
HAL Id: hal-01123756
https://hal.science/hal-01123756v1

Preprint submitted on 5 Mar 2015 (v1), last revised 26 Jun 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient similarity-based data clustering by optimal
object to cluster reallocation

Mathias Rossignol, Mathieu Lagrange, Arshia Cont

To cite this version:
Mathias Rossignol, Mathieu Lagrange, Arshia Cont. Efficient similarity-based data clustering by
optimal object to cluster reallocation. 2015. �hal-01123756v1�

https://hal.science/hal-01123756v1
https://hal.archives-ouvertes.fr


1

Efficient similarity-based data clustering by
optimal object to cluster reallocation

Mathias Rossignol, Mathieu Lagrange, Arshia Cont Member, IEEE

F

Abstract—We present an iterative flat clustering algorithm designed
to operate on arbitrary similarity matrices, with the only constraint that
these matrices be symmetrical. Although functionally very close to ker-
nel k-means, our proposal performs an maximization of average intra-
class similarity, instead of a squared distance minimization, in order
to remain closer to the semantics of similarities. We show that this
approach allows relaxing the conditions on usable matrices, as well
as opening better optimization possibilities. Systematic evaluation on
a variety of data sets shows that the proposed approach outperforms
or equals kernel k-means in a large majority of cases, while running
much faster. Most notably, it significantly reduces memory access, which
makes it a good choice for large data collections.

Index Terms—clustering, similarity, non-metric data representation,
time series clustering

1 INTRODUCTION

Clustering collections of objects into classes that bring to-
gether similar ones is probably the most common and
intuitive tool used both by human cognition and artificial
data analysis in an attempt to make that data organized,
understandable, manageable. When the studied objects lend
themselves to this kind of analysis, it is a powerful way to
expose underlying organizations and approximate the data
in such a way that the relationships between its members
can be statistically understood and modeled. Given a de-
scription of objects, we first attempt to quantify which ones
are “ similar ” from a given point of view, then group those
n objects into C clusters, so that the similarity between
objects within the same cluster is maximized. Finding the
actual best possible partition of objects into clusters is,
however, an NP-complete problem, intractable for useful
data sizes. Many approaches have been proposed to yield
an approximate solution: analytic, iterative, flat or hierar-
chical, agglomerative or divisive, soft or hard clustering
algorithms, etc., each with their strengths and weaknesses
([1]), performing better on some classes of problems than
others ([2], [3]).

Iterative divisive hard clustering algorithms, such as the
ubiquitous k-means ([4]), usually perform well to identify
high-level organization in large data collections in reason-
able running time. For that reason, they are a sensible choice
in many data mining situations, and constitute our focus
in this paper. If the data lies in a vector space, i.e. an
object can be described by a m-dimensional feature vector

ANR Houle under reference ANR-11-JS03-005-01

without significant loss of information, the seminal K-means
algorithm ([4]) is probably the most efficient approach, since
the explicit computation of the cluster centroids ensure both
computational efficiency and scalability. This algorithm is
based on the centroid model, and minimizes the intra cluster
Euclidean distance. As shown by [5], any kind of Bregman
divergence, such as the KL-divergence ([6]) or the Itakura-
Saito divergence ([7]), may also be considered to develop
such efficient clustering algorithms.

However, for many types of data, the projection of a
representational problem into an vector space cannot be
done without significant loss of descriptive efficiency. To
reduce this loss, specifically tailored measures of similarity
are considered. As a result, the input data for clustering
is no longer a n × m matrix storing the m-dimensional
vectors describing the objects, but a (usually symmetric)
square matrix S of size n × n which numerically encodes
some sort of relationship between the objects. In this case,
one has to resort to clustering algorithms based on connec-
tivity models, since the cluster centroids cannot explicitly be
computed.

Earlier attempts to solve this issue considered the k-
medoids problem, where the goal is to find the k objects
that maximize the average similarity with the other objects
of their respective clusters, or medoids. The Partition Around
Medoids (PAM) algorithm ([8]) solves the k-medoids prob-
lem but with a high complexity (O(k(n − k)2)i, n being
the number of objects) and high number of iterations i, due
to low convergence rate. In order to scale the approach,
the Clustering LARge Applications (CLARA) algorithm ([8])
draws a sample of objects before running the PAM algo-
rithm. This sampling operation is repeated several times and
the most satisfying set of medoids is retained. In contrast,
CLARANS ([9]) preserves the whole set of objects but cuts
complexity by drawing a sample of neighbors in each search
for the medoids.

Following work on kernel projection ([10]), that is, the
fact that a nonlinear data transformation into some high
dimensional feature space increases the probability of the
linear separability of patterns within the transformed space,
[11] introduced a kernel version of the K-means algorithm,
whose input is a kernel matrix K that must be a Gram
matrix, i.e. semi definite positive. [12] linked a weighted
version of the kernel K-means objective to the popular
spectral clustering, introducing an efficient way of solving
the normalized cut objective.



2

The kernel k-means algorithm proved to be equally use-
ful when considering arbitrary similarity problems if special
care is taken to ensure definite positiveness of the input ma-
trix ([13]). This follows original algorithmic considerations
where vector space data is projected into high dimensional
spaces using a carefully chosen kernel function.

Despite such improvements, kernel k-means can hardly
be applied to large scale datasets without special treatments
because of high algorithmic and memory access costs. [14]
considered sampling of the input data, [15] considered block
storing of the input matrix, and a preclustering approach
([16], [17]) is considered by [18] with a coarsening and
refining phases as respectively a pre- and post-treatment of
the actual clustering phase.

The work we present is this paper results from an
effort to directly maximize the average intra-class similarity,
without resorting to a geometric interpretation of data.
Following that idea allows us to propose a new hard cluster-
ing algorithm, which we call k-averages, with the following
properties:

• input data can be arbitrary symmetric similarity ma-
trices,

• it has fast and guaranteed convergence, with a num-
ber of object to clusters reallocations roughly equal
to the number of objects,

• it provides good scalability thanks to a reduced need
for memory access, and

• on a collection of synthetic and natural test data,
its results are on average slightly better than those
of kernel k-means, and obtained in a fraction of its
computing time, particularly when paged memory
is required.

The remaining of the paper is organized as follows: Sec-
tion 2 presents the kernel k-means objective function and the
basic algorithm that minimizes this function, and Section 3
introduces the concepts behind the k-averages algorithm,
followed by a detailed algorithmic description in Section 4.
The complexity of the two algorithms in terms of arithmetic
operations and memory access is then studied in Section 5.
The above presented properties of the proposed k-averages
algorithm are then validated on synthetic controlled data in
Section 6 and on 43 corpora of time series in Section 7.

2 KERNEL K-MEANS

Since its introduction by [11], kernel k-means has been an
algorithm of choice for flat data clustering with known num-
ber of clusters ([18], [13]). It makes use of a mathematical
technique known as the “ kernel trick ” to extend the clas-
sical k-means clustering algorithm ([4]) to criteria beyond
simple euclidean distance proximity. Since it constitutes the
closest point of comparison with our own work, we dedicate
this section to its detailed presentation.

In the case of kernel k-means, the kernel trick consists
in considering that the k-means algorithm is operating in
an unspecified, possibly very high-dimensional Euclidian
space; but instead of specifying the properties of that space
and the coordinates of objects, the equations governing the
algorithm are modified so that everything can be computed

knowing only the scalar products between points. The sym-
metrical matrix containing those scalar products is known
as a kernel, noted K.

2.1 Kernel k-means objective function

In this section and the following, we shall adopt the fol-
lowing convention: N is the number of objects to cluster
and C the number of clusters; Nc is the number of objects
in cluster c, and µc is the centroid of that cluster. zcn is the
membership function, whose value is 1 if object on is in class
c, 0 otherwise.

Starting from the objective function minimized by the k-
means algorithm, expressing the sum of squared distances
of points to the centroids of their respective clusters:

S =
C∑

c=1

N∑
n=1

zcn (on − µc) (on − µc)
>

And using the definition of centroids as:

µc =
1

Nc

N∑
n=1

zcnon

S can be developed and rewritten in a way that does not
explicitly refer to the centroid positions, since those cannot
be computed:

S =
C∑

c=1

N∑
n=1

zcnYcn

where

Ycn = (on − µc) (on − µc)
>

= on.on − 2on.µc + µc.µc

= on.on − 2on.
1

Nc

N∑
i=1

zcioi +

(
1

Nc

N∑
i=1

zcioi

)2

= on.on −
2

Nc

N∑
i=1

zcion.oi +
1

N2
c

N∑
i=1

N∑
j=1

zkizkjoi.oj

= Knn −
2

Nc

N∑
i=1

zciKni +
1

N2
c

N∑
i=1

N∑
j=1

zkizkjKij

(1)

Since the sum of Knn over all points remains constant,
and the sum of squared centroid norms (third, quadratic,
term of Equation 1) is mostly bounded by the general
geometry of the cloud of objects, we can see that minimizing
this value implies maximizing the sum of the central terms,
which are the average scalar products of points with other
points belonging to the same class. Given a similarity matrix
possessing the necessary properties to be considered as a
kernel matrix (positive semidefinite), the kernel k-means
algorithm can therefore be used to create clusters that some-
how maximize the average intra-cluster similarity.



3

2.2 Algorithm

Finding the configuration that absolutely minimizes S
(eq 2.1) is an NP-complete problem. However, several ap-
proaches allow finding an acceptable approximation. We
shall only focus here on the fastest and most popular, an
iterative assignment / update procedure commonly referred
to as the “ k-means algorithm ” ([4]), or as a discrete version
of Lloyd’s algorithm, detailed in Algorithm 1.

Data: number of objects N , number of classes C ,
kernel matrix K

Result: label vector L defining a partition of the
objects into C classes

1 Initialization: fill L with random values in [1..C];

2 while L is modified do
3 for n← 1 to N do
4 for c← 1 to C do
5 Compute Ycn following eq 1 (note:

zcn = (Ln == c) ? 1 : 0)
6 end
7 Ln = argminc(Ycn);
8 end
9 end

Algorithm 1: Lloyd’s algorithm applied to minimizing the
kernel k-means objective.

The version given here is the most direct algorith-
mic translation of the mathematical foundations developed
above, and as we shall see in section 5, it can easily become
more efficient. Before that, we introduce our proposed k-
averages algorithm.

3 FOUNDATIONS OF THE K-AVERAGES ALGO-
RITHM

In our proposal, we adopt an alternative objective function
which, unlike kernel k-means, does not rely on a geometric
interpretation but an explicit account of the similarity ma-
trix. The goal is to maximize the average intra-cluster simi-
larity between points, a commonly used metric to evaluate
clustering quality, and one whose computation is direct—
linear in time.

Due to its simplicity, however, the objective function
cannot be simply ”plugged into” the standard kernel k-
means algorithm: it lacks the geometric requisites to ensure
convergence. We must therefore propose a specifically tai-
lored algorithmic framework to exploit it: first, we show
here that it is possible to easily compute the impact on the
global objective function of moving a single point from one
class to another; we then introduce an algorithm intended
to take advantage of that formula.

3.1 Conventions and possible objective functions

In addition to the notations presented above, we index
hereon the set of elements belonging to a given cluster ck
as ck = {ok1, . . . , okNk

}. For simplicity, we omit the first
index and note c = {o1, . . . , oNc

} when considering a single
class.

The similarity between objects shall be written s (oi, oj).
We extend the notation s to the similarity of an object to a class
defined as the average similarity of an object with all objects
of the class. s(o, c) accepts two definitions, depending on
whether or not o is in c:

If o /∈ c,

s (o, c) =
1

Nc

nc∑
i=1

s (o, oi) (2)

If o ∈ c, then necessarily ∃i | o = oi

s (o, c) = s (oi, c) =
1

Nc − 1

∑
j=1...nc,j 6=i

s (oi, oj) (3)

Let us call the “ quality ” of a class the average intra-class
object-to-object similarity, and write it Q:

Q (c) =
1

Nc

nc∑
i=1

s (oi, c) (4)

In our framework, we do not explicitly refer to class
centroids, preferring to directly consider averages of sim-
ilarity values between individuals within clusters. Indeed,
we never refer to a geometrical interpretation of the data.
However, it should be noted that since in k-means (and
kernel k-means) the centroid of a class is defined as an
average of all points in that class, Q is strictly equivalent
to the average point to centroid similarity.

Using the notations above, we define our objective func-
tion as the average class quality, normalized with class sizes:

O2 =
1

N

C∑
i=1

NiQ(ci)

Since informally, our goal is to bring together objects
that share high similarity, a first idea would be to simply
move each object to the class with whose members it has the
highest average similarity. This is what we call the “ naive
k-averages ” algorithm.

3.2 Naive k-averages algorithm

Algorithm 2 presents a method that simply moves each
object to the class with which it has the highest average
similarity, until convergence is reached. The algorithm is
straightforward and simple; however, experiments show
that while it can often produce interesting results, it also
sometimes cannot reach convergence because the decision
to move an object to a different cluster is taken without
considering the impact of the move on the quality of the
source cluster.

To ensure global convergence, we need to compute the
impact on the global objective function of moving one object
from one class to another. Using such formulation and
performing only reallocation that have a positive impact, the
convergence of such an iterative algorithm is guaranteed.

3.3 Impact of object reallocation on class quality

Considering a class c, let us develop the expression of Q(c)
into a more useful form. Since all objects are in c, we use the
formula in (3) to get:



4

Data: number of objects N , number of classes C ,
similarity matrix S

Result: label vector L defining a partition of the
objects into C classes

1 Initialization: Fill L with random values in [1..C];
2 Compute initial object-class similarities S following

eq 3 or eq 2;

3 while L is modified do
4 for i← 1 to N do
5 previousClass← Li;
6 nextClass← argmink S(i, k) if nextClass 6=

previousClass then
7 Li ← nextClass;
8 for j ← 1 to N do
9 Update S(j, nextClass) and

S(j, previousClass)
10 end
11 end
12 end
13 end

Algorithm 2: The naive k-averages algorithm.

Q (c) =
1

Nc

Nc∑
i=1

1

Nc − 1

∑
j=1...Nc

j 6=i

s (oi, oj)

=
1

Nc(Nc − 1)

Nc∑
i=1

∑
j=1...Nc

j 6=i

s (oi, oj)

(5)

Using the assumption that the similarity matrix is sym-
metrical, we can reach:

Q (c) =
2

Nc(Nc − 1)

Nc∑
i=2

i−1∑
j=1

s (oi, oj) (6)

For future use and given the importance of the above
transformation, we define:

Σ(c) =
Nc∑
i=2

i−1∑
j=1

s (oi, oj) (7)

Thus:

Q (c) =
2

Nc(Nc − 1)
Σ(c) (8)

and

Σ(c) =
Nc(Nc − 1)Q (c)

2
(9)

3.3.1 Removing an object from a class

Assuming that o ∈ c, necessarily ∃i | o = oi. Since the
numbering of objects is arbitrary, we can first simplify the
following equation by considering that o = oNc , in order to
reach a formula that is independent from that numbering.

Q (cr oNc) =
2

(Nc − 1)(Nc − 2)

Nc−1∑
i=2

i−1∑
j=1

s (oi, oj)

=
2

(Nc − 1)(Nc − 2)

Σ(c)−
Nc−1∑
j=1

s (oNc , oj)


=

2

(Nc − 1)(Nc − 2)
[Σ(c)− (Nc − 1)s (oNc

, c)]

=
2Nc(Nc − 1)Q(c)

2(Nc − 1)(Nc − 2)
− 2(Nc − 1)s (oNc

, c)

(Nc − 1)(Nc − 2)

=
NcQ(c)− 2s (oNc

, c)

Nc − 2
(10)

The quality of a class after removal of an object is thus:

Q (cr o) =
NcQ(c)− 2s (o, c)

Nc − 2
(11)

And the change in quality from its previous value:

Q (cr o)−Q (c) =
NcQ(c)− (Nc − 2)Q(c)− 2s (o, c)

Nc − 2

=
2 (Q(c)− s (o, c))

Nc − 2
(12)

3.3.2 Adding an object to a class

Assuming that o /∈ c, we can similarly to what has been
done previously (numbering is arbitrary) consider for the
sake of simplicity that o becomes oNc+1 in the modified class
c. Following a path similar to above, we get:

Q(c ∪ oNc+1) =
2

Nc(Nc + 1)

Nc+1∑
i=2

i−1∑
j=1

s (oi, oj)

=
2

Nc(Nc + 1)
[Σ(c) +Ncs (oNc+1, c)]

=
(Nc − 1)Q(c) + 2s (oNc+1, c)

Nc + 1

(13)

The quality of a class c after adding an object o is thus:

Q (c ∪ o) =
(Nc − 1)Q(c) + 2s (o, c)

Nc + 1
(14)

And the change in quality from its previous value:

Q (c ∪ o)−Q (c) =
2 (s (o, c)−Q(c))

Nc + 1
(15)

3.4 Impact of object reallocation on the global objec-
tive function

When moving an object o from class cs (“ source ”), to whom
it belongs, to a distinct class ct (“ target ”), (Ns − 1) objects
are affected by the variation in (12), and Nt are affected by
that in (15); in addition, one object o moves from a class
whose quality isQ(cs) to one whose quality isQ (ct ∪ o), as
expressed by equation 14:



5

δo(cs, ct) =
2Nt (s (o, ct)−Q(ct))

Nt + 1
+

2(Ns − 1) (Q(cs)− s (o, cs))

Ns − 2
+

(Nt − 1)Q(ct) + 2s (o, ct)

Nt + 1
−Q(cs)

(16)

As can be seen, computing this impact is a fixed-cost
operation. We can therefore use the formula as the basis for
an efficient iterative algorithm.

4 K-AVERAGES ALGORITHM

Our approach does not allow us to benefit, like kernel k-
means, from the convergence guarantee brought by the
geometric foundation of k-means. In consequence, we can-
not apply a “ batch ” approach where at each iteration all
elements are moved to their new class, and all distances
(or similarities) are computed at once. Therefore, for each
considered object, after finding its ideal new class, we must
update the class properties for the two modified classes
(source and destination), as well as recompute the average
class-object similarities for them.

At a first glance, dynamically updating objectives as a
result of object reallocation might seem to have negative
performance impact. However, our simple non-quadratic
updates makes such dynamic changes easily tractable. New
class qualities are thus given by Equations 11 and 14, and
new object-class similarities can be computed by:

s(i, cs(t+ 1)) =
Ns(t).s(i, cs(t)) + s(i, n)

Ns(t) + 1

s(i, ct(t+ 1)) =
Nt(t).s(i, cs(t))− s(i, n)

Nt(t)− 1

(17)

where i is any object index, n is the recently reallocated
object, cs the “ source ” class that object i was removed from,
and ct the “ target ” class that object n was added to.

The full description of k-averages is given in Algo-
rithm 3.

5 COMPLEXITY ANALYSIS

In this section, we study the complexity of the two ap-
proaches presented above, first form the point of view of
raw complexity, then focusing on memory access.

5.1 Computational complexity
5.1.1 Kernel k-means
As can be seen in Algorithm 1, the operation on line 5
is the most costly part of the algorithm: for each object n
and class c, at each iteration, it is necessary to compute Ycn
from Equation 1—an O(N2) operation in itself, per object.
The impossibility of simply computing the distances to a
known centroid as done in the k-means algorithm leads to a
much higher complexity for the kernel k-means algorithm,
globally O(N3) per iteration, independent of how many
objects are moved for that iteration.

It is however possible to improve the performance of
kernel k-means by noting than in Equation 1, the third term

Data: number of objects N , number of classes C ,
similarity matrix S

Result: label vector L defining a partition of the
objects into C classes

1 Initialization: Fill L with random values in [1..C];
2 Compute initial object-class similarities S following

eq 3 or eq 2;
3 Compute initial class qualities Q following eq 6;

4 while L is modified do
5 for i← 1 to N do
6 previousClass← Li;
7 nextClass← argmink δi(previousClass, k)

(following the definition of δ in 16);
8 if nextClass 6= previousClass then
9 Li ← nextClass;

10 Update QpreviousClass following eq 11;
11 Update QnextClass following eq 14;
12 for j ← 1 to N do
13 Update S(j, nextClass) and

S(j, previousClass)
14 following eq 17;
15 end
16 end
17 end
18 end

Algorithm 3: The K-averages algorithm.

of the equation, which has the highest complexity, is only
dependent on class definitions and not on the considered
object. We can therefore rewrite Equation 1 as:

Ycn = Knn −
2

Nc

N∑
i=1

zciKni +Mc (18)

where

Mc =
1

N2
c

N∑
i=1

N∑
j=1

zkizkjKij (19)

Algorithm 1 thus becomes Algorithm 4, where the values
of Mc are computed once at the beginning of each loop
(line 4) then reused on line 8, thus reducing the overall
complexity to O(n2) per iteration. This optimized version of
kernel k-means is the one we shall consider for performance
comparison in the remainder of this article.

5.1.2 K-averages
For the k-averages method presented as Algorithm 3, the
complexity of each iteration is

• O(NC) corresponding to the best class search at
line 7

• O(NM) corresponding to the object-to-class simi-
larity update at line 13, where M is the number of
objects moved at a given iteration.

In the worst case scenario, M = N , and the complexity
for one iteration of the algorithm remains the same as for
the optimized kernel k-means algorithm, O(n2). In practice,
however, as can be seen on Figure 1, the number of objects



6

Data: number of objects N , number of classes C ,
kernel matrix K

Result: label vector L defining a partition of the
objects into C classes

1 Initialization: fill L with random values in [1..C];

2 while L is modified do
3 for c← 1 to C do
4 Compute Mc following eq 19
5 end
6 for n← 1 to N do
7 for c← 1 to C do
8 Compute Ycn following eq 18 (note:

zcn = (Ln == c) ? 1 : 0)
9 end

10 Ln = argminc(Ycn);
11 end
12 end

Algorithm 4: Lloyd’s algorithm applied to minimizing the
kernel k-means objective, optimized version.

Fig. 1. Number of moved objects per iteration when clustering a variety
of datasets with the k-averages algorithm, normalized by the total num-
ber of objects to cluster. The datasets used to create this figure are the
real-life time series data that we employ for experimental validation, cf.
Section 7.

moving from one class to another decreases sharply after the
first iteration, meaning that the complexity of one iteration
becomes quickly much lower than O(n2). Thus, while the
first iteration of k-averages has a similar complexity with
kernel k-means, the overall cost of a typical run of the
algorithm (from 10 to 50 iterations) is much lower.

To go further in this analysis, we display on Figure 2
the total number of object reallocation over a full run of
the k-averages algorithm. As can be seen, the correlation is
clearly linear with the number of objects to cluster. In fact,
the number of reallocations is roughly equal to the number
of objects to cluster, which allows us to reach for k-averages
a (statistical) total complexity of O(n2) instead of O(n2) per
iteration.

Fig. 2. Total number of object reallocations over a run of the k-averages
algorithm, plotted against the number of objects to be clustered. The
datasets used to create this figure are the real-life time series data that
we employ for experimental validation, cf. Section 7.

5.2 Memory access
The lowered computational costs is also accompanied by a
decrease in memory access: as can be seen from Equation 17,
in order to compute the new object-to-class similarities after
moving an object n, only line n of the similarity matrix
needs to be read. For the remaining of the algorithm, only
the (much smaller) object-to-class similarity matrix is used.
By contrast, in the case of kernel k-means, the computation
of Mc values at each iteration require that the whole simi-
larity matrix be read, which can be a serious performance
bottleneck in the case of large object collections.

Moreover, the similarity update function of k-averages,
by reading one line of the matrix at a time, presents good
data locality properties, which make it play well with stan-
dard memory paging strategies.

To illustrate and confirm the theoretical complexity com-
puted here, the next section proposes some performance
figures measured on controlled datasets.

6 VALIDATION

In order to reliably compare the clustering quality and
execution speed between the two approaches, we have
written plain C implementations of Algorithms 4 and 3,
with minimal operational overhead: reading the similarity
matrix from a binary file where all matrix values are stored
sequentially in standard reading order, line by line, and
writing out the result of the clustering as a label text file.
Both implementations use reasonably efficient code, but
without advanced optimizations or parallel processing 1.

The figures presented in this section were obtained on
synthetic datasets, created in order to give precise control
on the features of the analyzed data: for n points split
between C classes, C centroids are generated at random in
two dimensional space, and point coordinates are generated
following a Gaussian distribution around class centroids. In

1. C and Matlab implementations can be found at https://bitbucket.
org/mlagrange/kaverages/downloads

https://bitbucket.org/mlagrange/kaverages/downloads
https://bitbucket.org/mlagrange/kaverages/downloads


7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

variance

nm
i

Fig. 3. NMI of kernel k-means (*) and k-averages (o) clustering relative to
ground truth as a function of the “ spread ” of those classes for synthetic
data sets of 5 and 40 classes, respectively displayed in dashed and solid
lines.

addition to the numbers of objects and classes, the variance
of Gaussian distributions are adjusted to modulate how
clearly separable clusters are. Similarities are computed as
inverse Euclidean distances between points.

6.1 Clustering performance

Several metrics are available to evaluate the performance of
a clustering algorithm. The one closest to the actual target
application is the raw accuracy, that is the average number
of items labeled correctly after an alignment phase of the
estimated labeling with the reference [19].

Another metric of choice is the Normalized Mutual
Information (NMI) criterion. Based on information theoretic
principles, it measures the amount of statistical information
shared by the random variables representing the predicted
cluster distribution and the reference class distribution of
the data points. If P is the random variable denoting the
cluster assignments of the points, and C is the random
variable denoting the underlying class labels on the points
then the NMI measure is defined as:

NMI =
2I(C;K)

H(C) +H(K)
(20)

where I(X;Y ) = H(X)H(X|Y ) is the mutual informa-
tion between the random variables X and Y , H(X) is the
Shannon entropy of X ,and H(X|Y ) is the conditional en-
tropy of X given Y . Thanks to the normalization, the metric
stays between 0 and 1, 1 indicating a perfect match, and
can be used to compare clustering with different numbers
of clusters. Interestingly, random prediction gives an NMI
close to 0, whereas the accuracy of a random prediction on
a balanced bi-class problem is as high as 50 %.

In this paper, for simplicity and accessibility, only the
NMI is considered for validations as in ([18]). However, it
shall be noted that most statements hereafter in terms of
performance ranking of the different algorithms still hold
while considering the accuracy metric as reference.

Figure 3 presents the quality of clusterings obtained
using kernel k-means (dotted line) and k-averages (solid

Fig. 4. Average computation time of the kernel k-means (*) and kav-
erages (o) algorithms on computers with 2 GB (solid line) and 32 GB
(dashed line) of RAM, respectively. The “ running time ” axis follows a
logarithmic scale.

line) on two series of datasets: one featuring 5 classes, the
other 40 classes. On the x-axis is the variance of the Gaussian
distribution used to generate point cloud for each class: the
higher that value, the more the classes are spread out and
overlap each other, thus making the clustering harder.

The question of choosing the proper number of clusters
for a given dataset without a priori is a well known and
hard problem, and beyond the scope of this article. There-
fore, for the purpose of evaluation, clustering is done by
requesting a number of clusters equal to the actual number
of classes in the dataset. In order to obtain stable and reliable
figures, clustering is repeated 500 times with varying initial
conditions, i.e. the initial assignment of points to clusters is
randomly determined, and only the average performance
is given. For fairness of comparison, each algorithm is run
with the exact same initial assignments.

As can be seen on the figure, in the case of a 5-
class problem, k-averages outperforms kernel k-means in
the “ easy ” cases (low class spread), before converging to
equivalent results. For the more complex 40-class datasets,
k-averages consistently yields a better result than kernel
k-means, especially for higher values of the variance. The
lower values of NMI for 5-class experiments is in fact an ar-
tifact introduced by the normalization, and is not significant
here; we only focus, for each series of experiments, on the
relative performances of kernel k-means and k-averages.

6.2 Time efficiency

Figure 4 shows the average time spent by kernel k-means
and k-averages to cluster synthetic datasets or varying sizes.
As previously, initial conditions on each run are identical for
both algorithms. The reported run time is the one measured
on a 64 bits Intelr CoreTM i7 runnning at 3.6 GHz with 32
Gb of RAM and standard Hard Disk Drive (HDD) operated
by standard Linux distribution. For results with 2 GB of
RAM, the same machine is used with a memory limitation
specified to the kernel at boot time.



8

min average ± variance max
number of classes 2 8 ± 9 50
number of time series 56 1626 ± 2023 9236
time series length 24 372 ± 400 1882

TABLE 1
Statistics of the datasets. The length of the times series is expressed in

samples.

These figures confirm the theoretical complexity analysis
presented in Section 5: k-averages runs at least 20 times
faster on average than kernel k-means in ordinary condi-
tions, when available memory is not an issue. When the
matrix size exceeds what can be stored in RAM and the
system has to resort to paged memory, as in the presented
experiments when the matrix reaches about 1500MB, both
algorithms suffer from a clear performance hit; however,
kernel k-means is much more affected, and the difference
becomes even more significant: with a 2000MB similarity
matrix on a memory-limited computer, k-averages runs
about 100 times faster than kernel k-means.

Having established the interest of our proposed method
relative to kernel k-means on synthetic object collections, we
now proceed to a thorough evaluation on real data.

7 EXPERIMENTS

In order to demonstrate the usefulness of k-averages when
dealing with real data, we have chosen to focus on the
clustering of times series as the evaluation task. Time series,
even though represented as vectors and therefore suitable
for any kinds of norm-based clustering, are best compared
with elastic measures ([20], [21]), partly due to their varying
length. The Dynamic Time Warping (DTW) measure is an
elastic measure widely used in many areas since its intro-
duction for spoken word detection [22] and has never been
significantly challenged for time series mining ([23], [24]).

Effective clustering of time series using the DTW mea-
sure require similarity based algorithms such as the k-
average algorithm. With some care, kernel based algorithm
can also be considered provided that the resulting similarity
matrix is converted into a kernel, i.e. the matrix is forced to
be semi definite positive, i.e. to be a Gram matrix ([25]).

To showcase the relevance of the proposed approach for
time-series similarity-based clustering using DTW, we use a
simple k-means clustering as reference in result tables that
follow.

7.1 Datasets

To compare quality of clusterings obtained by the consid-
ered algorithms, we consider a large collection of 43 time
series datasets created by many laboratories all over the
world and compiled by Prof. Keogh 2. Statistics about the
morphology of those datasets are summarized in Table 1.

7.2 Evaluation Protocol

For each dataset, since we perform clustering, and not
supervised learning, the training and testing data are joined.

2. Available at: www.cs.ucr.edu/∼eamonn/time series data

id classes objects k-means k. k-means k-averages
7 2 56 5±1 6±3∗ 5±1

12 2 200 12±2 14±2 15±1∗
13 2 884 0±0 3±2∗ 3±2
17 2 200 0∗ 0∗ 0∗
20 2 1096 0±0 1±0∗ 1±0
21 2 121 3±1∗ 1±1 1±0
25 2 1272 30±0 52±0 53±0∗
28 2 621 51±25 78±0 78±0∗
29 2 980 24∗ 21 21
34 2 1162 0±0 7±0∗ 7±0
42 2 7164 0∗ 0 0
43 2 3300 0±0 0±0 0±0∗

significantly better: 3 3 3

TABLE 2
Average NMI in percents of clusterings by k-means, kernel k-means
and k-averages for bi-class datasets over 500 runs of the algorithms.

If relevant, the DTW is computed using the implementation
provided by Prof. Ellis 3 with default parameters.

As in our previous experiments with synthetic data, we
choose here the normalized mutual information as measure
of clustering quality; clustering is done by requesting a
number of clusters equal to the actual number of classes
in the dataset, and repeated 500 times with varying initial
conditions, each algorithm being run with the exact same
initial assignments.

7.3 Results

For ease of readability and comparison, the presented re-
sults are split into 3 tables. Table 2 lists the results obtained
on bi-class datasets, i.e. the datasets annotated in terms of
presence or absence of a given property; Table 3 concerns
the datasets with a small number of classes (from 3 to 7);
and Table 4 focuses the datasets with a larger number of
classes (from 8 to 50).

For each experiment, the result of the best performing
method is marked by a star, and results equivalent to the
best are highlighted in bold. Equivalence is tested with a
paired t-test at 0.05 significance level. It should be noted
that this decision is the result of a statistical analysis on
the 500 runs performed; it can therefore happen, without
contradiction, that a method has a higher average NMI
than the other but is not significantly better, or, conversely,
that it does perform significantly better despite an identical
average NMI at the numerical precision of the tables.

A first obvious conclusion of the presented data is that,
while k-means can occasionally outperform the more ad-
vanced methods, especially in the case of bi-class problems,
its results are overall, as expected, clearly inferior to those
of a similarity-based clustering using the DTW measure.
We shall therefore focus on the difference between kernel
k-means and k-averages.

Setting aside simple k-means, k-averages yields a signifi-
cantly better clustering for 26 datasets out of 43, while kernel
k-means takes the lead in 14 cases, three remaining ones be-
ing equivalent. Considering results more closely, one can see
that k-averages is equivalent to kernel k-means for bi-class
problems, slightly better for moderate numbers of classes,

3. Available at: http://www.ee.columbia.edu/∼dpwe/resources/
matlab/dtw

www.cs.ucr.edu/~eamonn/time_series_data
http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw
http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw


9

id classes objects k-means k. k-means k-averages
3 5 60 38±2∗ 35±3 35±2
4 3 930 36±1 51±4 51±3∗
5 3 4307 0±0 0±0∗ 0±0
6 4 1420 24±3 43±5 44±4∗

11 4 322 82±5 83±10 89±8∗
15 4 112 44±4 66±8∗ 65±7
18 5 463 9±0 9±1∗ 9±0
19 7 650 5±1 5±1∗ 5±1
22 7 143 44±2 51±3 52±1∗
26 6 442 22±2 22±3 23±3∗
27 4 60 54±5∗ 46±8 50±7
30 3 9236 60±0 61±2∗ 60±0
32 6 1020 76±5 80±4∗ 80±1
33 4 200 52±2 57±6∗ 53±3
35 4 5000 2±0 15±11∗ 14±12
37 7 350 31±2 42±2 42±1∗
38 6 600 79±3 84±4 88±3∗

significantly better: 2 5 6

TABLE 3
Average NMI in percents of clusterings by k-means, kernel k-means
and k-averages for datasets of 3 to 7 classes, over 500 runs of the

algorithms.

id classes objects k-means k. k-means k-averages
1 50 905 64±1 70±1 72±1∗
2 37 781 58±1 63±1 66±1∗
8 12 780 26±1 26±2 27±1∗
9 12 780 33±2 33±2 33±1∗

10 12 780 27±1 26±2 27±1∗
14 14 2250 37±2 78±2∗ 75±2
16 14 2250 37±2 78±2 79±2∗
23 8 2400 87±4 89±4 90±3∗
24 10 1141 25±1 31±2 32±1∗
31 15 1125 54±1 66±2 68±1∗
36 25 905 43±1 51±1 52±1∗
39 8 4478 44±1 46±1 46±1∗
40 8 4478 44±0 45±0 45±0∗
41 8 4478 42±1 43±0∗ 43±0

significantly better: 0 2 12

TABLE 4
Average NMI in percents of clusterings by k-means, kernel k-means
and k-averages for datasets of 8 to 50 classes, over 500 runs of the

algorithms.

and yields clearly better results (12 out of 14) for datasets
featuring more than 8 classes. This is remarkably consistent
with the observations made in Section 6 on synthetic data.

8 CONCLUSION

We have presented k-averages, an iterative flat clustering
algorithm that operates on arbitrary similarity matrices
by explicitly and directly aiming to optimize the average
intra-class similarity. Having established the mathematical
foundation of our proposal, including guaranteed conver-
gence, we have thoroughly compared it with the widely
used standard method, kernel k-means, showing that our
algorithm converges much faster (20 times faster under
ordinary conditions) and leading to better clustering results
for the task of clustering times series, while also being more
sparing in memory use.

A particularly interesting result is that k-averages seems
to yield clearly better results than kernel k-means in the
case of problems with many classes (8 and more); this is
confirmed both on synthetic test data and on real-life data.

The linear updates and compensated memory access of
the proposed k-average method also provides great po-
tentials for Online Clustering methods, where time-series
data arrive incrementally into the system, where classes and
clusters should be most often reallocated. Explicit realloca-
tion considerations proposed in this paper paves the way
for robust Online Clustering methods that shall be further
pursued.

REFERENCES

[1] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, pp. 651–666, 2010.

[2] M. Steinbach, G. Karypis, V. Kumar et al., “A comparison of
document clustering techniques,” in KDD workshop on text mining,
vol. 400. Boston, 2000, pp. 525–526.

[3] A. Thalamuthu, I. Mukhopadhyay, X. Zheng, and G. C. Tseng,
“Evaluation and comparison of gene clustering methods in mi-
croarray analysis,” Bioinformatics, vol. 22, pp. 2405–2412, 2006.

[4] J. B. MacQueen, “Some Methods for classification and Analysis
of Multivariate Observations,” in Proc. of Berkeley Symposium on
Mathematical Statistics and Probability, 1967.

[5] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering
with bregman divergences,” J. Mach. Learn. Res., vol. 6, pp. 1705–
1749, Dec. 2005.

[6] I. S. Dhillon, S. Mallela, and R. Kumar, “A divisive information
theoretic feature clustering algorithm for text classification,” J.
Mach. Learn. Res., vol. 3, pp. 1265–1287, Mar. 2003.

[7] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector
quantizer design,” IEEE Transactions on Communications, vol. 28,
pp. 84–95, 1980.

[8] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an intro-
duction to cluster analysis. New York: John Wiley and Sons, 1990.

[9] R. T. Ng and J. Han, “Efficient and effective clustering methods
for spatial data mining,” in Proceedings of the 20th International
Conference on Very Large Data Bases, ser. VLDB ’94. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 144–155.

[10] V. N. Vapnik, The Nature of Statistical Learning Theory. New York,
NY, USA: Springer-Verlag New York, Inc., 1995.

[11] M. Girolami, “Mercer kernel-based clustering in feature space,”
IEEE Transactions on Neural Network, vol. 13, no. 3, pp. 780–784,
May 2002.

[12] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 11, pp. 1944–1957, Nov. 2007.

[13] V. Roth, J. Laub, M. Kawanabe, and J. M. Buhmann, “Optimal
cluster preserving embedding of nonmetric proximity data,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1540–1551, Dec.
2003.

[14] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain, “Approximate kernel
k-means: Solution to large scale kernel clustering,” in Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’11. New York, NY, USA:
ACM, 2011, pp. 895–903.

[15] R. Zhang and A. Rudnicky, “A large scale clustering scheme for
kernel k-means,” in Pattern Recognition, 2002. Proceedings. 16th
International Conference on, vol. 4, 2002, pp. 289–292 vol.4.

[16] P. S. Bradley, U. M. Fayyad, and C. Reina, “Scaling clustering
algorithms to large databases,” in Knowledge Discovery and Data
Mining, 1998, pp. 9–15.

[17] V. Ganti, R. Ramakrishnan, J. Gehrke, A. L. Powell, and J. C.
French, “Clustering large datasets in arbitrary metric spaces.” in
ICDE, M. Kitsuregawa, M. P. Papazoglou, and C. Pu, Eds. IEEE
Computer Society, 1999, pp. 502–511.

[18] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-supervised
graph clustering: a kernel approach,” Machine Learning, vol. 74,
no. 1, pp. 1–22, Sep. 2008.

[19] H. W. Kuhn, “The Hungarian Method for the Assignment Prob-
lem,” Naval Research Logistics Quarterly, vol. 2, no. 1–2, pp. 83–97,
March 1955.

[20] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: Experimental com-
parison of representations and distance measures,” Proc. VLDB
Endowment, vol. 1, no. 2, pp. 1542–1552, Aug. 2008.



10

[21] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and
E. Keogh, “Experimental comparison of representation methods
and distance measures for time series data,” Data Mining Knowl-
edge Discovery, vol. 26, no. 2, pp. 275–309, Mar. 2013.

[22] H. Sakoe and S. Chiba, “Dynamic programming algorithm op-
timization for spoken word recognition,” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 26, no. 1, pp. 43–49,
Feb 1978.

[23] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD Workshop, U. M. Fayyad and
R. Uthurusamy, Eds. AAAI Press, 1994, pp. 359–370.

[24] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Addressing big data time series:
Mining trillions of time series subsequences under dynamic time
warping,” ACM Trans. Knowl. Discov. Data, vol. 7, no. 3, pp. 10:1–
10:31, Sep. 2013.

[25] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and
M. I. Jordan, “Learning the kernel matrix with semidefinite pro-
gramming,” J. Mach. Learn. Res., vol. 5, pp. 27–72, Dec. 2004.


	Introduction
	Kernel k-means
	Kernel k-means objective function
	Algorithm

	Foundations of the k-averages algorithm
	Conventions and possible objective functions
	Naive k-averages algorithm
	Impact of object reallocation on class quality
	Removing an object from a class
	Adding an object to a class

	Impact of object reallocation on the global objective function

	K-averages algorithm
	Complexity analysis
	Computational complexity
	Kernel k-means
	K-averages

	Memory access

	Validation
	Clustering performance
	Time efficiency

	Experiments
	Datasets
	Evaluation Protocol
	Results

	Conclusion
	References

