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Abstract - With hard X-rays synchrotron beams, phase contrast for in-
line phase tomography can be obtained with the measurement of the Fresnel
diffraction intensity patterns associated to a phase shift induced by the
object. We have studied the resolution of this inverse problem with an
iterative nonlinear method. The phase retrieval algorithm was tested for a
3D Shepp-Logan phantom in the presence of noise. The nonlinear scheme
outperforms the linear method. Both the high and low frequency ranges of
the phase retrieved are improved and the method is less sensitive to noise. In
future work, the method will be tested on experimental data. The method
is expected to open new perspectives for the study of biological samples.
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1. Introduction

The third-generation of X-rays synchrotron sources allows to obtain coher-
ent hard X-ray beams. The very weak perturbation of the wave front by
an object leads to the phase contrast, which can be observed thanks to the
coherence properties of the X-ray beam. The Fresnel diffraction framework
explains the phase contrast image formation. Large intensity variations
associated to the phase shift induced by an object were first reported by
Snigirev et al. [19] and by Cloetens et al. [5] at the ESRF (European Syn-
chrotron Radiation Facility). Absorption effects decreases with the energy
while the phase measurements may greatly enhance the sensitivity, up to a
factor of 103. Improving the phase contrast with a smaller absorbed dose in
the object is especially interesting for biomedical imaging of soft tissues and
microscopy of biopsies. The phase contrast can be measured with techniques
based on propagation based imaging [19, 5, 20], interferometry based [2, 14]
and analyser-based [4] imaging. The recovery of the phase shift sets a highly
ill-posed nonlinear inverse problem. Until recently, the more efficient algo-
rithms were based on a linearization of the relationship between the phase
and the intensity. In the literature, two classes of linear algorithms can
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be distinguished: some of them use the Transport of Intensity Equation
(TIE) [16, 11, 1, 17] based on the linearization for short propagation dis-
tances and the others the Contrast Transfer Function (CTF) [5, 21] based on
a linearization with respect to the object. An algorithm combining these two
methods was proposed by Guigay et al [9], named the Mixed approach. Re-
cently, the phase reconstruction errors have been much decreased by a new
approach taking into account the nonlinearity of the inverse problem [7].
The phase and absorption are related to the imaginary and real part of the
refractive index by linear line integrals. In a second step, the phase retrieval
can thus be coupled to tomography algorithms to reconstruct the refractive
index of the object.

The purpose of this work is to use the recently proposed nonlinear phase
retrieval method in conjonction with tomographic algorithms to obtain a
refractive index map. The reconstruction errors obtained after the phase
recovey and tomographic steps will be compared for linear and nonlinear
phase retrieval methods. The methods will be tested using the 3D Shepp-
Logan phantom in the presence of noise. In this work, we first present
the image formation process, the relationships between the phase and the
refractive index, and the nonlinear approach for the phase recovery proposed
recently. Then we detail the results obtained for the Shepp-Logan phantom.

2. The direct problem

Assuming that the X-ray beam has a high degree of spatial coherence, which
is the case for the third-generation synchrotron, the 3D complex refractive
index distribution passing through the object usually is written as [3]:

n(x, y, z) = 1− δr(x, y, z) + iβ(x, y, z) (2.1)

where δr is the real part of the refractive index and β the imaginary part, for
the spatial coordinate (x, y, z). In the following, z denotes the propagation
direction of the wave. The coefficients δ and β are wavelength dependent.

Under the hypothesis that the object interacts weakly with the illuminat-
ing field, the complex transmission function T of the object can be expressed
as:

T (x) = exp[−B(x) + iϕ(x)] = a(x) exp[iϕ(x)] (2.2)

where a(x) is the amplitude modulation and ϕ(x) is the phase shift induced
by the object. B and ϕ are related to the real and imaginary part of the
complex refractive index by the integral transforms:

B(x) =
2π

λ

∫
β(x, y, z)dz, ϕ(x) = −2π

λ

∫
δr(x, y, z)dz. (2.3)

Thus, once the phase and the absorption are recovered, the real and imagi-
nary parts of the refractive index can be recovered with classical tomographic
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reconstruction algorithms. The coherence properties of the incident field
enables the measurement of the intensity moving the detector downstream
from the object. At a distance D from the object, the Fresnel propagator
can be written:

PD(x) =
1

iλD
exp

(
i
π

λD
|x|2

)
. (2.4)

The Fresnel difracted intensity is given by 2D convolution relationship:

ID(x) = |T (x) ∗ PD(x)|2. (2.5)

3. Nonlinear Phase Retrieval Approach

The linear approaches are based on the linearization of the intensity equation
(2.5). The most robust to noise is the Mixed approach [13] which is a com-
bination of the Transport of Intensity equation and of the Contrast Transfer
Function methods. The phase retrieval problem is ill-posed in the sense that
the solution does not depend continuously on the intensity. Hence a stable
solution requires regularization techniques. The linear Mixed algorithm uses
a classical quadratic Tikhonov regularization [13].

Nonlinear iterative methods have been proposed also for phase retrieval
based on propagation based imaging [7, 15]. Thanks to the analytic expres-
sions of the Fréchet derivative of the intensity and of its adjoint, which were
given in [7], it was possible to decrease the computation time and to obtain
a better convergence. The computation of the phase shift ϕ is based on the
minimization of a regularization functional:

Jα(ϕ) =
1

2
‖ID(ϕ)− Iδ‖2L2(Ω) +

α

2
‖ϕ‖2L2(Ω) (3.1)

where Iδ the noisy intensity for the noise level δ, and α a regularization
parameter. The iterative formula used to obtain a stationary point of the
regularization functional is given by:

ϕk = ϕk−1 − τk−1{I
′
D(ϕk−1)∗[ID(ϕk−1)− Iδ] + αϕk−1}. (3.2)

The formula is based on the calculation of the Fréchet derivative and of its
adjoint I

′
D(ϕk)

∗
[7]. The algorithm is initialized with the solution of the

linear problem obtained with the Mixed approach [13]. In the following,
the regularization parameter α is chosen with the Morozov principle and
then fixed for all the projections directions.

4. Simulations

4.1. Simulation of the image formation

The imaging system was simulated in a deterministic fashion using theo-
retical values of the refractive index for different materials in the differ-
ent regions of the Shepp-Logan phantom as in [13]. The 3D Shepp-Logan
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(a) (b)

Figure 1: Central slice of the 3D Shepp-Logan phantom used in the simula-
tions. (a)Absorption index β (D = 0 m) (b) and refractive index decrement
δ.

is a classical phantom in tomography and consists of a series of ellipsoids
on which the projections are based. Two phantoms were defined, one for
the absorption coefficient and one for the refractive index decrement dis-
played in Fig. 1. In our simulations, the X-ray energy was fixed to 24
keV (λ = 0.5166Å) and the pixel size was 1 µm. The intensity images
are obtained as the squared modulus of the convolution product with the
Fresnel propagator calculated by Fourier transforms, using Eq. 2.5 for three
propagation distances D = [0.035, 0.072, 0.222] m. For each distance 1200
angular views were used, sampled on a 2048× 2048 grid and down-sampled
to 512 × 512 pixels. The reconstructed tomographic central slices for each
distance are displayed in Fig. 2. The three propagation distances are taken
into account randomly during the proposed nonlinear algorithm. Simula-
tions were performed with an additive Gaussian noise with zero mean (PP-
SNR=12 dB) and without noise. The refractive index reconstructions δ(x)
can be compared directly with the refractive index δ∗(x) to be recovered
using the NMSE (normalized mean square error):

NMSE = 100×

(∑
|δ(x)− δ∗(x)|2∑
|δ(x)|2

)1/2

. (4.1)

5. Results

In our tests, we have used the linear Mixed solution as the starting point
for the nonlinear method in the phase retrieval step of the index reconstruc-
tion. The tomographic reconstruction step is performed using the Filtered
Back-Projection (FBP) which is considered as a standard tomographic re-
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(a) (b)

(c) (d)

Figure 2: Tomographic central slices of the reconstructed refractive index
using noiseless data for the Fresnel diffraction pattern at propagation dis-
tances (a)(D = 0 m), (b) D = 0.035 m, (c) D = 0.042 m and (d) D = 0.222
m.

construction algorithm [12]. Fig. 3 shows the reconstructed tomographic
central slices of the refractive index phantom using all the distances in the
phase retrieval process.

For noiseless data, Fig. 3(a) and Fig. 3(b) displays the reconstructed
central slice of the refractive index decrement using the Mixed algorithm and
the nonlinear method respectively. For noisy simulated data (PPSNR=12
dB) the central slice of the 3D phantom obtained with the linear method is
shown in Fig. 3(c) and the one with the proposed algorithm in Fig. 3(d).

The NMSE for the two compared phase retrieval methods is presented
in Table 1, which demonstrates that the proposed nonlinear algorithm gives
betters results that the linear Mixed algorithm. The global improvement of
the proposed method compared with the linear approach, is 25.43% for the
noise-free data and 28.87% for a PPSNR of 12 dB respectively.
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Table 1. NMSE(%) values for different algorithms.

PPSNR[dB] Mixed [NMSE(%)] Nonlinear [NMSE(%)]
Without noise 30.04% 22.4%
12 dB 38.1% 27.1%

(a) (b)

(c) (d)

Figure 3: Central slice of the reconstructed refractive index for the simulated
data without noise with (a) Mixed algorithm, (b) the nonlinear method,
and with PPSNR=12 dB with (c) Mixed algorithm and (d) the nonlinear
method.

Fig. 4(a) displays a comparison of the diagonal profiles obtained without
noise for the central slice of the ideal refractive index to be retrieved, and of
the refractive index maps obtained with the Mixed or the nonlinear methods.
The same profiles are displayed for a PPSNR=12 dB in Fig. 4(b). In these
reconstructions is obvious that the phase algorithms are influenced by noise
which show typical artifacts at low-frequency. The nonlinear approach yields
the most accurate phase map, but rest sensitive to noise.
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Figure 4: Diagonal profiles for the central slice of the reconstructed refractive
index for the Shepp-Logan phantom obtained with the nonlinear method for
Mixed initialization: (a) without noise and (b) with PPSNR=12dB.

6. Conclusion

The reconstruction quality for two phase retrieval methods in in-line phase
tomography has been quantitatively evaluated. The phase retrieval algo-
rithms are coupled to tomographic reconstruction schemes to compare the
refractive index reconstruction errors. The first approach is the linear Mixed
algorithm and the second one is an iterative method based on the Fréchet
derivative of the intensity. The reconstructions were compared using a sim-
ulated phantom, with and without noise, in terms of NMSE. The nonlinear
method gives the best refractive index reconstructions. The method is ex-
pected to open new perspectives for the examination of biological samples
and will be tested at ESRF on experimental data.
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