
HAL Id: hal-01123756
https://hal.science/hal-01123756v2

Submitted on 26 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient similarity-based data clustering by optimal
object to cluster reallocation

Mathias Rossignol, Mathieu Lagrange, Arshia Cont

To cite this version:
Mathias Rossignol, Mathieu Lagrange, Arshia Cont. Efficient similarity-based data clustering by
optimal object to cluster reallocation. PLoS ONE, 2018. �hal-01123756v2�

https://hal.science/hal-01123756v2
https://hal.archives-ouvertes.fr


Efficient similarity-based data clustering by optimal object to
cluster reallocation

Mathias Rossignol1Y, Mathieu Lagrange2*Y, Arshia Cont1‡

1 Ircam, CNRS, Paris, France
2 Ls2n, CRNS, Ecole Centrale Nantes, Nantes, France

YThese authors contributed equally to this work.
‡This author contributed to the writing of the manuscript.
* mathieu.lagrange@cnrs.fr

Abstract

We present an iterative flat hard clustering algorithm designed to operate on arbitrary
similarity matrices, with the only constraint that these matrices be symmetrical.
Although functionally very close to kernel k-means, our proposal performs a
maximization of average intra-class similarity, instead of a squared distance
minimization, in order to remain closer to the semantics of similarities. We show that
this approach permits the relaxing of some conditions on usable affinity matrices like
semi-positiveness, as well as opening possibilities for computational optimization
required for large datasets. Systematic evaluation on a variety of data sets shows that
compared with kernel k-means and the spectral clustering methods, the proposed
approach gives equivalent or better performance, while running much faster. Most
notably, it significantly reduces memory access, which makes it a good choice for large
data collections. Material enabling the reproducibility of the results is made available
online.

Introduction 1

Clustering collections of objects into classes that bring together similar ones is probably 2

the most common and intuitive tool used both by human cognition and artificial data 3

analysis in an attempt to make that data organized, understandable, manageable. 4

When the studied objects lend themselves to this kind of analysis, it is a powerful way 5

to expose underlying organizations and approximate the data in such a way that the 6

relationships between its members can be statistically understood and modeled. Given a 7

description of objects, we first attempt to quantify which ones are “ similar ” from a 8

given point of view, then group those n objects into C clusters, so that the similarity 9

between objects within the same cluster is maximized. Finding the actual best possible 10

partition of objects into clusters is, however, an NP-complete problem, intractable for 11

useful datasets sizes. Many approaches have been proposed to yield an approximate 12

solution: analytic, iterative, flat or hierarchical, agglomerative or divisive, soft or hard 13

clustering algorithms, etc., each with their strengths and weaknesses [1], performing 14

better on some classes of problems than others [2, 3]. 15

Iterative divisive hard clustering algorithms, usually perform well to identify 16

high-level organization in large data collections in reasonable running time. For that 17

reason, they are a sensible choice in many data mining situations, and constitute our 18

April 30, 2018 1/23



focus in this paper. If the data lies in a vector space, i.e. an object can be described by 19

a m-dimensional feature vector without significant loss of information, the seminal 20

k-means algorithm [4] is probably the most efficient approach, since the explicit 21

computation of the cluster centroids ensure both computational efficiency and 22

scalability. This algorithm is based on the centroid model, and minimizes the intra 23

cluster Euclidean distance. As shown by [5], any kind of Bregman divergence, such as 24

the KL-divergence [6] or the Itakura-Saito divergence [7], may also be considered to 25

develop such efficient clustering algorithms. 26

However, for many types of data, the projection of a representational problem into 27

an vector space cannot be done without significant loss of descriptive efficiency. To 28

reduce this loss, specifically tailored measures of similarity are considered. As a result, 29

the input data for clustering is no longer a n×m matrix storing the m-dimensional 30

vectors describing the objects, but a (usually symmetric) square matrix S of size n× n 31

which numerically encodes some sort of relationship between the objects. In this case, 32

one has to resort to clustering algorithms based on connectivity models, since the 33

cluster centroids cannot be explicitly computed. 34

Early attempts to solve this issue considered the k-medoids problem, where the goal 35

is to find the k objects that maximize the average similarity with the other objects of 36

their respective clusters, or medoids. The Partition Around Medoids (PAM) 37

algorithm [8] solves the k-medoids problem but with a complexity of O(k(n− k)2)i, n 38

being the number of objects and i number of iterations. Due to the high complexity and 39

the low convergence rate, this algorithm cannot be applied to decent size datasets. In 40

order to scale the approach, the Clustering LARge Applications (CLARA) algorithm [8] 41

draws a sample of objects before running the PAM algorithm. This sampling operation 42

is repeated several times and the most satisfying set of medoids is retained. In contrast, 43

CLARANS [9] preserves the whole set of objects but cuts complexity by drawing a 44

sample of neighbors in each search for the medoids. 45

Another classical approach to the issue is to run a variant of k-means that considers 46

average intra-cluster similarity as the guiding criterion for object-to-class 47

reallocation [10, Chapter 10.7]. This straightforward technique performs well in many 48

cases, but the complexity of computing anew intra-cluster similarities at each iteration 49

makes it impractical for large datasets. 50

Following work on kernel projection [11], that is, the fact that a nonlinear data 51

transformation into some high dimensional feature space increases the probability of the 52

linear separability of patterns within the transformed space, [12] introduced a kernel 53

version of the K-means algorithm, whose input is a kernel matrix K that must be a 54

Gram matrix, i.e. semi definite positive. [13] linked a weighted version of the kernel 55

K-means objective to the popular spectral clustering [14], introducing an efficient way of 56

solving the normalized cut objective [15]. 57

The kernel k-means algorithm proves to be equally useful when considering arbitrary 58

similarity problems if special care is taken to ensure definite positiveness of the input 59

matrix [16]. This follows original algorithmic considerations where vector space data is 60

projected into high dimensional spaces using a carefully chosen kernel function. 61

Despite such improvements, kernel k-means cannot be easily applied to large scale 62

datasets without special treatments because of high algorithmic and memory access 63

costs. [17] considered sampling of the input data, [18] considered block storing of the 64

input matrix, and a pre-clustering approach [19] is considered by [20] with a coarsening 65

and refining phases as respectively a pre- and post-treatment of the actual clustering 66

phase. 67

We show in this paper that by using a semantically equivalent variant of the average 68

intra-cluster similarity presented in [10, Chapter 10.7], it becomes possible to perform a 69

computationally efficient greedy optimization [10, Chapter 10.8] with guaranteed 70

April 30, 2018 2/23



convergence for arbitrary similarity measures. Although both of those techniques are 71

well known, combining them is non trivial, and lead to a clustering algorithm, which we 72

call k-averages with the following properties: 73

• input data can be arbitrary symmetric similarity matrices, 74

• it has fast and guaranteed convergence, with a number of object to clusters 75

reallocations experimentally found to be roughly equal to the number of objects, 76

• it provides good scalability thanks to a reduced need for memory access, and 77

• on a collection of synthetic and natural test data, its results are equivalent to 78

those of kernel k-means, and obtained in a fraction of its computing time, 79

particularly when paged memory is required. 80

To summarize, the main contribution of the paper is to present a clustering 81

algorithm: 82

• that can handle arbitrary affinity matrices, i.e. semi-positiveness is not a 83

mandatory requirement for guaranteed convergence 84

• thanks to a carefully designed strategy to update the membership of objects to 85

cluster, the algorithm is fast and memory efficient. 86

The remaining of the paper is organized as follows: Section 1 presents the kernel 87

k-means objective function and the basic algorithm that minimizes this function, and 88

Section 2 introduces the concepts behind the k-averages algorithm, followed by a 89

detailed algorithmic description in Section 3. The complexity of the two algorithms in 90

terms of arithmetic operations and memory access is then studied in Section 5. The 91

above presented properties of the proposed k-averages algorithm are then validated on 92

synthetic controlled data in Section 6 and on 43 datasets of time series issued from 93

various sources in Section 7. 94

1 Kernel k-means 95

Since its introduction by [12], kernel k-means has been an algorithm of choice for flat 96

data clustering with known number of clusters [16,20]. It makes use of a mathematical 97

technique known as the “ kernel trick ” to extend the classical k-means clustering 98

algorithm [4] to criteria beyond simple euclidean distance proximity. Since it constitutes 99

the closest point of comparison with our own work, we dedicate this section to its 100

detailed presentation. 101

In the case of kernel k-means, the kernel trick allows us to consider that the k-means 102

algorithm is operating in an unspecified, possibly very high-dimensional Euclidean 103

space; but instead of specifying the properties of that space and the coordinates of 104

objects, the equations governing the algorithm are modified so that everything can be 105

computed knowing only the scalar products between points. The symmetrical matrix 106

containing those scalar products is known as a kernel, noted K. 107

1.1 Kernel k-means objective function 108

In this section and the following, we shall adopt the following convention: N is the 109

number of objects to cluster and C the number of clusters; Nc is the number of objects 110

in cluster c, and µc is the centroid of that cluster. zcn is the membership function, 111

whose value is 1 if object on is in class c, 0 otherwise. In the folowing equations, µc and 112

on are assumed to be column vectors of equal dimension. 113

April 30, 2018 3/23



Starting from the objective function minimized by the k-means algorithm, expressing 114

the sum of squared distances of points to the centroids of their respective clusters: 115

S =

C∑
c=1

N∑
n=1

zcn (on − µc)
>

(on − µc)

And using the definition of centroids as: 116

µc =
1

Nc

N∑
n=1

zcnon

S can be developed and rewritten in a way that does not explicitly refer to the 117

centroid positions, since those cannot be computed: 118

S =

C∑
c=1

N∑
n=1

zcnYcn

where

Ycn = (on − µc)
>

(on − µc)

= onon − 2o>nµc + µ>c µc

= o>n on − 2o>n
1

Nc

N∑
i=1

zcioi +

(
1

Nc

N∑
i=1

zcioi

)>(
1

Nc

N∑
i=1

zcioi

)

= o>n on −
2

Nc

N∑
i=1

zcio
>
n oi +

1

N2
c

N∑
i=1

N∑
j=1

zkizkjo
>
i oj

= Knn −
2

Nc

N∑
i=1

zciKni +
1

N2
c

N∑
i=1

N∑
j=1

zkizkjKij

(1)

Since the sum of Knn over all points remains constant, and the sum of squared 119

centroid norms (third, quadratic, term of Equation 1) is mostly bounded by the general 120

geometry of the cloud of objects, we can see that minimizing this value implies 121

maximizing the sum of the central terms, which are the average scalar products of 122

points with other points belonging to the same class. Therefore, given a matrix 123

gathering similarities between objects, if that matrix possesses the necessary properties 124

to be considered as a kernel (positive semidefinitness), then the kernel k-means 125

algorithm can be applied to it in order to create clusters that locally maximize the 126

average intra-cluster similarity. 127

1.2 Algorithm 128

Finding the configuration that globally minimizes S (Eq. 1.1) is an NP-complete 129

problem. However, several approaches allow finding an acceptable approximation. We 130

shall only focus here on the fastest and most popular, an iterative assignment / update 131

procedure commonly referred to as the “ k-means algorithm ” [4], or as a discrete version 132

of Lloyd’s algorithm, detailed in Algorithm 1. 133

The version given here is the most direct algorithmic translation of the mathematical 134

foundations developed above, and as we shall see in section 5, it can easily become more 135

efficient. Before that, we introduce our proposed k-averages algorithm. 136

April 30, 2018 4/23



Data: number of objects N , number of classes C, kernel matrix K
Result: label vector L defining a partition of the objects into C classes

1 Initialization: fill L with random values in [1..C];

2 while L is modified do
3 for n← 1 to N do
4 for c← 1 to C do
5 Compute Ycn following Eq. 1 (note: zcn = (Ln == c) ? 1 : 0)
6 end
7 Ln = argminc(Ycn);

8 end

9 end

Algorithm 1: Lloyd’s algorithm applied to minimizing the kernel k-means objective.

2 Foundations of the k-averages algorithm 137

In our proposal, we adopt an alternative objective function which, unlike kernel 138

k-means, does not rely on a geometric interpretation but an explicit account of the 139

similarity matrix. The goal is to maximize the average intra-cluster similarity between 140

points, a commonly used metric to evaluate clustering quality, and one whose 141

computation is direct—linear in time. 142

Due to its simplicity, however, the objective function cannot be simply “ plugged 143

into ” the standard kernel k-means algorithm: it lacks the geometric requisites to ensure 144

convergence. We must therefore propose a specifically tailored algorithmic framework to 145

exploit it: first, we show here that it is possible to easily compute the impact on the 146

global objective function of moving a single point from one class to another; this allows 147

us to develop a greedy optimization algorithm taking advantage of that formula. 148

2.1 Conventions and objective function 149

In addition to the notations presented above, we index here the set of elements 150

belonging to a given cluster ck as ck = {ok1, . . . , okNk
}. For simplicity, we omit the first 151

index and note c = {o1, . . . , oNc} when considering a single class. 152

The similarity between objects shall be written s (oi, oj). We extend the notation s 153

to the similarity of an object to a class defined as the average similarity of an object 154

with all objects of the class. s(o, c) accepts two definitions, depending on whether or not 155

o is a member of c: 156

If o /∈ c, 157

s (o, c) =
1

Nc

nc∑
i=1

s (o, oi) (2)

If o ∈ c, then necessarily ∃i | o = oi 158

s (o, c) = s (oi, c) =
1

Nc − 1

∑
j=1...nc,j 6=i

s (oi, oj) (3)

Let us call the “ quality ” of a class the average intra-class object-to-object similarity, 159

and write it Q: 160

Q (c) =
1

Nc

nc∑
i=1

s (oi, c) (4)

In our framework, we do not explicitly refer to class centroids, preferring to directly 161

consider averages of similarity values between individuals within clusters. Using the 162

April 30, 2018 5/23



notations above, we define our objective function as the average class quality, 163

normalized with class sizes: 164

O =
1

N

C∑
i=1

NiQ(ci) (5)

Since, informally, our goal is to bring together objects that share high similarity, a 165

first idea would be to simply repeatedly move each object to the class with whose 166

members it has the highest average similarity. This is what we call the “ naive 167

k-averages ” algorithm. 168

2.2 Naive k-averages algorithm 169

Algorithm 2 presents a method that simply moves each object to the class with which it 170

has the highest average similarity, until convergence is reached. The algorithm is 171

straightforward and simple; however, experiments show that while it can often produce 172

interesting results, it also sometimes cannot reach convergence because the decision to 173

move an object to a different cluster is taken without considering the impact of the 174

move on the quality of the source cluster. 175

Data: number of objects N , number of classes C, similarity matrix S
Result: label vector L defining a partition of the objects into C classes

1 Initialization: Fill L with random values in [1..C];
2 Compute initial object-class similarities S following Eq. 3 or Eq. 2;

3 while L is modified do
4 for i← 1 to N do
5 previousClass ← Li;
6 nextClass ← argmink S(i, k) if nextClass 6= previousClass then
7 Li ← nextClass;
8 for j ← 1 to N do
9 Update S(j, nextClass) and S(j, previousClass)

10 end

11 end

12 end

13 end

Algorithm 2: The naive k-averages algorithm.

To ensure convergence, we need to compute the impact on the objective function of 176

moving one object from one class to another. Using such formulation and performing 177

only reallocation that have a positive impact, the convergence of such an iterative 178

algorithm is guaranteed. 179

2.3 Impact of object reallocation on class quality 180

Considering a class c, let us develop the expression of Q(c) into a more useful form. 181

Since all objects are in c, we use the formula in (Eq. 3) to get: 182

April 30, 2018 6/23



Q (c) =
1

Nc

Nc∑
i=1

1

Nc − 1

∑
j=1...Nc

j 6=i

s (oi, oj)

=
1

Nc(Nc − 1)

Nc∑
i=1

∑
j=1...Nc

j 6=i

s (oi, oj)

Using the assumption that the similarity matrix is symmetrical, we can reach: 183

Q (c) =
2

Nc(Nc − 1)

Nc∑
i=2

i−1∑
j=1

s (oi, oj) (6)

For future use and given the importance of the above transformation, we define: 184

Σ(c) =

Nc∑
i=2

i−1∑
j=1

s (oi, oj)

Thus: 185

Q (c) =
2

Nc(Nc − 1)
Σ(c) and Σ(c) =

Nc(Nc − 1)Q (c)

2

2.3.1 Removing an object from a class 186

Assuming that o ∈ c, necessarily ∃i | o = oi. Since the numbering of objects is arbitrary, 187

we can first simplify the following equation by considering that o = oNc
, in order to 188

reach a formula that is independent from that numbering. 189

Q (cr oNc) =
2

(Nc − 1)(Nc − 2)

Nc−1∑
i=2

i−1∑
j=1

s (oi, oj)

=
2

(Nc − 1)(Nc − 2)

Σ(c)−
Nc−1∑
j=1

s (oNc
, oj)


=

2

(Nc − 1)(Nc − 2)
[Σ(c)− (Nc − 1)s (oNc , c)]

=
2Nc(Nc − 1)Q(c)

2(Nc − 1)(Nc − 2)
− 2(Nc − 1)s (oNc

, c)

(Nc − 1)(Nc − 2)

=
NcQ(c)− 2s (oNc , c)

Nc − 2

The quality of a class after removal of an object is thus: 190

Q (cr o) =
NcQ(c)− 2s (o, c)

Nc − 2
(7)

And the change in quality from its previous value: 191

Q (cr o)−Q (c) =
NcQ(c)− (Nc − 2)Q(c)− 2s (o, c)

Nc − 2

=
2 (Q(c)− s (o, c))

Nc − 2

(8)

April 30, 2018 7/23



2.3.2 Adding an object to a class 192

Assuming that o /∈ c, we can similarly to what has been done previously (numbering is 193

arbitrary) consider for the sake of simplicity that o becomes oNc+1 in the modified class 194

c. Following a path similar to above, we get: 195

Q(c ∪ oNc+1) =
2

Nc(Nc + 1)

Nc+1∑
i=2

i−1∑
j=1

s (oi, oj)

=
2

Nc(Nc + 1)
[Σ(c) +Ncs (oNc+1, c)]

=
(Nc − 1)Q(c) + 2s (oNc+1, c)

Nc + 1

The quality of a class c after adding an object o is thus: 196

Q (c ∪ o) =
(Nc − 1)Q(c) + 2s (o, c)

Nc + 1
(9)

And the change in quality from its previous value: 197

Q (c ∪ o)−Q (c) =
2 (s (o, c)−Q(c))

Nc + 1
(10)

2.4 Impact of object reallocation on the global objective 198

function 199

When moving an object o from class cs (“ source ”), to whom it belongs, to a distinct 200

class ct (“ target ”), (Ns − 1) objects are affected by the variation in (8), and Nt are 201

affected by that in (10); in addition, one object o moves from a class whose quality is 202

Q(cs) to one whose quality is Q (ct ∪ o), as expressed by Eq. 9, which leads to an 203

impact of moving object o from class cs to class ct wich can be computed as follows: 204

δo(cs, ct) =
2Nt (s (o, ct)−Q(ct))

Nt + 1
+

2(Ns − 1) (Q(cs)− s (o, cs))

Ns − 2
+

(Nt − 1)Q(ct) + 2s (o, ct)

Nt + 1
−Q(cs)

(11)

As can be seen, computing this impact is a fixed-cost operation. We can therefore 205

use the formula as the basis for an efficient iterative algorithm. 206

3 K-averages algorithm 207

Our approach does not allow us to benefit, like kernel k-means, from the convergence 208

guarantee brought by the geometric foundation of k-means. In consequence, we cannot 209

apply a “ batch ” approach where at each iteration all elements are moved to their new 210

class, and all distances (or similarities) are computed at once. To guarantee 211

convergence, we must update the class properties for the two modified classes (source 212

and destination), as well as recompute the average class-object similarities for them for 213

each considered object, after finding its ideal new class. This is the principle of the 214

“ greedy ” k-means algorithm [10, Chapter10.8], but whereas for k-means that approach 215

April 30, 2018 8/23



Data: number of objects N , number of classes C, similarity matrix S
Result: label vector L defining a partition of the objects into C classes

1 Initialization: Fill L with random values in [1..C];
2 Compute initial object-class similarities S following Eq. 3 or Eq. 2;
3 Compute initial class qualities Q following Eq. 6;

4 while L is modified do
5 for i← 1 to N do
6 previousClass ← Li;
7 nextClass ← argmaxk δi(previousClass, k) (following the definition of δ in

Eq. 11);
8 if nextClass 6= previousClass then
9 Li ← nextClass;

10 Update QpreviousClass following Eq. 7;
11 Update QnextClass following Eq. 9;
12 for j ← 1 to N do
13 Update S(j, nextClass) and S(j, previousClass)
14 following Eq. 12;

15 end

16 end

17 end

18 end

Algorithm 3: The K-averages algorithm.

increases complexity (and even more so for kernel k-means), in this case it leads to a 216

much improved computational performance. 217

Indeed, at a first glance, dynamically updating objectives as a result of object 218

reallocation might seem to have negative performance impact. However, our simple 219

non-quadratic updates make such dynamic changes easily tractable. New class qualities 220

are thus given by eqs. 7 and 9, and new object-class similarities can be computed by: 221

s(i, cs(t+ 1)) =
Ns(t).s(i, cs(t)) + s(i, n)

Ns(t) + 1

s(i, ct(t+ 1)) =
Nt(t).s(i, cs(t))− s(i, n)

Nt(t)− 1

(12)

where i is any object index, n is the recently reallocated object, cs the “ source ” class 222

that object i was removed from, and ct the “ target ” class that object n was added to. 223

The full description of k-averages is given in Algorithm 3. 224

4 Convergence 225

The kernel k-means algorithm ensures convergence if the similarity matrix is 226

semi-definite positive. The k-averages algorithm relaxes this constraint by only 227

requiring symmetricity of the similarity matrix to ensure convergence. 228

An algorithm is guaranteed to converge if its successive iterations can be tied to a 229

strictly monotonous and bounded quantity. For the k-averages algorithm, this quantity 230

is the objective function itself, as we now show. 231

Thanks to the rewriting of the class quality function done in Eq. 6, which only 232

requires the similarity matrix to be symmetrical, we can directly define the allocation 233

decision criterion δ (Eq. 11) to be the change in the global objective function O (Eq. 5) 234

April 30, 2018 9/23



implied by reallocating an object to a new class. It follows that, as long as reallocations 235

are only performed when δ > 0, O is strictly increasing throughout the execution of the 236

algorithm. 237

Moreover, O, defined as a weighted average of the average intra-class similarities for 238

the produced clusters, can be proven to never exceed the maximal similarity between 239

two objects. 240

Indeed, the average similarity of an object to other members of its class, expressed 241

as s(o, c) in Eq. 2, is an average of similarities, and therefore lower than or equal to 242

their maximum value. Similarly, the quality Q of a class, defined as the average of 243

object to class similarities (Eq. 4), is inferior to the maximum value of s(o, c), and 244

therefore to the maximum similarity between objects. Finally, O, a weighted average of 245

Q values, is, once again, inferior to their maximum value. 246

The objective function O is thus upper-bounded, and increases at each iteration of 247

the outer loop of Algorithm 3; which guarantees its convergence. 248

5 Complexity analysis 249

In this section, we study the complexity of the two approaches presented above, first 250

from the point of view of raw complexity, second by focusing on memory access. 251

5.1 Computational complexity 252

5.1.1 Kernel k-means 253

As can be seen in Algorithm 1, the operation on line 5 is the most costly part of the 254

algorithm: for each object n and class c, at each iteration, it is necessary to compute 255

Ycn from Eq. 1—an O(N2) operation in itself, per object. The impossibility of simply 256

computing the distances to a known centroid as done in the k-means algorithm leads to 257

a much higher complexity for the kernel k-means algorithm, globally O(N3) per 258

iteration, independent of how many objects are moved for that iteration. 259

It is however possible to improve the performance of kernel k-means by noting than 260

in Eq. 1, the third term of the equation, which has the highest complexity, is only 261

dependent on class definitions and not on the considered object. We can therefore 262

rewrite Eq. 1 as: 263

Ycn = Knn −
2

Nc

N∑
i=1

zciKni +Mc (13)

where 264

Mc =
1

N2
c

N∑
i=1

N∑
j=1

zkizkjKij (14)

Algorithm 1 thus becomes Algorithm 4, where the values of Mc are computed once 265

at the beginning of each loop (line 4) then reused on line 8, thus reducing the overall 266

complexity to O(n2) per iteration. This optimized version of kernel k-means is the one 267

we shall consider for performance comparison in the remainder of this article. 268

5.1.2 K-averages 269

For the k-averages method presented as Algorithm 3, the complexity of each iteration is 270

• O(NC) corresponding to the best class search at line 7 271

April 30, 2018 10/23



Data: number of objects N , number of classes C, kernel matrix K
Result: label vector L defining a partition of the objects into C classes

1 Initialization: fill L with random values in [1..C];

2 while L is modified do
3 for c← 1 to C do
4 Compute Mc following Eq. 14
5 end
6 for n← 1 to N do
7 for c← 1 to C do
8 Compute Ycn following Eq. 13 (note: zcn = (Ln == c) ? 1 : 0)
9 end

10 Ln = argminc(Ycn);

11 end

12 end

Algorithm 4: Lloyd’s algorithm applied to minimizing the kernel k-means objective,
optimized version.

• O(NM) corresponding to the object-to-class similarity update at line 13, where 272

M is the number of objects moved at a given iteration. 273

In the worst case scenario, M = N , and the complexity for one iteration of the 274

algorithm remains the same as for the optimized kernel k-means algorithm, O(N2). In 275

practice, however, as can be seen on Figure 1, the number of objects moving from one 276

class to another decreases sharply after the first iteration, meaning that the complexity 277

of one iteration becomes quickly much lower than O(N2). Thus, while the first iteration 278

of k-averages has a similar complexity with kernel k-means, the overall cost of a typical 279

run of the algorithm (from 10 to 50 iterations) is much lower. 280

To go further in this analysis, we display on Figure 2 the total number of object 281

reallocation over a full run of the k-averages algorithm for several datatsets. The 282

datasets used to create this figure are the real-life time series data that we employ for 283

experimental validation evaluated under the Dynamic Time Warping (DTW) similarity 284

measure, cf. Section 7. As can be seen, the correlation is roughly linear with the 285

number of objects to cluster. In fact, the number of reallocations is roughly equal to the 286

number of objects to cluster, which allows us to reach for k-averages a (statistical) total 287

complexity of O(N2), instead of O(N2) per iteration. 288

5.2 Memory access 289

The lowered computational costs is also accompanied by a decrease in memory access: 290

as can be seen from Equation 12, in order to compute the new object-to-class 291

similarities after moving an object n, only line n of the similarity matrix needs to be 292

read. For the remaining of the algorithm, only the (much smaller) object-to-class 293

similarity matrix is used. By contrast, in the case of kernel k-means, the computation of 294

Mc values at each iteration require that the whole similarity matrix be read, which can 295

be a serious performance bottleneck in the case of large object collections. 296

Moreover, the similarity update function of k-averages, by reading one line of the 297

matrix at a time, presents good data locality properties, which make it play well with 298

standard memory paging strategies. 299

To illustrate and confirm the theoretical complexity computed here, the next section 300

proposes some performance figures measured on controlled datasets. 301

April 30, 2018 11/23



Fig 1. Number of moved objects per iteration when clustering a variety of datasets
with the k-averages algorithm, normalized by the total number of objects to cluster.
The datasets used to create this figure are the real-life time series data that we employ
for experimental validation evaluated under the Dynamic Time Warping (DTW)
similarity measure, cf. Section 7.

Fig 2. Total number of object reallocations over a run of the k-averages algorithm,
plotted against the number of objects to be clustered. The datasets used to create this
figure are the real-life time series data that we employ for experimental validation, cf.
Section 7.

April 30, 2018 12/23



6 Validation 302

In order to reliably compare the clustering quality and execution speed between the two 303

approaches, we have written plain C implementations of Algorithms 4 and 3, with 304

minimal operational overhead: reading the similarity matrix from a binary file where all 305

matrix values are stored sequentially in standard reading order, line by line, and writing 306

out the result of the clustering as a label text file. Both implementations use reasonably 307

efficient code, but without advanced optimizations or parallel processing. 308

The figures presented in this section were obtained on synthetic datasets, created in 309

order to give precise control on the features of the analyzed data: for n points split 310

between C classes, C centroids are generated at random in two dimensional space, and 311

point coordinates are generated following a Gaussian distribution around class centroids. 312

In addition to the numbers of objects and classes, the variance of Gaussian distributions 313

are adjusted to modulate how clearly separable clusters are. Similarities are computed 314

as inverse Euclidean distances between points. 315

6.1 Reproducibility 316

In order to ease reproducibility of the results, the data is taken from a public repository 317

of several benchmark datasets used in academia [21] and the code of the proposed 318

method as well as the experimental code used for generated the figures is publicly 319

available1. 320

6.2 Clustering performance 321

Several metrics are available to evaluate the performance of a clustering algorithm. The 322

one closest to the actual target application is the raw accuracy, that is the average 323

number of items labeled correctly after an alignment phase of the estimated labeling 324

with the reference [22]. 325

Another metric of choice is the Normalized Mutual Information (NMI) criterion. 326

Based on information theoretic principles, it measures the amount of statistical 327

information shared by the random variables representing the predicted cluster 328

distribution and the reference class distribution of the data points. If P is the random 329

variable denoting the cluster assignments of the points, and C is the random variable 330

denoting the underlying class labels on the points then the NMI measure is defined as: 331

NMI =
2I(C;K)

H(C) +H(K)

where I(X;Y ) = H(X)−H(X|Y ) is the mutual information between the random 332

variables X and Y , H(X) is the Shannon entropy of X,and H(X|Y ) is the conditional 333

entropy of X given Y . Thanks to the normalization, the metric stays between 0 and 1, 1 334

indicating a perfect match, and can be used to compare clustering with different 335

numbers of clusters. Interestingly, random prediction gives an NMI close to 0, whereas 336

the accuracy of a random prediction on a balanced bi-class problem is as high as 50 %. 337

In this paper, for simplicity sake, only the NMI is considered for validations. 338

However, we found that most statements hereafter in terms of performance ranking of 339

the different algorithms still hold while considering the accuracy metric as reference. 340

Figure 3 presents the quality of clusterings obtained using kernel k-means and 341

k-averages on two series of datasets: one featuring 5 classes, the other 40 classes. On 342

the x-axis is the variance of the Gaussian distribution used to generate the point cloud 343

1Available at: https://github.com/mathieulagrange/kaveragePaper

April 30, 2018 13/23

https://github.com/mathieulagrange/kaveragePaper


0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

variance

nm
i

Fig 3. NMI of kernel k-means (*) and k-averages (o) clustering relative to ground truth
as a function of the “ spread ” of those classes for synthetic data sets of 5 and 40 classes,
displayed in dashed and solid lines, respectively.

for each class: the higher that value, the more the classes are spread out and overlap 344

each other, thus making the clustering harder. 345

The question of choosing the proper number of clusters for a given dataset without a 346

priori is a well known and hard problem, and beyond the scope of this article. 347

Therefore, for the purpose of evaluation, clustering is done by requesting a number of 348

clusters equal to the actual number of classes in the dataset. In order to obtain stable 349

and reliable figures, clustering is repeated 500 times with varying initial conditions, i.e. 350

the initial assignment of points to clusters is randomly determined, and only the average 351

performance is given. For fairness of comparison, each algorithm is run with the exact 352

same initial assignments. 353

As can be seen on the figure, in the case of a 5-class problem, k-averages 354

outperforms kernel k-means in the “ easy ” cases (low class spread), before converging to 355

equivalent results. For the more complex 40-class datasets, k-averages consistently 356

yields a better result than kernel k-means, especially for higher values of the variance. 357

The lower values of NMI for 5-class experiments is in fact an artifact introduced by the 358

normalization of NMI, and is not important here; we only focus, for each series of 359

experiments, on the relative performances of kernel k-means and k-averages. 360

6.3 Time efficiency 361

Figure 4 shows the average time spent by kernel k-means and k-averages to cluster 362

synthetic datasets or varying sizes. As previously, initial conditions on each run are 363

identical for both algorithms. The reported run time is the one measured on a 64 bits 364

Intelr Core™ i7 runnning at 3.6 GHz with 32 Gb of RAM and standard Hard Disk 365

Drive (HDD) operated by standard Linux distribution. For results with 2 GB of RAM, 366

the same machine is used with a memory limitation specified to the kernel at boot time. 367

These figures confirm the theoretical complexity analysis presented in Section 5: 368

k-averages runs at least 20 times faster on average than kernel k-means in ordinary 369

conditions, when available memory is not an issue. When the matrix size exceeds what 370

can be stored in RAM and the system has to resort to paged memory, as in the 371

presented experiments when the matrix reaches about 1500MB, both algorithms suffer 372

from a clear performance hit; however, kernel k-means is much more affected, and the 373

difference becomes even more important: with a 2000MB similarity matrix on a 374

April 30, 2018 14/23



Fig 4. Average computation time of the kernel k-means (*) and kaverages (o)
algorithms on computers with 2 GB (solid line) and 32 GB (dashed line) of RAM,
respectively. The “ running time ” axis follows a logarithmic scale.

memory-limited computer, k-averages runs about 100 times faster than kernel k-means. 375

Having established the interest of our proposed method relative to kernel k-means on 376

synthetic object collections, we now proceed to a thorough evaluation on real data. 377

7 Experiments 378

In order to demonstrate the usefulness of k-averages when dealing with real data, we 379

have chosen to focus on the clustering of time series as the evaluation task. Time series, 380

even though represented as vectors and therefore suitable for any kinds of norm-based 381

clustering, are best compared with elastic measures [23,24], partly due to their varying 382

length. The Dynamic Time Warping (DTW) measure is an elastic measure widely used 383

in many areas since its introduction for spoken word detection [25] and has never been 384

challenged for time series mining [26,27]. 385

Effective clustering of time series using the DTW measure requires similarity based 386

algorithms such as the k-averages algorithm. With some care, kernel based algorithm 387

can also be considered provided that the resulting similarity matrix is converted into a 388

kernel, i.e. the matrix is forced to be semi definite positive, i.e. to be a Gram 389

matrix [28] in order to guarantee convergence. 390

7.1 Datasets 391

To compare quality of clusterings obtained by the considered algorithms, we consider a 392

large collection of 43 time series datasets made publicly available by many laboratories 393

worldwide and compiled by Prof. Keogh. Thus, while all the experiments presented here 394

are performed on time series (chosen for being a good example of a data type requiring 395

similarity-based clustering, as opposed to a simple Euclidean approach), the great 396

variety in the sources and semantics of said series (bio-informatics, linguistics, 397

astronomy, gesture modeling, chemistry. . . ) gives this validation a wide foundation. 398

Statistics about the morphology of those datasets are summarized in Table 1. 399

Individual details can be found in Appendix A. 400

April 30, 2018 15/23



Table 1. Statistics of the datasets. The length of the times series is expressed in
samples.

min average ± variance max
number of classes 2 8 ± 9 50
number of time series 56 1626 ± 2023 9236
time series length 24 372 ± 400 1882

7.2 Methods 401

Three algorithms are considered: the spectral clustering [14] approach as a high 402

complexity reference, the kernel k-means algorithm implemented as described in Section 403

1 and the proposed k-averages algorithm. The spectral clustering algorithm tested here 404

uses the normalization proposed by Jordan and Weiss [29]. This normalization is chosen 405

over no normalization and the Shi and Malik one [15] as it is found to be the best 406

performing in terms of average NMI over all the datasets. The implementation is done 407

using the Matlab programming language. Even though a C implementation would 408

probably be more efficient, we believe that the gain would be low as the main 409

computational load is the diagonalization of the similarity matrix and the k-means 410

clustering of the eigenvectors which are both efficient builtins Matlab functions. The 411

kernel k-means is implemented both in Matlab using the implementation provided by 412

Mo Chen2 and in the C programming language following Algorithm 1. The k-averages 413

method is implemented in C following Algorithm 3. 414

7.3 Evaluation Protocol 415

For each dataset, since we perform clustering, and not supervised learning, the training 416

and testing data are joined together. DTW similarities are computed using the 417

implementation provided by Prof. Ellis 3 with default parameters. 418

As in our previous experiments with synthetic data, we choose here the normalized 419

mutual information (NMI) as the measure of clustering quality; clustering is done by 420

requesting a number of clusters equal to the actual number of classes in the dataset, and 421

repeated 200 times with varying initial conditions, each algorithm being run with the 422

exact same initial assignments. For the 200 clusterings thus produced, we compute the 423

NMI between them and the ground truth clustering. Average and standard deviation 424

statistics are then computed. 425

7.4 Clustering performance 426

For ease of readability and comparison, the presented results are split into 3 tables. 427

Table 2 lists the results obtained on bi-class datasets, i.e. the datasets annotated in 428

terms of presence or absence of a given property; Table 3 concerns the datasets with a 429

small number of classes (from 3 to 7); and Table 4 focuses the datasets with a larger 430

number of classes (from 8 to 50). 431

For each experiment, the result of the best performing method is marked in bold. 432

The Matlab and C implementations of the kernel k-means algorithm give exactly the 433

same results in terms of NMI, thus only one column is used to display their performance. 434

A first observation is that the spectral clustering algorithm only performs favorably 435

for 2 of the 43 dataset. Also, most of the bi-class problems (Table 2) do not seem to 436

lend themselves well to this kind of approach: kernel k-means and k-averages produce 437

quasi-identical results, poor in most cases. Concerning the medium numbers of classes 438

2Available at: https://fr.mathworks.com/matlabcentral/fileexchange/26182-kernel-kmeans
3Available at: http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw

April 30, 2018 16/23

https://fr.mathworks.com/matlabcentral/fileexchange/26182-kernel-kmeans
http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw


Table 2. NMI (in percents) of clusterings by kernel k-means and k-averages for bi-class
datasets.

spectral clustering kernel k-means k-averages
Coffee 3.4 ±0.0 6.9 ±4.1 7.8 ±3.6
ECG200 9.9 ±0.0 14.8 ±1.0 14.6 ±0.0
ECGFiveDays 0.1 ±0.0 3.3 ±0.3 2.5 ±0.0
Gun Point 14.8 ±1.3 0.0 ±0.0 0.0 ±0.0
ItalyPowerDemand 1.1 0.9 0.9
Lighting2 4.1 ±0.3 4.9 ±3.7 4.3 ±4.2
MoteStrain 0.0 ±0.0 48.9 ±0.6 48.8 ±0.6
SonyAIBORobotSurface 3.4 ±0.0 45.0 ±20.7 45.1 ±20.5
SonyAIBORobotSurfaceII 2.5 ±0.0 21.4 ±0.0 21.4 ±0.0
TwoLeadECG 1.4 ±0.0 0.1 ±0.6 0.0 ±0.2
wafer 0.0 0.0 0.0
yoga 0.5 ±0.0 0.2 ±0.1 0.2 ±0.1

Table 3. NMI (in percents) of clusterings by kernel k-means and k-averages for
datasets of 3 to 7 classes.

spectral clustering kernel k-means k-averages
Beef 25.7 ±2.4 35.5 ±2.8 34.5 ±2.6
CBF 11.1 ±0.2 41.0 ±8.4 41.0 ±7.0
ChlorineConcentration 3.9 ±0.0 0.2 ±0.1 0.2 ±0.1
CinC ECG torso 37.9 ±0.5 24.2 ±1.5 24.6 ±1.6
DiatomSizeReduction 45.3 ±4.2 79.8 ±6.3 77.3 ±4.5
FaceFour 49.8 ±4.6 72.2 ±8.4 74.9 ±6.3
Haptics 3.0 ±0.5 9.7 ±1.3 9.4 ±1.2
InlineSkate 4.6 ±0.5 6.3 ±0.7 6.4 ±0.7
Lighting7 27.6 ±2.7 51.0 ±3.1 51.3 ±1.5
OSULeaf 22.9 ±0.8 22.9 ±2.2 23.0 ±2.5
OliveOil 10.6 ±2.2 32.4 ±8.6 30.6 ±7.8
StarLightCurves 54.3 ±0.0 60.3 ±0.4 60.3 ±0.0
Symbols 72.0 ±1.7 79.1 ±3.8 79.5 ±1.6
Trace 13.7 ±4.4 54.5 ±5.1 54.3 ±6.3
Two Patterns 0.2 ±0.0 10.1 ±10.0 8.8 ±9.9
fish 18.5 ±1.5 34.9 ±1.4 35.3 ±1.0
synthetic control 63.0 ±0.7 85.3 ±4.9 89.5 ±0.8

April 30, 2018 17/23



Table 4. NMI (in percents) of clusterings by kernel k-means and k-averages for
datasets of 8 to 50 classes.

spectral clustering kernel k-means k-averages
50words 46.9 ±1.0 69.6 ±0.8 71.7 ±0.6
Adiac 55.0 ±1.0 55.7 ±1.0 58.9 ±0.6
Cricket X 19.2 ±1.1 26.1 ±1.8 26.8 ±1.2
Cricket Y 22.8 ±1.3 33.0 ±1.5 33.5 ±1.2
Cricket Z 19.2 ±1.3 25.5 ±2.2 27.3 ±1.3
FaceAll 36.4 ±1.2 70.7 ±2.0 68.2 ±2.3
FacesUCR 36.2 ±1.3 70.4 ±2.0 71.5 ±1.6
MALLAT 44.5 ±2.0 90.3 ±4.6 89.2 ±3.5
MedicalImages 19.2 ±1.3 29.7 ±1.7 30.4 ±1.6
SwedishLeaf 48.7 ±1.4 70.3 ±1.9 70.8 ±1.4
WordsSynonyms 31.9 ±1.0 50.9 ±1.2 52.1 ±0.8
uWaveGestureLibrary X 24.4 ±0.6 46.0 ±1.2 46.2 ±0.5
uWaveGestureLibrary Y 16.2 ±0.3 44.9 ±0.4 45.0 ±0.2
uWaveGestureLibrary Z 23.2 ±0.6 42.9 ±0.7 42.6 ±0.5

(Table 3), k-averages performs best for 8 datasets out of 17. For the larger numbers of 439

classes (Table 4), k-averages performs best for 11 datasets out of 14. 440

Considering the standard deviation over the several runs of the algorithm with 441

different initialization is helpful to study the sensitivity of the algorithm to its 442

initialization and thus its tendency to be stuck into local minima. For most datasets, 443

the standard deviation of the k-averages algorithm is smaller than the one of the kernel 444

k-means one and thus seems experimentally more robust. 445

7.5 Efficiency 446

Computation time displayed in Tables 5, 6, and 7 is the average duration over 100 runs 447

on a single core with no parallelization capabilities. For every datasets, the spectral 448

clustering approach is the more time consuming due to the diagonalization of the matrix 449

which is of O(N3). For the kernel k-means algorithm, the C implementation is most of 450

the time more efficient than the Matlab implementation. The k-average algorithm is 451

more efficient for 46 datasets out of the 47 by close to an order of magnitude for the 452

larger datasets. 453

7.6 Overall results 454

To conclude on the performance of the evaluated algorithms on real datasets, Table 8 455

displays the NMI and computation time averaged over the 47 datasets. The k-averages 456

method marginally improve the clustering accuracy compared to the kernel k-means 457

approach by using less time to compute. 458

8 Conclusion 459

We have presented k-averages, an iterative flat clustering algorithm that operates on 460

arbitrary similarity matrices by explicitly and directly aiming to optimize the average 461

intra-class similarity. Having established the mathematical foundation of our proposal, 462

including guaranteed convergence, we have thoroughly compared it with widely used 463

standard methods: the kernel k-means and the spectral clustering techniques. We show 464

that the k-averages algorithm converges much faster (20 times faster under ordinary 465

April 30, 2018 18/23



Table 5. Computation time (in seconds) for several implementations of the evaluated
clustering algorithms for datasets of 2 classes.

Matlab C
spectral clustering kk-means kk-means k-averages

Coffee 0.02 0.00 0.00 0.00
ECG200 0.03 0.00 0.00 0.00
ECGFiveDays 0.13 0.10 0.06 0.01
Gun Point 0.02 0.00 0.00 0.00
ItalyPowerDemand 0.20 0.07 0.05 0.01
Lighting2 0.02 0.00 0.00 0.00
MoteStrain 0.33 0.11 0.08 0.01
SonyAIBORobotSurface 0.09 0.02 0.01 0.00
SonyAIBORobotSurfaceII 0.09 0.01 0.02 0.01
TwoLeadECG 0.13 0.16 0.10 0.02
wafer 19.62 0.72 1.04 0.39
yoga 3.55 0.80 0.66 0.10

Table 6. Computation time (in seconds) for several implementations of the evaluated
clustering algorithms for datasets of 3 to 7 classes.

Matlab C
spectral clustering kk-means kk-means k-averages

Beef 0.02 0.00 0.00 0.00
CBF 0.17 0.08 0.05 0.01
ChlorineConcentration 7.15 2.74 2.09 0.23
CinC ECG torso 0.55 0.31 0.16 0.04
DiatomSizeReduction 0.04 0.01 0.00 0.00
FaceFour 0.02 0.00 0.00 0.00
Haptics 0.07 0.04 0.01 0.01
InlineSkate 0.12 0.08 0.03 0.01
Lighting7 0.04 0.01 0.00 0.00
OSULeaf 0.08 0.04 0.01 0.00
OliveOil 0.03 0.00 0.00 0.00
StarLightCurves 34.16 4.69 6.21 0.91
Symbols 0.26 0.15 0.06 0.02
Trace 0.02 0.01 0.00 0.00
Two Patterns 11.99 3.99 3.71 0.40
fish 0.06 0.02 0.01 0.00
synthetic control 0.09 0.03 0.01 0.01

April 30, 2018 19/23



Table 7. Computation time (in seconds) for several implementations of the evaluated
clustering algorithms for datasets of 8 to 50 classes.

Matlab C
spectral clustering kk-means kk-means k-averages

50words 0.89 0.19 0.05 0.03
Adiac 0.49 0.16 0.05 0.03
Cricket X 0.24 0.10 0.05 0.02
Cricket Y 0.22 0.09 0.05 0.02
Cricket Z 0.22 0.09 0.04 0.02
FaceAll 2.08 0.78 0.40 0.11
FacesUCR 2.21 0.75 0.41 0.12
MALLAT 2.23 0.47 0.29 0.12
MedicalImages 0.42 0.24 0.12 0.04
SwedishLeaf 0.56 0.22 0.11 0.04
WordsSynonyms 0.44 0.16 0.08 0.03
uWaveGestureLibrary X 8.60 5.15 3.82 0.44
uWaveGestureLibrary Y 8.94 4.48 2.65 0.45
uWaveGestureLibrary Z 8.53 4.00 2.89 0.47

Table 8. Performances averaged over the 47 datasets. The NMI is expressed in
percents and the computation time in seconds.

Matlab C
spectral clustering kk-means kk-means k-averages

nmi (%) 22.1 36.6 36.6 36.8
computation time 2.678 0.723 0.590 0.096

April 30, 2018 20/23



conditions) and leads to equivalent or better clustering results for the task of clustering 466

both synthetic data and realistic times series taken from a wide variety of sources, while 467

also being more computationally efficient and more sparing in memory use. 468

Acknowledgments 469

The authors would like to acknowledge support for this project from ANR project Houle 470

(grant ANR-11-JS03-005-01) and ANR project Cense (grant ANR-16-CE22-0012). 471

References

1. Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognition
Letters. 2010;31:651–666.

2. Steinbach M, Karypis G, Kumar V, et al. A comparison of document clustering
techniques. In: KDD workshop on text mining. vol. 400. Boston; 2000. p.
525–526.

3. Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC. Evaluation and
comparison of gene clustering methods in microarray analysis. Bioinformatics.
2006;22:2405–2412.

4. MacQueen JB. Some Methods for classification and Analysis of Multivariate
Observations. In: Proc. of Berkeley Symposium on Mathematical Statistics and
Probability; 1967.

5. Banerjee A, Merugu S, Dhillon IS, Ghosh J. Clustering with Bregman
Divergences. J Mach Learn Res. 2005;6:1705–1749.

6. Dhillon IS, Mallela S, Kumar R. A Divisive Information Theoretic Feature
Clustering Algorithm for Text Classification. J Mach Learn Res.
2003;3:1265–1287.

7. Linde Y, Buzo A, Gray RM. An Algorithm for Vector Quantizer Design. IEEE
Transactions on Communications. 1980;28:84–95.

8. Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster
analysis. New York: John Wiley and Sons; 1990.

9. Ng RT, Han J. Efficient and Effective Clustering Methods for Spatial Data
Mining. In: Proceedings of the 20th International Conference on Very Large Data
Bases. VLDB ’94. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.;
1994. p. 144–155.

10. Duda RO, Hart PE, Stork DG. Pattern Classification (2nd Ed). Wiley; 2001.

11. Vapnik VN. The Nature of Statistical Learning Theory. New York, NY, USA:
Springer-Verlag New York, Inc.; 1995.

12. Girolami M. Mercer Kernel-based Clustering in Feature Space. IEEE
Transactions on Neural Network. 2002;13(3):780–784.
doi:10.1109/TNN.2002.1000150.

13. Dhillon IS, Guan Y, Kulis B. Weighted Graph Cuts Without Eigenvectors A
Multilevel Approach. IEEE Trans Pattern Anal Mach Intell.
2007;29(11):1944–1957. doi:10.1109/TPAMI.2007.1115.

April 30, 2018 21/23



14. Von Luxburg U. A tutorial on spectral clustering. Statistics and computing.
2007;17(4):395–416.

15. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on
pattern analysis and machine intelligence. 2000;22(8):888–905.

16. Roth V, Laub J, Kawanabe M, Buhmann JM. Optimal Cluster Preserving
Embedding of Nonmetric Proximity Data. IEEE Trans Pattern Anal Mach Intell.
2003;25(12):1540–1551. doi:10.1109/TPAMI.2003.1251147.

17. Chitta R, Jin R, Havens TC, Jain AK. Approximate Kernel K-means: Solution
to Large Scale Kernel Clustering. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’11.
New York, NY, USA: ACM; 2011. p. 895–903.

18. Zhang R, Rudnicky AI. A large scale clustering scheme for kernel K-Means. In:
Pattern Recognition, 2002. Proceedings. 16th International Conference on. vol. 4;
2002. p. 289–292 vol.4.

19. Bradley PS, Fayyad UM, Reina C. Scaling Clustering Algorithms to Large
Databases. In: Knowledge Discovery and Data Mining; 1998. p. 9–15.

20. Kulis B, Basu S, Dhillon I, Mooney R. Semi-supervised graph clustering: a kernel
approach. Machine Learning. 2008;74(1):1–22. doi:10.1007/s10994-008-5084-4.

21. Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, et al.. The UCR Time
Series Classification Archive; 2015.

22. Kuhn HW. The Hungarian Method for the Assignment Problem. Naval Research
Logistics Quarterly. 1955;2(1–2):83–97. doi:10.1002/nav.3800020109.

23. Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E. Querying and Mining
of Time Series Data: Experimental Comparison of Representations and Distance
Measures. Proc VLDB Endowment. 2008;1(2):1542–1552.
doi:10.14778/1454159.1454226.

24. Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E.
Experimental Comparison of Representation Methods and Distance Measures for
Time Series Data. Data Mining Knowledge Discovery. 2013;26(2):275–309.
doi:10.1007/s10618-012-0250-5.

25. Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing.
1978;26(1):43–49. doi:10.1109/TASSP.1978.1163055.

26. Berndt DJ, Clifford J. Using Dynamic Time Warping to Find Patterns in Time
Series. In: Fayyad UM, Uthurusamy R, editors. KDD Workshop. AAAI Press;
1994. p. 359–370.

27. Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, et al.
Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences
Under Dynamic Time Warping. ACM Trans Knowl Discov Data.
2013;7(3):10:1–10:31. doi:10.1145/2500489.

28. Lanckriet GRG, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI. Learning the
Kernel Matrix with Semidefinite Programming. J Mach Learn Res. 2004;5:27–72.

29. Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm.
In: Advances in neural information processing systems; 2002. p. 849–856.

April 30, 2018 22/23



A Description of the datasets

Table 9. Description of the time series datasets used for evaluation.
name number of classes number of samples

50words 50 905
Adiac 37 781
Beef 5 60
CBF 3 930
ChlorineConcentration 3 4307
CinC ECG torso 4 1420
Coffee 2 56
Cricket X 12 780
Cricket Y 12 780
Cricket Z 12 780
DiatomSizeReduction 4 322
ECG200 2 200
ECGFiveDays 2 884
FaceAll 14 2250
FaceFour 4 112
FacesUCR 14 2250
Gun Point 2 200
Haptics 5 463
InlineSkate 7 650
ItalyPowerDemand 2 1096
Lighting2 2 121
Lighting7 7 143
MALLAT 8 2400
MedicalImages 10 1141
MoteStrain 2 1272
OSULeaf 6 442
OliveOil 4 60
SonyAIBORobotSurface 2 621
SonyAIBORobotSurfaceII 2 980
StarLightCurves 3 9236
SwedishLeaf 15 1125
Symbols 6 1020
Trace 4 200
TwoLeadECG 2 1162
Two Patterns 4 5000
WordsSynonyms 25 905
fish 7 350
synthetic control 6 600
uWaveGestureLibrary X 8 4478
uWaveGestureLibrary Y 8 4478
uWaveGestureLibrary Z 8 4478
wafer 2 7164
yoga 2 3300

April 30, 2018 23/23


	Kernel k-means
	Kernel k-means objective function
	Algorithm

	Foundations of the k-averages algorithm
	Conventions and objective function
	Naive k-averages algorithm
	Impact of object reallocation on class quality
	Removing an object from a class
	Adding an object to a class

	Impact of object reallocation on the global objective function

	K-averages algorithm
	Convergence
	Complexity analysis
	Computational complexity
	Kernel k-means
	K-averages

	Memory access

	Validation
	Reproducibility
	Clustering performance
	Time efficiency

	Experiments
	Datasets
	Methods
	Evaluation Protocol
	Clustering performance
	Efficiency
	Overall results

	Conclusion
	Description of the datasets

