational Web[END_REF]Kopliku et al. 2011aKopliku et al. , 2011b]: Most of the documents have some structure denoted through tags. The structure of the document is often useful to determine relations. In particular, HTML tables and HTML lists are known to contain relational data. -Decoration, visual appearance [START_REF] Aumann | Visual information extraction[END_REF][START_REF] Meng | A supervised visual wrapper generator for Web-data extraction[END_REF][START_REF] Yoshinaga | Open-domain attribute-value acquisition from semistructured texts[END_REF]: Sometimes the structure of a document is easier to learn through its visual aspects, especially when a pattern in terms of tags is difficult to define or learn. -PMI and search hits [START_REF] Church | Word association norms, mutual information, and lexicography[END_REF][START_REF] Peter | Mining the web for synonyms: PMI-IR versus LSA on TOEFL[END_REF][START_REF] Popescu | Extracting product features and opinions from reviews[END_REF]: Pointwise Mutual Information (PMI) is a statistical measure that indicates possible correlation between two expressions. An easy way to estimate PMI is through search hits that indicate the number of search results a search engine has to return on a given query. PMI and similar statistical measures can play a crucial role to determine relations.

Most of the techniques in IE are domain specific, that is, they are designed to work well for some classes or instances or attributes. A noticeable exception concerns Open Information Extraction (OIE) approaches [START_REF] Banko | Open information extraction from the web[END_REF][START_REF] Zhu | Statsnowball: a statistical approach to extracting entity relationships[END_REF][START_REF] Etzioni | Open information extraction: The second generation[END_REF]]. Initially introduced by [START_REF] Banko | Open information extraction from the web[END_REF] with their TextRunner system, the OIE paradigm aims at extracting large sets of domain-independent relational tuples (mainly on Web corpora) without requiring any human input. Open IE systems are now a hot subject of interest because they can allow to automatically construct knowledge bases or ontologies [START_REF] Lin | Identifying functional relations in web text[END_REF].

Most of the IE techniques are also oriented toward precision. To enable relational aggregated search, we need high recall and reasonable precision. From this perspective, domain-independent methods and high-recall methods become crucial.

A lot of semantic content and their relations are already available in existing knowledge bases (e.g., DBPedia, Freebase, YAGO) [START_REF] Suchanek | YAGO: A core of semantic knowledge[END_REF][START_REF] Wu | Information extraction from Wikipedia: Moving down the long tail[END_REF][START_REF] Limaye | Annotating and searching Web tables using entities, types and relationships[END_REF]]. These sources contain semantic (relational) information manually input or automatically extracted from the Web or encyclopaedia-like collections (e.g., Wikipedia). These sources have also been used to learn IE extraction patterns or to reinforce confidence on extraction [START_REF] Kopliku | Approaches to Implement and Evaluate Aggregated Search[END_REF]]. They have attracted the attention of many recent research, and they are already enough to illustrate the potential of RAS.

In the next paragraphs, we list relation-retrieval approaches with respect to the type of relation they target. 6.3.1. Instance-Class Relation. The class instance is often referred in literature as named entity. Initially, there were seven named entity categories defined in Message Undestanding Conference [START_REF] Grishman | Message Understanding Conference-6: A brief history[END_REF], while today standardized taxonomies with more than 150 classes can be found such as the extended named entities hierarchy [START_REF] Sekine | Extended named entity hierarchy[END_REF]. In reality, we cannot enumerate all possible named entity classes. A class can be as simple as "countries," but it can also be "members of the UN Security Council" or "my friends." Sometimes, we might not even be able to name the class in a reasonable way.

The definition of named entities as instances of some class makes the class-instance relation intrinsic for extraction techniques. These techniques are also known as Named Entity Recognition (NER). [START_REF] Hearst | Automatic acquisition of hyponyms from large text corpora[END_REF][START_REF] Hearst | Automated discovery of WordNet relations[END_REF] proposes one of the pioneer domainindependent approaches to extract named entities and their classes. The author identifies six lexico-syntactic patterns which detect this relation. Other approaches can be found in [START_REF] Guo | Named entity recognition in query[END_REF] or [START_REF] Etzioni | Unsupervised named-entity extraction from the web: An experimental study[END_REF]. The class-instance relation is also targeted in TREC Entity Tracks [Balog et al. 2009b]. One of the proposed tasks involves returning a list of named entities of a given class.

Existing techniques for this relation are promising, although they are mostly precision oriented. 6.3.2. Instance-Instance Relation. Inspired from [START_REF] Suchanek | YAGO: A large ontology from Wikipedia and WordNet[END_REF], we distinguish four main relations that can relate an instance to another, namely, synonymy, sibling relation, meronymy, and nontaxonimic relations. To illustrate, "Big Apple" is a synonym for "New York City." France and Italy are siblings in that they are instances of the same class "countries." Meronymy involves part-of-a-whole relations such as ("Italy," is a member of , "NATO"). The nontaxonomic relations are relations between two instances given by textual description such as ("John Travolta," plays in, "Pulp Fiction") and ("Windows," is a product of , "Microsoft"). [START_REF] Suchanek | YAGO: A core of semantic knowledge[END_REF] presented YAGO, a large extensible ontology built through careful combination of heuristics on Wordnet and Wikipedia. They extract synonyms, instance-class relations (hyponomy), and nontaxonomic relations. The result is a set of about 1 million instances and about 5 million relations. Instance-instance relations can be extracted in a supervised [START_REF] Agichtein | Snowball: Extracting relations from large plain-text collections[END_REF][START_REF] Etzioni | Open information extraction from the web[END_REF] or unsupervised way [START_REF] Etzioni | Unsupervised named-entity extraction from the web: An experimental study[END_REF]]. Instance-instance relations are mostly extracted through lexico-syntactic rules based on term statistics and part-of-speech tags. Some of these techniques are particularly interesting in that they are applicable at a large scale and are domain independent. Nevertheless, some relations are difficult to capture, as their extraction depends on the training data or the technique being used. 6.3.3. Instance-Attribute Relation. Attribute acquisition can be domain independent or domain dependent. From domain-dependent approaches, we may mention approaches that focus on products. In this domain, attributes have been used not only to improve product search and recommendation [Nie et al. 2007a] but also to enable data mining [START_REF] Wong | An unsupervised method for joint information extraction and feature mining across different Web sites[END_REF]. To acquire attributes from the Web, it is common to use decoration markup [START_REF] Yoshinaga | Open-domain attribute-value acquisition from semistructured texts[END_REF][START_REF] Valter Crescenzi | RoadRunner: Towards Automatic Data Extraction from Large Web Sites[END_REF]] and text [START_REF] Ben-Yitzhak | Beyond basic faceted search[END_REF][START_REF] Tokunaga | Automatic discovery of attribute words from web documents[END_REF]. A common technique to acquire attributes is through the use of lexico-syntactic rules [START_REF] Pasca | Weakly-supervised acquisition of open-domain classes and class attributes from Web documents and query logs[END_REF][START_REF] Alfonseca | Acquisition of instance attributes via labeled and related instances[END_REF][START_REF] Almuhareb | Attribute-based and value-based clustering: An evaluation[END_REF][START_REF] Popescu | Extracting product features and opinions from reviews[END_REF].

HTML tags (for tables, lists,and emphasis) have also been shown to help for attribute acquisition [START_REF] Yoshinaga | Open-domain attribute-value acquisition from semistructured texts[END_REF][START_REF] Wong | An unsupervised method for joint information extraction and feature mining across different Web sites[END_REF]. In particular, HTML tables are known to be a mine for relational data and attributes. An approach to extract attributes from tables using column (or row) similarity is proposed in [START_REF] Chen | Mining tables from large scale HTML texts[END_REF]. Another common technique is trough wrapper induction [START_REF] Valter Crescenzi | RoadRunner: Towards Automatic Data Extraction from Large Web Sites[END_REF][START_REF] Wong | A probabilistic approach for adapting information extraction wrappers and discovering new attributes[END_REF]. [START_REF] Michael | WebTables: Exploring the power of tables on the Web[END_REF][START_REF] Michael | Data Integration for the Relational Web[END_REF] show that we can identify billions of relational tables in the Web. Kopliku et al. [2011dKopliku et al. [ , 2011b] ] show how to extract and rank attributes from Web tables for whatever instance query combining table classification with relevance ranking.

At last, knowledge bases (such as DBPedia or Freebase) [START_REF] Suchanek | YAGO: A core of semantic knowledge[END_REF][START_REF] Wu | Information extraction from Wikipedia: Moving down the long tail[END_REF][START_REF] Kopliku | Approaches to Implement and Evaluate Aggregated Search[END_REF]] provide millions of relations in the form of linked data, which make it easy to retrieve attributes.

Attribute retrieval from linked data will probably attract more research attention given the fast growth of user generated or automatically extracted linked data [START_REF] Bizer | Linked data on the Web (LDOW2008)[END_REF][START_REF] Bizer | Linked data-the story so far[END_REF]. 6.3.4. Other Nugget-Nugget Relations. The nugget-nugget relation is the broader class of relations that can involve whatever type of information nugget (i.e., it includes instance-instance relations, class-instance relations, and attribute-instance relations). We will list here just some other broad examples without aiming to be exhaustive:

-Similarity ("similar to"): This is a common relation that has already been targeted in clustering, classification, news aggregators, and so on. For instance, news aggregators group similar news articles into stories. -Diversity ("different to"): The inverse of similarity represents another useful relation. Studies on novelty and diversity claim that it is sometimes better to promote some diversity among the retrieved results. -Space-time ("happens in time/space"): Content can also relate with respect to some features such as time and location. For instance, sometimes it is better to order information chronologically to favor freshness of information [START_REF] Dong | Towards recency ranking in Web search[END_REF]. In Geographic Information Retrieval, the location feature is fundamental to organize and visualize search results [START_REF] Jones | Geographical information retrieval[END_REF].

Result Aggregation

This section is about ways to aggregate search results in the context of relational aggregated search. We will consider one query type at a time.

Attribute queries (e.g., capital of France) should ideally be answered with the correct attribute value(s). However, for many queries, we might find many candidate values without being certain on their relevance and correctness. With respect to this issue, there is a lot of work in question answering (what is the capital of Congo?). Here, the result is one or more candidate answers, typically associated with supporting text.

Instance queries provide more space for result aggregation. In object-level search, these queries are answered through records and attributes extracted from one or more pages [Nie et al. 2007b]. The answer can also be a set of related instances [START_REF] Basu | Constructing and exploring composite items[END_REF][START_REF] Makoto | Query by analogical example: Relational search using Web search engine indices[END_REF]], multimedia content [START_REF] Taneva | Gathering and ranking photos of named entities with high precision, high recall, and diversity[END_REF], passages [START_REF] Sauper | Automatically generating Wikipedia articles: A structure-aware approach[END_REF], or a summary of attributes [Kopliku et al. 2011b. Specific approaches have been adapted for people search [START_REF] Macdonald | The voting model for people search[END_REF]], product search [Nie et al. 2007b;[START_REF] Popescu | Extracting product features and opinions from reviews[END_REF], bibliographic search [START_REF] Ji | ExSearch: A novel vertical search engine for online barter business[END_REF], and so forth.

Class queries can be answered with a list of instances. This is the case for most approaches that can be found in Question Answering [START_REF] Kelly | Overview of the TREC 2006 question answering task[END_REF]] and TREC entity tracks [Balog et al. 2009b]. Google Maps12 answers location-related class queries (e.g., hotels in Las Vegas) with a list of instances in a map sometimes associated with ratings, reviews and images. In Kopliku et al. [2011b] and [START_REF] Krichen | Une approche de recherche d'attributs pertinents pour l'agrégation d'information[END_REF], results of class queries are structured in tables with instances in the rows and attributes in the columns.

We can conclude that there are several ways to answer queries in the relational framework. The quality of the result aggregation depends on the quality of the relations and the relevance of the result components.

EVALUATION OF AGGREGATED SEARCH

Aggregated search in its broadest definition is difficult to evaluate, that is, an aggregate answer can be organized in many ways and contain whatever information nuggets (images, sentences, Web search results, information extracts, etc.). Aggregated search can provide immediate and organized access to information. The quantity of relevant information, its diversity, coherence, and organization can affect directly user satisfaction.

Although the evaluation of aggregated search is not a solved question, some preliminary works or evaluation frameworks can however be mentioned in the context of relational aggregated search and cross-vertical aggregated search-they are discussed in the following two sections.

Cross-Vertical Aggregated Search

Although the process of cross-vertical aggregated search is clearly composed of vertical selection, item selection, and results presentation, evaluation does not concern so clearly these different parts. Vertical selection and result presentation are in fact strongly linked [START_REF] Zhou | Evaluating aggregated search pages[END_REF]].

Among approaches aiming at mainly evaluating vertical selection, one can cite [START_REF] Arguello | Sources of evidence for vertical selection[END_REF], [START_REF] Li | Learning query intent from regularized click graphs[END_REF], Diaz [2009a] or Kopliku et al. [2011c]. Evaluation protocols are based either on manual assessments or on user interaction data (clickthrough).

Aggregated search interfaces (blended versus unblended) are evaluated in [START_REF] Sushmita | Factors affecting click-through behavior in aggregated search interfaces[END_REF] and Arguello et al. [2012] using user studies. A methodology for evaluating results presentation is also defined in Arguello et al. [2011]; the authors propose a metric-based evaluation of any possible presentation of the query. The idea is to use preference judgments on pairs of blocks to construct a reference presentation for the query. Approaches can then be evaluated by calculating their distance to the reference presentation. Although the proposed approach only considered ranking by block, the methodology can be applied to every approach.

At last, [START_REF] Zhou | Evaluating aggregated search pages[END_REF] propose to evaluate the aggregated search process as a whole, by proposing an evaluation framework using a test collection [START_REF] Zhou | Evaluating large-scale distributed vertical search[END_REF] as well as evaluation metrics that are showed to be more suitable for evaluated cross-vertical aggregated search than traditional IR metrics.

To summarize, today, cross-vertical aggregated search is mainly evaluated by studying the aggregated search behavior, either using laboratory studies [Arguello et al. 2012;[START_REF] Arguello | The effect of aggregated search coherence on search behavior[END_REF][START_REF] Sushmita | Factors affecting click-through behavior in aggregated search interfaces[END_REF] or search logs-data [Diaz 2009a]. The community is, however, working on the crucial point of reusable test collection, as shown by the first efforts published in Arguello et al. [2011] and [START_REF] Zhou | Evaluating aggregated search pages[END_REF].

Relational Aggregated Search

In the context of relational aggregated search, existing frameworks for evaluation mainly concern the evaluation of entity search. Among them, one can cite:

-The INEX Entity Ranking Track (2007Track ( -2009)) The preceding evaluation campaigns allow us to evaluate approaches targeting the extraction of instance-class or instance-instance relation. The evaluation of attribute extraction do not fit in these campaigns (except maybe for the TAC KBP and TREC KBA SSF tasks, which are interested in attribute values), and existing approaches for attribute retrieval were mainly evaluated on their own test (see Kopliku et al. [2011b]). To conclude, the utility of RAS is not just in the relevance of information, it is also in the focus and organisation. Few studies address the utility of relational information as a whole or as a complement to traditional search results.

CONCLUSION AND FUTURE DIRECTIONS

Conclusion

This survey shows that there is a myriad of approaches that go beyond query matching with an additional effort on result aggregation. We have analyzed many of these approaches from multiple research domains in the light of aggregated search.

Some approaches have strong considerations on the data they process (the sources in the database community should own a schema; RDF triples are queried in semantic search, vertical searches act on very specific data), whereas others are more concerned with textual information (that can or not be structured): This is the case of federated search, metasearch, information extraction, question answering, or natural language generation.

Three processes are shown to decompose well the broad aggregated search process, namely, query dispatching, nugget retrieval, and result aggregation. They encapsulate well the different existing query matching approaches, with an additional attention at query time and result aggregation time.

Among the listed approaches, there are many that rely on a multiple sources (search engines) architecture. Among them, cross-vertical aggregated search is probably the most successful; it has met commercial success in Web search and it is capturing an increasing interest in research. Here, the integration of diverse vertical search engines (e.g., image search, video search) has been shown beneficial, that is, it increases the amount of relevant results and it often provides complementary results.

In addition, we have also analyzed research on relational aggregated search, another promising research direction. The latter makes use of relations to assemble and retrieve search results. This enables retrieving at finer granularity and composing new aggregated objects of related content.

Future Directions

We can expect aggregated search to attract research direction for the next decades. In this section, we list some challenging (and promising) research directions.

Starting from the broad aggregated search framework, we believe the most challenging issues concern query dispatching and result aggregation. Indeed, nugget retrieval has been the research target for more than 50 years now. Identifying queries that benefit from aggregation as well as new ways to aggregate content remain novel and promising.

Another important issue is evaluation. Evaluation in the context of cvAS and RAS concerns mainly the effectiveness of each sub-task that composes the different approaches. In other words, relevance is mainly assessed on single information nuggets taken separately (even if a noticeable exception can be recently found in the context of cross-vertical aggregated search [START_REF] Zhou | Evaluating aggregated search pages[END_REF]). The quality of the aggregated results should however be measured by considering the complementarity of nuggets, coherence, completeness, or coverage of the information need, and appropriate metrics are still needed. Moreover, finding a way to measure the quality of any possible aggregate for a given query is a problem that is far from being solved.

At last and as stated in Arguello et al. [2012], a promising perspective concerns the personalization of aggregated results, in order to make users be the "the core content".

If we keep to specific research directions, we believe that cross-vertical aggregated search and relational aggregated search remain the most promising in the short term.

Despite the success of cross-vertical aggregated search in the context of Web search, we belive its potential is far from being completely exploited. There is evidence that we can combine sources such as Wikipedia, DBPedia, images, maps to form aggregate unexisting objects with quite some visualization flexibility. As well, we can target new applications other than Web search. We can foresee enriched map search results, enriches Wikipedia results and so on.

In the context of relational aggregated search, there is a lot of work to be done. We need to improve relation retrieval techniques in both terms of precision and recall. Depending on the targeted application, a good precision/recall is fundamental. We believe that two research directions are more promising at this moment. First, there is an increasing effort towards open-domain and large-scale information extraction techniques. Second, we can observe a fast growth of quality linked data in the Web. We believe that the combination of automatic extraction and user-generated content will produce enough relational and semantic data for multiple commercial uses. Moreover, a substantial effort is needed to define coherent ways to explore and aggregate results (tables, lists, graphs).

To conclude, we believe that this survey in conjunction with other ongoing research indicate that future IR can integrate more focus, structure, and semantics in search results.
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 1 Fig. 1. Google search results on the query "Barack Obama," accessed on April 2013.
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  We propose a general framework for aggregated search that can be used to analyze and classify the different existing approaches. -We propose an overview of the broad research domains that are related to aggregated search. -We propose a detailed survey on cross-vertical aggregated search and relational aggregated search. -We list different challenging and promising research directions.
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 2 Fig. 2. The general framework of the aggregated search process.
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 3 Fig. 3. Simple schemas for federated search (left), metasearch (center), and cross-vertical aggregated search (right).
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 4 Fig. 4. Google Universal search results on the query "Barcelona," accessed on April 2012.
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 5 Fig. 5. Google Squared result for "artic explorers," accessed on May 2010.

Table I .

 I Preretrieval Features

		Feature based on	Description
	f 1	Vertical intent terms [Arguello	Some terms indicate vertical intent such as image, video,
		et al. 2011; Arguello et al. 2009;	and photo. This feature combines hard-coded and learned
		Ponnuswami et al. 2011]	association rules for queries and sources.
	f 2	Named-entity type [Arguello	These features indicate the presence of named entities of
		et al. 2011]	some type in the query.
	f 3	Query length [Ponnuswami et al.	This feature corresponds to the length of the query in terms.
		2011]	
	f4	Query logs [Arguello et al. 2011;	These features indicate if the query has been met in a
		Arguello et al. 2009]	source query log.
	f 5	Recent popularity of the query	
		[Diaz 2009b]	

:

  The track proposed a framework to evaluate engines that return lists of entities. Two main tasks were considered on structured documents collections: Entity Ranking (ER) and entity List Completion (LC)[START_REF] Demartini | Overview of the INEX 2009 Entity Ranking Track[END_REF]] -The TREC EntityTrack (2009Track ( -2011)): The aim of the track was similar to the INEX track (i.e., to perform entity-oriented search tasks) but on Web data (Web pages or Linked Open Data)[Balog et al. 2009a;[START_REF] Balog | Overview of the trec 2010 entity track[END_REF][START_REF] Balog | Overview of the trec 2010 entity track[END_REF]. In 2011, for example, the ClueWeb 2009 Web corpus and the Sindice-2011 dataset [Campinas et al. 2011] were used as corpora. Two main tasks were evaluated (Related Entity Finding task and Entity List Completion task), whose aim was to find related entities of a given entity regarding a given relation. -The SemSearch Challenge (2010-2011): This challenge aimed at evaluating semantic search systems for entity search on a collection which is a sample of Linked Data (RDF triples) crawled from publicly available sources [Semantic 2010, 2011; Halpin et al. 2010]. -The TAC KBP (Knowledge Base Population) Track: This track, which first ran in 2009, evaluates the discovering of information about named entities in large corpus and its integration into a knowledge base [TAC 2011]. The number of tasks in the track increase with time. In 2013, for example, seven tasks are proposed, among them one can cite the Entity Linking track, the Slot Filling task, or the Cold Start KBP. -The TREC KBA Track: As the TAC KBP track, TREC KBA, which first ran in 2012,

	aims at helping the construction and maintenance of large Knowledge Bases [Frank
	et al. 2012]. In 2013, two tasks are proposed: (i) the Cumulative Citation Recommen-
	dation (CCR) task, in which systems should filter in a time-ordered corpus documents
	that are centrally relevant to a given entity; and (ii) the Streaming Slot Filling (SSF)
	task in which given a slot for a target entity, systems should detect changes to the
	slot value.
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The term information nugget has been used frequently in research to denote semantic pieces of information[START_REF] Charles | Novelty and diversity in information retrieval evaluation[END_REF][START_REF] Goecks | NuggetMine: Intelligent groupware for opportunistically sharing information nuggets[END_REF]] and, in particular, in question answering[START_REF] Kelly | Overview of the TREC 2007 question answering task[END_REF][START_REF] Voorhees | Evaluating answers to definition questions[END_REF]], although without any common agreement on its meaning. Here, we give a general definition that suits also the context of aggregated search.

Federated search should not be confused with data fusion or data integration. Data fusion aims at finding optimal combinations of query matching algorithms running on the same index/collection, whereas in data integration, the problem is to combine data from different sources and provide the user a unified view of these data (i.e., a global schema)[START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF]].

http://pipes.yahoo.com/pipes/, Retrieved September 2013.

http://au.alpha.yahoo.com. See[START_REF] Lalmas | Advanced topics on information retrieval[END_REF]] for a screen shot.

http://www.kosmix.com.

http://www.spezify.com.

http://www.wdyl.com/.

http://www.google.com/squared/ no longer available online within Google labs. See http://en.wikipedia.org/ wiki/Google_Squared.

http://www.wolframalpha.com/.

The term instance will be preferentially used instead of named entities.

http://maps.google.com.