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Rich preference-based argumentation frameworks ™

Leila Amgoud *, Srdjan Vesic”

@ IRIT, CNRS, France
b CRIL, CNRS, France

ABSTRACT

An argumentation framework is seen as a directed graph whose nodes are arguments and
arcs are attacks between the arguments. Acceptable sets of arguments, called extensions,
are computed using a semantics. Existing semantics are solely based on the attacks and do
not take into account other important criteria like the intrinsic strengths of arguments.

The contribution of this paper is three fold. First, we study how preferences issued from
differences in strengths of arguments can help in argumentation frameworks. We show
that they play two distinct and complementary roles: (i) to repair the attack relation
between arguments, (ii) to refine the evaluation of arguments. Despite the importance of
both roles, only the first one is tackled in existing literature. In a second part of this paper,
we start by showing that existing models that repair the attack relation with preferences
do not perform well in certain situations and may return counter-intuitive results. We
then propose a new abstract and general framework which treats properly both roles
of preferences. The third part of this work is devoted to defining a bridge between the
argumentation-based and the coherence-based approaches for handling inconsistency in
knowledge bases, in particular when priorities between formulae are available. We focus
on two well-known models, namely the preferred sub-theories introduced by Brewka and
the demo-preferred sets defined by Cayrol, Royer and Saurel. For each of these models, we
provide an instantiation of our abstract framework which is in full correspondence with it.

1. Introduction

Argumentation is a reasoning model based on the construction and the evaluation of interacting arguments. An argument
is seen as a reason for believing in a statement, doing an action, pursuing a goal, etc. Argumentation has gained an increas-
ing interest from researchers in Artificial Intelligence. It has, for instance, been used for handling inconsistency in knowledge
bases (e.g. [4-6]), merging several knowledge bases (e.g. [7]), making decisions under uncertainty (e.g. [8-10]), modeling
different types of dialogs, namely negotiation (e.g. [11,12]) and persuasion [13-15].

One of the most popular argumentation frameworks was proposed by Dung [16]. It consists of a set of arguments and
an attack relation among them. The framework can thus be represented as a directed graph whose nodes are the arguments
and the arcs represent the attacks. Arguments are evaluated using a semantics which is based solely on the attack relation
and on a key principle according to which an attacker wins unless the attacked argument is defended by other “good”
arguments.

In argumentation literature and since early nineties, in their seminal paper [6], Simari and Loui have emphasized the
importance of considering additional criteria, namely preferences, when evaluating arguments in a framework. Preferences
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are expressed between arguments and reflect their relative strengths. They may have different sources, like available prior-
ities between formulas of a knowledge base over which an argumentation framework is built [6,17] or the importance of
values that may be promoted by arguments [18], etc. In [6], the authors used a weaker version of the basic principle of
Dung’s semantics. They argued that attacks do not always win. They proposed to remove from an argumentation graph any
critical attack, i.e., an arc that emanates from an argument which is weaker, or less preferred, than the argument it attacks.
This idea was largely acknowledged in the literature and was later applied by several scholars to Dung’s abstract framework
[17-20] and to its logic-based instantiations [21,22].

Note that while the previous idea is very intuitive, preferences do not play any role in an argumentation framework
which does not have critical attacks. In [23], an interesting example of such a framework was given. The framework has
two extensions and one of them is clearly better than the other since its arguments are preferred to those of the second
extension. This suggests that handling critical attacks is not the unique role that preferences may play in an argumentation
framework. They may be used to refine the set of extensions of a framework. Unfortunately, this second role is completely
neglected in the literature and existing frameworks capture only the first role. Things are different for the other approaches
for defeasible reasoning (e.g., [24-26]). Indeed, priorities between formulas or defaults are used in a model in order to select
some solutions among possible ones. Thus, the second role is the most popular in these models.

In this paper, we investigate the different roles that preferences may play in a Dung style argumentation framework. We
show that there are indeed two distinct roles: handling critical attacks and refining the results of a framework. The two
roles are independent in the sense that none of the roles can be captured by the other. Moreover, they are not modeled
in the same way. We provide one model for each role. Regarding handling critical attacks, the existing approach which
consists of deleting them from an argumentation graph may have serious problems in some cases. Indeed, if the attack
relation is not symmetric, removing arcs may lead to conflicting extensions and consequently the framework may violate
the consistency postulate proposed in [27]. So, instead of deleting the critical attacks, we propose to invert their arrows
keeping thus the information about the conflicts and in the same time considering the preferences. We show that this novel
approach is well-founded, i.e., it guarantees safe and intuitive results.

For refining the results of an argumentation framework, namely its set of extensions under a given semantics, we use a
preference relation defined on the powerset of the set of arguments. The best extensions with respect to this relation will be
kept and the others are discarded. Note that such a relation is not unique and two relations may lead to different outcomes
for the same argumentation framework. In the paper, we do not study all possible relations. An interesting contribution on
defining preference relations between sets can be found in [28].

Another important contribution of the paper consists of proposing a unified abstract argumentation framework that
extends Dung’s framework with preferences, and more importantly that captures the two roles of preferences. Note that
this is the first framework that captures both roles in the same time. It starts by inverting the arrows of the critical attacks,
then computes the extensions of the revised graph, and finally applies a refinement relation on the set of extensions in
order to select the best ones.

The last contribution of the paper consists of applying our rich framework for reasoning about inconsistency. Our aim
is to make bridges with well-known approaches, namely the preferred sub-theories introduced by Brewka in [29] and the
demo-preferred sets defined by Cayrol, Royer and Saurel in [30]. Each of these models is in full correspondence with a
particular instantiation of the rich model.

The paper is organized as follows: Section 2 recalls Dung’s framework. Section 3 discusses the two roles of preferences
and how they should be modeled. Section 4 presents an abstract framework which handles the two roles of preferences.
Section 5 presents briefly existing approaches [29,30] for handling inconsistency. In Section 6, we show some links between
a knowledge base and the arguments which can be built over it. A bijection between preferred sub-theories and a particular
case of the framework we propose is shown. This result is generalized by presenting a link between demo-preferred sets
and more general instantiation of our rich preference-based framework. Section 7 compares our approach with existing
works. The last section concludes.

2. Basics of argumentation

Dung has developed one of the most abstract argumentation framework in the literature [16]. It consists of a set of
arguments and an attack relation between the arguments.

Definition 1 (Argumentation framework). An argumentation framework (AF) is a pair F = (A, R), where A is a set of argu-
ments and R is an attack relation (R € A x .A). The notation aRb or (a,b) € R means that the argument a attacks the
argument b.

Let us consider the following example borrowed from [31].

Example 1. Assume the following dialog between an expert and a three-years old child.

Expert: This violin is expensive since it was made by Stradivari (a).
Child: The violin was not made by Stradivari (b).



The corresponding argumentation framework F7 is depicted in the figure below:

Op0

In Dung’s framework, arguments and attacks are abstract entities, thus neither their origin nor their structure are known.
In the logic-based instantiations of the framework like the one proposed in [21] for reasoning about inconsistent proposi-
tional knowledge bases, arguments are built from a knowledge base and are considered as minimal proofs for formulas.

Definition 2 (Argument). Let X be a finite propositional knowledge base. An argument is a pair o = (H, h) such that:

HCJX.

H is consistent.

H F h (where  stands for the classical entailment).
#H’ c H such that H' + h.

H is the support of the argument and h its conclusion.

The first condition shows the origin of the support of an argument. The second condition ensures the consistency of
the support. The third condition says that the conclusion of an argument is a consequence of its support. Finally, the last
condition ensures that an argument uses only the necessary information in order to draw its conclusion.

The attack relation is the second key component of Dung’s framework. When applied for reasoning about inconsistent
information, this relation captures the logical inconsistency of a knowledge base. An example of relation is the so-called
undercut and proposed in [32] (see [33] for more attack relations in case of systems built over propositional knowledge
bases).

Definition 3 (Undercut). An argument (H, h) undercuts an argument (H’, h’) iff 3h” € H’ such that h = —h".

That is, an argument attacks another one if the conclusion of the first argument contradicts some of the hypothesis of
the second one. We illustrate those definitions in the next example.

Example 2. Let ¥ = {x, -y, x — y} be a propositional knowledge base. The following arguments can be built from this base:

ai: ({x},%) a: ({=y}h,—y)
as: ((x—>yhx—>y) ag: ({x, =y} xA=y)
as: ({(—y,x—>yh—x%) as: ({(x,x—>yhLy)

Note that more arguments can be built from X. The figure below depicts the argumentation framework F, =
({ay,az, a3, a4, as,ag}, R) where R is “undercut” between those arguments:

@AA@

Different acceptability semantics for evaluating arguments have been proposed in [16]. Each semantics amounts to de-
fine sets of acceptable arguments, called extensions. Before recalling those semantics, let us first introduce the two basic
properties underlying them, namely conflict-freeness and defence.

Definition 4 (Conflict-free, defence). Let F = (A, R) be an argumentation framework and £ C A.

e & is conflict-free iff fa, b € B such that aRb.
e & defends an argument a iff for all b € A such that bRa, there exists c € B such that cRb.

The following definition recalls the semantics proposed in [16]. Note that other semantics refining them have been
proposed in the literature. However, we do not need to recall them for the purpose of our paper since our approach
remains valid for any semantics.

Definition 5 (Semantics). Let 7 = (A, R) be an argumentation framework and £ C A is conflict-free.

e & is an admissible extension iff it defends all its elements.
e £ is a complete extension iff it is admissible and contains all the arguments it defends.



e & is a grounded extension iff it is the minimal (for set inclusion) complete extension.
e & is a preferred extension iff it is a maximal (for set inclusion) admissible extension.
e & is a stable extension iff it attacks any element is A\ €.

Let Ext(F) denote the set of extensions of F under a given semantics.
Example 1 (Cont). The grounded extension of Fj is {b}. This extension is also its unique preferred and stable extension.

Example 2 (Cont). The argumentation framework F, of Example 2 has an empty grounded extension. However, it has three
stable/preferred extensions: & = {a1, az, a4}, &2 ={ay,as,as} and & = {ay, as, ag}.

Example 3. Let us consider the argumentation framework F3 depicted in the figure below:

JF3 has two preferred and stable extensions: {a, c} and {b, d}. Its grounded extension is the empty set.

The extensions are used for defining the status of each argument. An argument may be either skeptically accepted if it
belongs to all the extensions of the framework, or credulously accepted if it belongs to at least one extension, or rejected if
it does not belong to any extension.

Definition 6. Let 7 = (A4, R) be an argumentation framework and Ext(F) its set of extensions (under a given semantics).
Letae A.

e a is skeptically accepted iff Ext(F) # @ and VE&; € Ext(F), a € &;.
e a is credulously accepted iff 3&; € Ext(F) such that a € &;.
e a is rejected iff VE; € Ext(F), a ¢ &;.

Let Status(a, F) be a function that returns the status of an argument a € A in a framework F.

Example 1 (Cont). In F7, the argument b is skeptically accepted while a is rejected under grounded, stable and preferred
semantics.

Example 2 (Cont). The six arguments of F, are all credulously accepted under stable and preferred semantics, and are all
rejected under grounded semantics.

Example 3 (Cont). In F3, the four arguments a,b,c,d are credulously accepted under stable and preferred semantics,
whereas they are all rejected under grounded semantics.

3. The roles of preferences in argumentation

In this section we investigate the different roles that preferences between arguments may play in an argumentation
framework. For each identified role, we propose a framework that handles it properly. Although some properties in this
section may look trivial, which is sometimes actually the case as their proofs follow very simple ideas, we state them
explicitly in order to show that the system we propose is well-founded. It is also worth mentioning that some of these
simple properties are not satisfied by some existing preference-based argumentation frameworks.

In what follows, we assume that F = (4, R) is an arbitrary argumentation framework where A is finite. Let > be
a binary relation that expresses preferences between arguments of A. Throughout the paper, the relation >C A x A is
assumed to be a preorder, i.e., reflexive and transitive. For two arguments a and b, writing a > b (or (a,b) € >) means that
a is at least as strong as b. The relation > is the strict version of >. Indeed, a > b iff a > b and not (b > a). Finally, a~ b
iff a>b and b > a. Examples of such relations are those based on the certainty level of the formulae of a propositional
knowledge base X. For two formulae x and y, writing x > y means that x is at least as certain as y. We also use the
notation x>y iff x> y and not y > x. If X' is equipped with a total preorder >, then it is stratified into Xy U---U X} such
that formulae of X; have the same certainty level and are more certain than formulae in X; where j > i. The stratification
of X enables to define a certainty level of each subset S of X. It is the highest number of stratum met by this subset.
Formally:

Level(S)=max{i | SN Z; #0} (with Level(®)=0).



The above certainty level is used by Benferhat, Dubois and Prade [34] in order to define a total preorder on the set of
arguments that can be built from a knowledge base. The preorder is defined as follows:

Definition 7 (Weakest link principle). (See [34].) Let ¥ = X1 U --- U X}, be a propositional knowledge. An argument (H, h) is
preferred to (H’,h’), denoted by (H,h) >wip (H', 1), iff Level(H) < Level(H’).

Example 2 (Cont). Assume that ¥ = ¥y U ¥, with ¥y = {x} and X = {x — y,—y}. It holds that Level({x}) =1
while Level({—y}) = Level({x — y}) = Level({x, —y}) = Level({—y,x — y}) = Level({x,x — y}) = 2. Thus, a1 >wp
ay,as, ds, as, ag while the five other arguments are all equally preferred.

Let us now analyze the role that preferences between arguments can play in an argumentation framework 7 = (A, R).
We distinguish two roles:

1. To handle correctly the critical attacks in the framework.
2. To refine the evaluation of arguments.

Next subsections discuss in detail each of these roles, their links and how they can be modeled.
3.1. Handling critical attacks

It has been pointed out in the literature that preferences play an important role in argumentation. The idea is that strong
arguments are protected against attacks coming from weaker arguments. Let us consider the dialog of Example 1 between
an expert and a three-years old child. The argument of the child clearly attacks the argument of the expert. However, this
attack should not win since the argument of a child is very weak compared to the argument of an expert. Such attacks
conflict with the preference relation between the arguments involved in the attacks. They will be called critical.

Definition 8 (Critical attack). Let 7 = (A, R) be an argumentation framework and > € A x A. An attack (b,a) € R is
critical iff a > b.

In existing literature like [6,35,18,20], critical attacks are removed from argumentation graphs and semantics are applied
on reduced graphs. For instance, in Example 1, the arrow from the argument b towards the argument a is removed and
Dung’s semantics are applied to the new graph.

While the idea seems meaningful, removing attacks from an argumentation framework may lead to undesirable situ-
ations. Indeed, a reduced argumentation framework may have a conflicting extension. In Example 1, removing the arrow
from b to a will lead to a new framework which has a unique stable extension {a, b}. This extension is not conflict-free and
this contradicts the idea that extensions are coherent positions or points of view. In logic-based instantiations of Dung’s
framework, conflicting extensions will lead to the violation of the rationality postulates discussed in [27,36]. Let us consider
the framework F, of Example 2. The arrow from as to a; is deleted. It can be checked that the set {a;, az, as, as} is a stable
extension of the new graph. This extension is clearly not conflict-free. Worse yet, it supports both the formula x (via the
argument ai) and its negation —x (via the argument as). This means that the framework violates the consistency postulate.

Let us observe that argumentation frameworks that use symmetric attack relations are not concerned by the problem de-
scribed above since even if an attack is removed, a second attack between the same arguments remains. Thus, the extensions
cannot be conflicting. One could say that the problem is solved by using only symmetric attack relations. Unfortunately, this
is not possible. Indeed, it was shown in [37] that logic-based frameworks that use a Tarskian logic [38] and symmetric
attack relations violate the consistency postulate. This is in particular the case when the knowledge base contains at least
one minimal conflict (e.g., {x, y, x — —y}). Thus, another solution is needed.

The main reason behind the dysfunction of the existing approach is that by removing an attack, a crucial information is
lost. In what follows, we propose a novel approach which palliates this limit. The idea is to keep all existing information
(arguments and attacks among them). We suggest to modify the graph of attacks by inverting the arrow of any critical attack
instead of removing it. For instance, in Example 2, the arrow from as to ay is replaced by another arrow emanating from ay
towards as. Even if the argument a; does not attack the argument as (in the sense of R), it is clear that both arguments
cannot be taken together in the same extension. Our approach amounts to taking the strong argument a; and discarding as.
The intuition behind this is that an attack between two arguments represents in some sense two things: (i) an incoherence
between the two arguments, and (ii) a kind of preference determined by the direction of the attack. Thus, in our approach,
the direction of the arrow represents a real preference between arguments. Moreover, the conflict is kept between the two
arguments. Dung’s acceptability semantics are then applied on the modified graph.

Definition 9 (PAF). A preference-based argumentation framework (PAF) is a tuple 7 = (A, R, >) where A is a set of arguments,
R < A x A is an attack relation and > is a (partial or total) preorder on A. The extensions of 7 under a given semantics
are the extensions of the argumentation framework (A, R;), called repaired framework, under the same semantics with:
Rr={(a,b) | (a,b) € R and not (b >a)}U{(b,a) | (a,b) € R and b > a}.



Example 2 (Cont). In Example 2, we invert the arrow from as to a; and obtain the following graph of the repaired frame-

work:
(o)
() ()@ ()

The corresponding PAF has two stable extensions: £ = {ay, az, a4} and & = {ay, as, ag}. We can see that the knowledge
base X contains three maximal consistent sets: {x,x — y}, {x, —y} and {—y,x — y}. Since we supposed that x is stronger
than the two other formulae, our framework calculates the expected result, namely two stable extensions, both containing
an argument for x: one corresponding to the set {x, x — y}, and other to {x, —y}. In Section 5, we precisely define a criterion
which allows to see why those two maximal consistent sets are better than the third one. In Section 6, we prove that there
is a bijection between “the best” maximal consistent sets and the extensions of argumentation framework we propose.

Remark. It is worth mentioning that a full axiomatics justification of our solution is provided in [39].

Roughly speaking, one could say that in case of critical attacks, preferences (when they are strict) take precedence over
attacks, in the sense that they invert the arrows representing attacks. Let us now check whether the same conclusion holds
for non-critical attacks.

Example 4. Let us consider the argumentation framework 4 depicted in the figure below:

OmO

The set {c,d} is the only grounded, preferred and stable extension of this argumentation framework. Thus, the two
arguments ¢ and d are skeptically accepted while a and b are both rejected.

Assume now that a > d and b > c. According to these preferences, it could be argued that the set {a, b} is better than
{c,d}. But let us take a closer look at this situation. The argument c attacks a because some fact in a may be challenged by
the conclusion of c. Here, the fact that b is stronger than ¢ cannot protect a from c since neither b attacks ¢ nor c attacks b.
The simple fact that b is stronger than ¢ cannot protect a. Since a and ¢ are in conflict, one must choose between them.
The argument ¢ wins since it attacks a and it is not attacked. Moreover, b and ¢ may be on completely different topics. The
same justification holds for choosing d and not b. Thus, one should accept the set {c, d}.

Informally speaking, we could say that preferences do not take precedence over attacks when they are not critical.
Arguments a, b, c,d in the previous example could be given by four witnesses such that c¢ attacks the hypothesis of a and d
attacks the hypothesis of b. The fact that witness b is more reliable than ¢ should not be taken into account when reasoning
about the conflict between a and c, since argument b is on different topic.

From Definition 9, it is clear that if a PAF has no critical attacks, then the repaired framework coincides with the basic
one.

Property 1. Let T = (A, R, >) be a PAE If R has no critical attacks, then R; = R. Thus, the extensions of T are the extensions of
(A, R) under the same semantics.

This property shows also that when a PAF has no critical attacks, then preferences do not play any role in the evaluation
process.

Example 3 (Cont). Consider the framework F3 and assume that a > b and ¢ > d. Note that there are no critical attacks. Thus,
the corresponding PAF has two stable extensions: {a,c} and {b, d}.

Example 4 (Cont). The attack relation has no critical attacks. Consequently, the stable extension of the PAF is that of 7y,
namely {c, d}.

Our approach does not suffer from the drawback of the existing one. Indeed, it always delivers conflict-free extensions
of arguments.

Property 2. Let 7 = (A, R, >) be a PAF and Ext(T) its set of extensions under a given semantics. For all & € Ext(T), & is
conflict-free wrt. R.



The fact of inverting the arrows of critical attacks in an argumentation graph does not affect the status of arguments that
are not related to the arguments involved in those attacks. This means that our approach has no bad side effects. Before
presenting the formal result, let us first define when two arguments are related.

Definition 10. Let 7 = (A, R) be an argumentation framework and a,b € A. The arguments a and b are related in F iff
there exists a finite sequence aq,...,a, of arguments such that n > 1, a; =a, a; =b and for all i=1,...,n — 1, either
(@i, ai+1) € R or (ai+1,ai) € R.

Property 3. Let T = (A, R, >) be a PAF. For all a € A such that 3b, c € A with (b, ¢) € R is a critical attack and a is related with b,
it holds that:

e Status(a, (A, R)) = Status(a, (A, Rr)) (under preferred and grounded semantics).
o If (A, R) and (A, R;) both have at least one stable extension, then it holds that Status(a, (A, R)) = Status(a, (A4, R;))
(under this semantics).

Our approach privileges the strongest arguments of a PAF. Indeed, we show that these arguments are skeptically accepted
when they are not conflicting. If such a strong argument is not skeptically accepted, then it is for sure attacked (wrt. R) by
another strongest argument. Before presenting the formal result, let us define the strongest arguments (or the top elements)
wrt. a relation >.

Definition 11 (Maximal elements). Let O be a set of objects and > € O x O is a preorder. The maximal elements of O wrt.
> are Max(O, =) ={0e O | 0o’ € O such that o’ > o}.

Property 4. Let T = (A, R, >) be a PAF such that > is total.'
If Max(A, >) is conflict-free (wrt. R), then Ya € Max(A, >):

e a is skeptically accepted in T under preferred and grounded semantics.
e if T has at least one stable extension, then a is skeptically accepted under stable semantics.

The following result shows that when the preference relation > is a linear order (i.e. reflexive, antisymmetric, transitive
and complete), then the corresponding PAF has a unique stable/preferred extension. Moreover, this extension is computed
in On?) time.

Property 5. Let T = (A, R, >) be a PAF such that R is irreflexive and > is a linear order.

e 7T has exactly one stable extension.
e Stable, preferred and grounded extensions of T coincide.
o If | A| =n, then this extension is computed in O (n?) time.

Let us now see what happens in case the attack relation is symmetric. The following result shows that our approach
returns the same results as the approach developed in [17,18]. This means that inverting the arrows or removing them will
lead to the same result.

Property 6. Let 7 = (A, R, >) be a PAE If R is symmetric, then Ext (T ) = Ext((A, R')) (under the same semantics) where
R'={(a.b) | (a,b) e R and =(b > a)}.

We can also show that when the attack relation is symmetric, the extensions of a PAF are a subset of those of its basic
framework. This means that preferences filter the extensions, i.e., help to select only the best ones.

Property 7. Let 7 = (A, R, >) be a PAF where R is symmetric. If £ C A is a preferred (stable) extension of framework T then & is a
preferred (stable) extension of (A, R).

This property does not hold in case the attack relation is not symmetric as shown in the following example.

1 A preorder > on a set A is total iff for all a,be A, a>b or b >a.



Example 5. The argumentation framework, 5, depicted in the left side of the figure below has a unique stable extension,
{b,d}. Assume that a > b, then the repaired framework is depicted in the right side of the same figure. It can be checked
that its stable extension is the set {a, c}.

OaOaCONNONONCN0)

The following result characterizes the extensions of (A, R) that are discarded in a PAF when R is symmetric. The idea is
that an extension is discarded iff there exists an argument outside the extension which is strictly preferred to any arguments
with which it conflicts in the extension.

Property 8. Let 7 = (A, R, >) be a PAF such that R is symmetric, and € C A. £ is a stable extension of (A, R) but not of T iff
3x’ ¢ & such that Vx € &, if xRX/, then X' > x.

When the attack relation is symmetric and irreflexive, the corresponding PAF is coherent (i.e. its preferred and stable
extensions coincide) and it has at least one stable extension.

Property 9. Let T = (A, R, >) be a PAF. If R is symmetric and irreflexive, then:

e T is coherent.
e 7T has at least one extension.

3.2. Refining argumentation frameworks by preferences

In the previous subsection, we have studied the case where the attack relation and the preference relation of an argu-
mentation framework are in conflict. We have seen that in case of conflict, the preference relation should take precedence.
However, in argumentation frameworks which are free of critical attacks, preferences do not play any role. For instance,
the argumentation framework F4 of Example 4 has no critical attacks and the two preferences a > d ad b > ¢ are com-
pletely useless. In this section, we show that preferences play another role in argumentation frameworks. They may be
used in order to refine the result of the PAF developed in the previous section. To put it differently, they allow to choose
some extensions among the set of extensions of the repaired framework. Let us illustrate our ideas on the following exam-
ple.

Example 3 (Cont). Recall that F3 has two stable extensions, {a, c} and {b, d}, and the four arguments a, b, c,d are all cred-
ulously accepted. Let us now assume that a > b and ¢ > d. Note that any element of {b,d} is weaker than at least one
element of the set {a,c}. Thus, it is natural to consider {a,c} as better than {b,d}. This can be important in a decision
making problem. Assume that the extension {c, d} supports an option 07 while the extension {b, d} supports another option,
say 0;. Since only one option will be chosen at the end, the available preferences make it possible to select o01.

The previous example shows that the extensions of an argumentation framework can be compared on the basis of pref-
erences between arguments. Some extensions may thus be better than others. What is worth noticing is that a refinement
amounts to compare subsets of arguments. In Example 3, the so-called democratic relation, =4, is used for comparing the
two sets {a, c} and {b, d}. This relation is defined as follows:

Definition 12 (Democratic relation). Let A be a set of objects and > € A x A be a partial preorder. For X, X' C A, X =4 X’
iff VX' € X7\ X, 3x € X\ X/ such that x > /.

There are several other relations which can be used to refine the results of a PAF. For instance, the so-called elitist
relation is defined as follows.

Definition 13 (Elitist relation). Let A be a set of objects and > € A x A be a partial preorder. For X, X’ C A, X =, X’ iff
Vxe X\ X/, Ix € X'\ X such that x > X'.

Example 6. Consider the preference-based argumentation framework 7g with attack relation as depicted in the figure below

and suppose that a > b:
.i ®
(©



The corresponding PAF returns two preferred (stable) extensions: & = {a} and & = {b, c}. Relation =4 does not allow to
compare those two sets, formally —(&1 =4 &) and —(&; =4 £1). However, &1 =, &>.

We now provide an example where the converse situation holds.

Example 7. Let us study the PAF 77 depicted in the figure below with a > d and b > e:

7

The basic PAF returns two preferred (stable) extensions: £ = {a, b, ¢} and &, = {d, e}. According to democratic relation,
E1 >4 &2, while —=(&1 = &) and — (&3 =¢ &1).

Note that the first phase, conflict resolution, is responsible for selecting coherent (i.e. conflict-free) points of view which
are complete enough in order to attack other sets of arguments, or at least, to defend their own arguments. The second
phase, refinement, aims at choosing among those points of view the ones containing the best arguments.

Let us now formally define a refinement relation, i.e., the basic properties that such a relation should satisfy.

Definition 14 (Refinement relation). Let (A, >) be such that A is a set of arguments and > C A x A is a (partial or total)
preorder. A refinement relation, denoted by =, is a binary relation on P(A)2 such that:

o = is reflexive.
e = is transitive.
e Forall EC A, foralla,be A\E, if a>b then EU{a} >~ £ U {b}.

The two first conditions ensure that a refinement relation is a preorder. This is important since a refinement relation
plays the role of a preference relation and should thus satisfy some basic properties like reflexivity and transitivity. The
third condition ensures a form of monotonicity. It states that if an argument is strictly preferred to another argument, then
this preference is preserved by the refinement relation.

Property 10. Democratic relation and elitist relation are both refinement relations.

So far, we have shown that preferences play two roles in a PAF: to handle correctly critical attacks and to refine its
results. The question now is what are the links between the two roles? Is it possible that one of them subsumes the other?
Let us start by studying whether handling correctly critical attacks is sufficient to return “refined” results. The answer is
certainly negative since we have shown in a previous section that when a framework has no critical attacks, the available
preferences are completely useless. Thus, the result of the framework may still need to be refined. The following example
shows that even after repairing R, we still need to refine the results.

Example 8. Let us consider the argumentation framework Fg depicted in the left side of the following figure:

On0 On0
e‘°00‘°

Assume that a > b, ¢ > d and b > e. The repaired framework corresponding to (A, R, >) is depicted in the right side of
the above figure. This latter has two stable extensions {a, c} and {b, d}. According to the democratic relation =4, it is clear
that the first extension is better than the second one.

It is even more immediate to see that the refinement alone cannot solve the problem of critical attacks. We illustrate
this point by the following simple example.

2 P(A) denotes the powerset of a set A.



Example 9. Let us consider the argumentation framework Fg depicted in the left side of the figure below:
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If we ignore the critical attacks and preferences, the framework Fy has two stable/preferred extensions: {a, c} and {b, d}.
Assume now that a > b and a > d and d > c. When democratic relation =4 is applied, the set {a, c} is preferred to {b,d}.
However, this result is not intuitive. The reason is that d defends itself against its unique attacker c. Thus, d should be
accepted and consequently, ¢ should be rejected, thus the expected extension would be: {a,d}. Note that {b,d} cannot be
an extension since b is attacked by a stronger argument (a). On the right side of the figure, we see the framework obtained
by inverting the arrows of the critical attacks. This framework has a unique stable extension which is the expected result
{a,d}.

The conclusion is that taking in account of preferences is a two-steps process which consists of:

1. Repairing the attack relation R by computing R,.
2. Refining the results of the framework (A4, R;) by comparing its extensions using a refinement relation.

4. Rich PAFs

In this section we propose an abstract model that extends Dung’s argumentation framework with preferences between
arguments. The model integrates both roles of preferences. Note that this is the first model that treats the two roles of
preferences together. It is also the first model that refines the extensions of argumentation frameworks. The model is
referred to as rich preference-based argumentation framework.

Definition 15 (Rich PAF). A rich PAF is a tuple 7 = (A, R, >, =) where A is a set of arguments, R < A x A is an attack
relation, > € A x A is a (partial or total) preorder and = € P(A) x P(A) is a refinement relation. The extensions of 7
under a given semantics are the elements of Max(3, =) where B is the set of extensions (under the same semantics) of the
PAF (A, R, >).

From the previous definition, it is clear that the extensions of a rich PAF are a subset of the extensions of its repaired
framework (thus, a subset of the extensions of the PAF (A, R, >)). This means that a rich PAF refines a PAF. Moreover, if
the PAF has only one extension, then this latter is the only extension of the rich PAF. Another case where a refinement is
not necessary is when the relation > is a linear order.

Property 11. Let 7 = (A, R, >, =) be a rich PAF and B3 be the set of extensions (under the same semantics) of the repaired framework
(A, Ry).

e Max(B, =) CB.
o If|B| =1, then Max(B, =) = B.
e If R isirreflexive and > is a linear order, then Max (B3, =) = BB holds for stable, preferred, grounded and complete semantics.

Example 1 (Cont). In this example, the PAF has a unique stable extension {a}. Thus, {a} is the unique stable extension of the
rich PAF ({a, b}, {(b, @)}, {(a, a), (b, b), (a,b)}, >=) whatever the refinement relation that is used.

It is also easy to see that when a rich PAF has no critical attacks, then its extensions are a subset of the extensions of its
basic version (i.e. without preferences).

Property 12. Let T = (A, R, >, =) be a rich PAF such that R has no critical attacks. Preferred (resp. stable) extensions of T are
exactly the elements of Max(S, =) where S is the set of all preferred (resp. stable) extensions of the AF (A, R).

Example 3 (Cont). Let us use the democratic relation >=4. In F3, there are no critical attacks (R, = R). The extensions of
the rich PAF are Max({{a, c}, {b,d}}, =q4) = {{a, c}}. Thus, {a, c} is the unique stable extension of the corresponding rich PAF.

Example 4 (Cont). The PAF extending F4 has no critical attacks. Moreover, F4 has a unique stable/preferred extension. Thus,
this is also the unique stable/preferred extension of the corresponding rich PAF whatever the refinement relation that is
considered.

Example 8 (Cont). Recall that the repaired framework of 7g has two stable extensions: {a,c} and {b,d}. Moreover,
Max({{a, c}, {b,d}}, =q) = {{a, c}}. Thus, {a,c} is the unique stable extension of the rich PAF that uses the democratic re-
lation.



5. Coherence-based approach for handling inconsistency

Coherence-based approach for handling inconsistency in a propositional knowledge base X follows two steps: At the
first step, some subbases of X' are chosen. These subbases can be, for example, maximal for set inclusion consistent subsets
of the knowledge base [40]. At the second step, an inference mechanism is chosen. This later defines the inferences to
be made from X. An example of inference mechanism is the one that infers a formula if it is a classical conclusion of
all the chosen subbases. Several works have been done on choosing the subbases, in particular when X' is equipped with
a (total or partial) preorder > (> C X x X'). Recall that when > is total, X is stratified into X¥; U---U X, such that
Vi, j with i # j, X; N X; = . Moreover, X1 contains the most important formulas while X, contains the least important
ones.

In [29], a knowledge base is equipped with a total preorder and the chosen subbases privilege the most important
formulas.

Definition 16 (Preferred sub-theory). (See [29].) Let X be stratified into X; U --- U Xy,. A preferred sub-theory is a set S =
S1U --- US;, such that Vk € [1,n], S1U --- US; is a maximal (for set inclusion) consistent subbase of Xy U---U X.

Example 2 (Cont). The knowledge base ¥ = ¥ U X with ¥y = {x} and X, = {x — y, =y} has two preferred sub-theories:
S1={x,x— y}and Sy = {x, ~y}.

Brewka [29] has shown that the preferred sub-theories of a knowledge base X are maximal (wrt set inclusion) consistent
subbases of X.

Property 13. (See [29].) Each preferred sub-theory of a knowledge base X is a maximal (for set inclusion) consistent subbase of X.

The above definition has been extended to the case where X' is equipped with a partial preorder > [30]. The basic idea
was to define a preference relation on the powerset of X'. The best elements according to this relation are the preferred
theories, called also democratic sub-theories. The relation that generalizes preferred sub-theories is the democratic relation
(see Definition 12). In this context, A is X and > is the relation >. In what follows, > denotes the strict version of .
Thus:

LetS,8' C X. 8= S'iff ¥x' € S\ S,Ix € S\ S’ such that x> x'.

Definition 17 (Democratic sub-theory). (See [30].) Let X be propositional knowledge base and > C X x X be a partial
preorder. A democratic sub-theory is a set S C ¥ such that S is consistent and 3S’ € ¥ such that S’ is consistent and
S’ =4 S.

Example 10. Let ¥ = {x, —x, y, —y} be such that =x > y and —y > x. Let §1 = {x,y}, &2 = {x, —~y}, &3 = {—x, y}, and
S4 = {—x, —y}. The three subbases S», S3 and S, are the democratic sub-theories of X'. However, S7 is not a democratic
sub-theory since Sy =4 S1.

It is easy to show that the democratic sub-theories of a knowledge base X' are maximal (for set inclusion) consistent.
Property 14. Each democratic sub-theory of a knowledge base X' is a maximal (for set inclusion) consistent subbase of X.
6. Computing sub-theories with argumentation

We have already shown in [39] that the first role of preferences (i.e. handling critical attacks) is sufficient to capture
the preferred sub-theories of Brewka by a particular argumentation framework. We now show that our rich PAF generalizes
this result as it allows to recover the democratic sub-theories. Recall that democratic sub-theories are a generalization of
preferred sub-theories. In Subsection 6.1, we recall the results about the link with the preferred sub-theories. Subsection 6.2
presents new results which generalize these results. The two instances (i.e., the two frameworks that recover respectively
preferred sub-theories and democratic sub-theories) use all the arguments that can be built from X using Definition 2
(i.e. the set Arg(X)). Similarly, they both use the attack relation “Undercut” given also in Definition 2. However, as we
will see next, they are grounded on distinct preference relations between arguments. The last component of a rich PAF
is a preference relation on the power set of Arg(X). Both instances will use the democratic relation 4. To sum up, for
recovering preferred and democratic sub-theories, we will use two instances of the rich PAF (Arg(X), Undercut, >, >=4).
Before presenting the formal results, let us first introduce some basic properties.

It can be shown that when the preference relation > is a total preorder, then the stable extensions of the PAF
(Arg(Y), Undercut, >) are all incomparable wrt the democratic relation >=4.



Property 15. Let 7 = (Arg(X), Undercut, >) be a PAF. For all stable extensions £ and £’ of T with £ # &', if > is a total preorder,
then —=(€ =4 &).

From the previous property, it follows that the stable extensions of (Arg(X'), Undercut, >) coincide with those of the
rich PAF (Arg(X), Undercut, >, =4).

Property 16. If > is a total preorder, then the stable extensions of (Arg(X), Undercut, >, =4) are exactly the stable extensions of
(Arg(X), Undercut, >).

Let us start by introducing some useful notations.

Notations: Let a = (H, h) be an argument (in the sense of Definition 2). The functions Supp and Conc return respectively
the support H and the conclusion h of the argument a. For § € X, Arg(S) is the set of all arguments that may be
built from S in the sense of Definition 2. For £ € Arg(X), Base(f) = Supp(a) where a € B.

The following result summarizes some useful properties of the above functions.
Property 17.
e For any consistent subbase S C X, S = Base(Arg(S)).
e The function Base is surjective but not injective.
[ ]
[ ]

Forany £ C Arg(X), £ C Arg(Base(&)).
The function Arg is injective but not surjective.

Another property that is important for the rest of the paper relates the notion of consistency of a set of formulas to that
of conflict-freeness of a set of arguments.

Property 18. Aset S C X is consistent iff Arg(S) is conflict-free.
The following example shows that the previous property does not hold for an arbitrary set of arguments.

Example 11. Let £ = {({x}, x), ({x — y},x = ¥), {—y}, —~y¥)}. It is obvious that £ is conflict-free while Base(£) is not con-
sistent.

6.1. Recovering preferred sub-theories

In this subsection, we recall the results we proved in [39] and which show that there is a full correspondence between
the preferred sub-theories of a knowledge base X and the stable extensions of the PAF (Arg(X), Undercut, >yp). Recall
that the relation >y;p is based on the weakest link principle and privileges the arguments whose less important formulas
are more important than the less important formulas of the other arguments. This relation is a total preorder and is defined
over a knowledge base that is itself equipped with a total preorder. According to Property 16, the stable extensions of
(Arg(X), Undercut, >yp) coincide with those of (Arg(X), Undercut, >wip, =q).

The first result shows that from a preferred sub-theory, it is possible to build a unique stable extension of the PAF
(Arg(X), Undercut, >wip).

Theorem 1. (See [39].) Let X be a stratified knowledge base. For all preferred sub-theory S of X, it holds that:

e Arg(S) is a stable extension of (Arg(X'), Undercut, >w;p).
e S =Base(Arg(S)).

Similarly, each stable extension of (Arg(X'), Undercut, >w;p) is built from a unique preferred sub-theory of X.

Theorem 2. (See [39].) Let X be a stratified knowledge base. For all stable extension £ of (Arg(X'), Undercut, >wyp), it holds that:

e Base(E) is a preferred sub-theory of X.
o £ =Arg(Base(f)).

There exists a one-to-one correspondence between preferred sub-theories of X' and the stable extensions of (Arg(XY),
Undercut, >wip).
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Fig. 1. Preferred sub-theories of X vs. stable extensions of (Arg(X), Undercut, >wip).

Theorem 3. (See [39].) Let T = (Arg(X'), Undercut, >wp) be a PAF over a stratified knowledge base X. The stable extensions of T
are exactly the sets Arg(S) where S ranges over the preferred sub-theories of X.

From the above result it follows that the PAF (Arg(X), Undercut, >y;p) has at least one stable extension.
Corollary 1. If X has at least one consistent formula, then the PAF (Arg(X), Undercut, >wp) has at least one stable extension.

Example 2 (Cont). Fig. 1 shows the two preferred sub-theories of X' as well as the two stable extensions of the corresponding
PAF.

6.2. Recovering democratic sub-theories

Recall that the democratic sub-theories of a knowledge base X generalize the preferred sub-theories when X is equipped
with a partial preorder >. Thus, in order to capture the democratic sub-theories, we will use the generalized version of the
preference relation >w;pC Arg(X) x Arg(X). The idea behind the new relation, denoted by >gwip, is that an argument is
preferred to another if every formula used in the support of the former is strictly preferred in the sense of > to at least
one formula in the support of the later.

Definition 18 (Generalized weakest link principle). (See [21].) Let X be a knowledge base which is equipped with a partial
preorder >. For two arguments (H, h), (H',h’) € Arg(X), (H,h) >cwip (H', I) iff Yk € H, 3k’ € H' such that k> k' (i.e. k = k'
and not (k' = k)).

It can be shown that from each democratic sub-theory of a knowledge base X, a stable extension of (Arg(X'), Undercut,
>cwrp) can be built.

Theorem 4. Let X be a knowledge base which is equipped with a partial preorder =>. For all democratic sub-theory S of X, it holds
that Arg(S) is a stable extension of (Arg(X), Undercut, >cwip).

The following result shows that each stable extension of the PAF (Arg(X'), Undercut, >gwp) returns a maximal consis-
tent subbase of X.

Theorem 5. Let X be a knowledge base which is equipped with a partial preorder . For all stable extension £ of (Arg(X'), Undercut,
>cwiLp), it holds that:

e Base(€) is a maximal (for set inclusion) consistent subbase of X.
o £ =Arg(Base(f)).
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Fig. 2. Democratic sub-theories of X vs. Stable extensions of (Arg(X), Undercut, >wip, =q)-

The following example shows that the stable extensions of (Arg(X'), Undercut, >gwip) do not necessarily return demo-
cratic sub-theories.

Example 10 (Cont). Recall that ¥ = {x, =x, y, =y}, =x > y and —y > x. Let S = {x, y}. It can be checked that the set Arg(S)
is a stable extension of (Arg(X), Undercut, >cwip). However, S is not a democratic sub-theory since {—x, =y} =4 S.

It can also be shown that the converse of the above theorem is not true. Indeed, a knowledge base may have a maximal
consistent subbase S such that Arg(S) is not a stable extension of (Arg(X), Undercut, >¢wip). Let us consider the following
example.

Example 12. Let ¥ = {x, —x} and x> —x. It is clear that {—x} is a maximal consistent subbase of X while Arg({—x}) is not
a stable extension of (Arg(X), Undercut, >cwip).

The following result establishes a link between the ‘best’ maximal consistent subbases of X wrt the democratic relation
=q and the ‘best’ sets of arguments wrt the same relation >=4.

Theorem 6. Let S, S’ C X be maximal (for set inclusion) consistent subbases of X. It holds that S =4 S’ iff Arg(S) =4 Arg(S’).

We also show that from each democratic sub-theory of X, one can build a stable extension of the corresponding rich
PAF, and each stable extension of the rich PAF is built from a democratic sub-theory.

Theorem 7. Let X be equipped with a partial preorder >.

e For each democratic sub-theory S of X, Arg(S) is a stable extension of the rich PAF (Arg(X), Undercut, >cwip, =q)-
e For each stable extension £ of (Arg(X'), Undercut, >cwip, *=q), Base(€) is a democratic sub-theory of X.

Finally, we show that there is a one-to-one correspondence between the democratic sub-theories of a base X and the
stable extensions of its corresponding rich PAF.

Theorem 8. The stable extensions of (Arg(X), Undercut, >cwip, =4) are exactly the Arg(S) where S ranges over the democratic
sub-theories of X.

Fig. 2 synthesizes the different links between the democratic sub-theories of a knowledge base X' and the stable exten-
sions of its corresponding PAF and rich PAF.

7. Related work

Introducing preferences in argumentation frameworks goes back to Simari and Loui [6]. In that work, the authors have
defined an argumentation framework in which arguments are built from a propositional knowledge base. The arguments
grounded on specific information are considered as stronger than the ones built from more general information. This pref-
erence is used to solve dilemmas between any pair of conflicting arguments. Thus, it is used for handling critical attacks.
The idea of this paper has been generalized in [17,18] to any argumentation framework and to any preference relation.
Unfortunately, these approaches deliver correct results only when the attack relation is symmetric. When the attack relation



is not symmetric, the approach suffers from two main drawbacks: the first one is that it may return conflicting extensions
as shown in Example 1 since it may put two conflicting arguments in the same extension. One of these arguments is clearly
undesirable. The second drawback is a consequence of the first one. Indeed, since an undesirable argument may be ac-
cepted, then all the arguments that are defended by this argument are accepted as well at the detriment of good ones. Let
us illustrate this issue on an example.

Example 5 (Cont). Let us consider the following arguments of Fs:

Expert: This violin is expensive since it was made by Stradivari (a).
Childy: This violin was not made by Stradivari (b).

Childy: This violin is very solid since it was made by Stradivari (c).
Childy: The violin is not interesting since it is not solid (d).
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The corresponding argumentation framework is depicted in the left side of the figure above. Assume that a > b. Using the
PAF developed in [17] or the VAF introduced in [18], one gets the framework depicted in the right side of the same figure.
Its grounded extension is the set {a, b, d}. This result is incorrect for two reasons: The first one is that child; and the expert
cannot be both right. It is natural to have the argument of the expert as accepted while the argument b of the child as
rejected. The second reason is that the argument b (which should be rejected) defends d against c, leading thus to an
undesirable result. Indeed, d is defended by a “bad” argument! It is easy to check that our approach returns {a, c} as the
grounded extension and it rejects the two arguments of Child;.

Our approach overcomes the limits of existing argumentation frameworks which deal with preferences or values. Fur-
thermore, it is more general since it models even the second role of preferences (i.e., the refinement).

The first limit of existing models, namely the violation of conflict-freeness, has been pointed out in [39]. The authors
proposed a new approach for handling critical attacks. It consists of defining a preference relation on the whole powerset of
the set of arguments. The best elements of this relation are the extensions. The preference relation encodes the fact that an
attack is privileged when it is not critical while the preference takes precedence when it is. Thus, that approach introduces
preferences at the semantics level while ours does that at the level of the attack relation. Indeed, we repair this latter. It is
worth mentioning that the approach in [39] neglects the refinement. To the best of our knowledge, there is only one work
on refinement [23]. The authors proposed a particular refinement relation for symmetric argumentation frameworks [41]
that use stable semantics. In this sense, our work is more general since it accepts any refinement relation. Moreover, there
is no restriction to particular semantics or to particular attacks relations.

Modgil and Prakken proposed a preference-based argumentation framework in [42]. The framework is an instantiation of
Dung’s framework which considers preferences between arguments and three attack relations, namely rebutting, assumption
attack and undercutting. This framework differs from our rich PAF in several aspects. First, it is an instantiation while our
model is abstract. Second, it encodes only one role of preferences: handling critical attacks. Thus, it may return non-refined
results. Our framework is thus richer since it captures both roles of preferences. Regarding the first role, the framework of
Modgil and Prakken presents two limitations: First, a lot of complex conditions are assumed in order to ensure some very
basic properties whereas our results hold for every argumentation framework. Second, the authors solved the problem of
critical attacks only for symmetric relations like rebutting. However, undercutting may be in conflict with the preference
relation and still always wins. Our approach is much more general and is suitable for both symmetric and non-symmetric
attack relations.

8. Conclusion

This paper has presented a comprehensive study on the role that preferences can play in an argumentation framework.
Two roles are distinguished. The first one consists of repairing the critical attacks. We have proposed a new approach
for modeling this role and which overcomes the limitations of existing approaches. The basic idea is to invert the arrow
of each critical attack instead of removing it. We have shown that such an approach is well-founded. The second role
of preferences consists of refining the results of an argumentation framework. Indeed, we have shown that a refinement
amounts to compare (using a preference relation, called a refinement relation) the extensions under a given semantics of
an argumentation framework. It is clearly argued in the paper that the two roles are completely independent and should be
modeled in different ways and at different steps of the evaluation process.

We have proposed the first abstract framework, called rich PAF, which models the two roles. The idea is to repair first the
critical attacks, then to apply Dung’s acceptability semantics on the repaired framework, and finally to apply a refinement
relation on the extensions. In the general case, these steps are mandatory otherwise counter-intuitive results can be found.

We have also shown that the approach is well-founded since it allows to recover very well-known works on han-
dling inconsistency in knowledge bases, namely the ones that restore consistency of knowledge bases. Indeed, we have



shown full correspondences between instances of the new rich PAF and respectively the preferred sub-theories defined
by Brewka in [29] and the democratic sub-theories proposed by Cayrol, Royer and Saurel in [30]. It is worth recalling
that the same instance but without considering preferences was already used by Cayrol in [43] for making a bridge be-
tween stable extensions of an argumentation framework and the maximal consistent subsets of a propositional knowledge
base.
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Appendix A
Proof of Property 1. Follows directly from Definition 9. O

Proof of Property 2. Let 7 = (A, R, >) be a PAF and £ one of its extensions under one of the semantics recalled in
Definition 5. Thus, £ is conflict-free wrt. R,. Assume now that Ja, b € £ such that aRb. There are two cases:

e b > a: In this case (b,a) € R,. This contradicts the fact that £ is an extension, thus conflict-free.
e not b > a: In this case (a, b) € R;. This contradicts the fact that £ is an extension, thus conflict-free. O

Proof of Property 3. Let A; = {x <€ A |a and x are related in (A, R)}. Let R ={(x,¥) e R| (x,y) € Aqg x Aqg}.

e Preferred semantics. We will first prove that for every preferred extension £ of (A, R) there exists a preferred extension

E of (A,Ry) st. ENAg=E N Aq. Let € be a preferred extension of (A, R) and let & = & N Aq. The set & is
conflict-free and admissible in (Ag, Rq). It is also admissible in (A, R;). Thus, there exists a preferred extension &’
of (A, Ry) st. E S &' Let £, =& N Ayq. It holds that & C &). Let us prove that & C &,. By means of contradiction,
suppose that & C &/. Thus, since & is admissible in (A, R) and (£ \ A,) is admissible in (A, R) and those two sets
do not attack one another, then £, U (£ \ Ag) is admissible in (A, R). Contradiction with the fact that £ is a preferred
extension in (A, R). By using exactly the same reasoning, we prove that for every preferred extension & of (A, R:)
there exists a preferred extension £ of (A, R) s.t. EN A =E"NAq.
Suppose now that a € A, is rejected in (A, R). This means that there is no preferred extension £ of (A4, R) such
that a € £. From the previous fact, there is no preferred extension &£ of (A, R;) s.t. a € £, so a must be rejected in
(A, R;). The same reasoning yields the conclusion that the contrary is also true. By similar reasoning, we obtain that a
is credulous in (A, R) iff a is credulous in (A, R;). From these two facts, we conclude that a is skeptically accepted in
(A, R) iff it is skeptically accepted in (A, R;).

e Stable semantics. Throughout the proof, we suppose that there exists at least one stable extension in (A, R) and that
there exists at least one stable extension in (A, R;). We will first prove that for every stable extension £ of (A, R),
there exists a stable extension &£ of (A, R;) s.t. ENAg=E' N A,.

Let £ be a stable extension of (A, R). Let & = & N A,. The set &; is a stable extension of (Aq, Rq). Let £ be an

arbitrary stable extension of (A\ Aq, R:| A\A,) — it is easy to see that there must exist such an extension. Then, EaU&

is a stable extension of (A, R,). To prove that for every stable extension £ of (A, R,), there exists a stable extension

of (A, R) st. ENA;=E"NAg is similar.

By using this property, we can easily see that the status of an arbitrary argument x € A, is the same in (A4, R) and

(A, Rp).

e Grounded semantics. Let, for an arbitrary set S € A, F(S)ar) ={xe A| (Vy € A) if yRx then (3z € S) ZRy}. Let

' 1 times .

FH(Suar) = FFEFC..(S)..)aRr). We will prove by induction on i that (Vi € NNF' (D r) N A =

F D) AR,y N A

- Base. Follows from the fact that non-attacked arguments in F' i(@)( AR) N Aq are exactly the non-attacked arguments
in 1 (D) a,r,) N Aa

- Step. Let }"i((())(A,R) NA; = J:i(@)(A,R,) N Ag. It is easy to see that an arbitrary argument in A, is defended by
F(#)a,r) N Aqg if and only if it is defended by F'(#)(a r,) N Aq. Thus, FIH1(@) a4 =) N Ag = FF1 D)4 rp N Aa.

We conclude by induction that (Vi € N) Fi(#)(A, R) N Ay = FI#) (A, R;) N Aq. Let us use the notation GE(A, R)

for the grounded extension of argumentation framework (A4, 7R). It has been shown in [16] that GE(A,R) =

Uz FL@)(A, R). Since the number of arguments is supposed to be finite, (3j € N) s.t. FI(#)(A, R) = Fit (@) (A, R)

and FI@)(A, R;) = FiT1 (%) (A, R;). From those facts, we have that GE(A, R) N Ay = GE(A, R;) N Aq. This means

that status of arguments in .4, do not change. O



Proof of Property 4. Let Max(A, >) be conflict-free wrt. R and let a be an arbitrary element of Max(A, >). We prove that
a is not attacked wrt. R,. On the one hand, since Max (A, >) is conflict-free, a could only be attacked (wrt. R;) by some
argument b not belonging to Max(A, >), i.e. from an argument b such that a > b. On the other hand, from the definition
of Rr, we see that there can exist no arguments a,b € A s.t. bRya Aa > b. So, a cannot be attacked by an argument b such
that a > b. Those two facts imply that (#b € A)bR.a.

e Since a is not attacked, it is in the grounded extension. Let £ be a preferred extension. Suppose that (#b € £)aR;b. In
that case, it can easily be checked that since £ and {a} are both admissible sets that do not attack one another, then the
set £U{a} is also admissible in 7. Contradiction with the definition of preferred extension. Suppose that (3b € £)aRb.
Since £ is a preferred extension, (3c € £)cRra. Contradiction. Thus, it must be that a € £, for every stable or preferred
extension in 7 = (A, R, >).

e Let £ be a stable extension of 7 and suppose that a ¢ £. Since £ is stable, then it attacks wrt. R, any argument which
does not belong to £. Contradiction with the fact that a is not attacked in 7. O

Proof of Property 5. Let us consider the following algorithm:

input:

A: set of arguments

R: attack relation

>=: preference relation

output:

in: the only stable/preferred/grounded ext.
out: rejected arguments wrt. those semantics

/* Put all arguments in und. =x/

in = {};
out = {};
und = A;

/* While und is not empty,
sort arguments from und to in and out. =*/
while (not (und == {}) {

/* Select the best argument in und,
and move it to in. =/
let a be the only argument in the set

{x in und | for all x’ in und, x > xX};
in = in union {a};
und = und - {a};

/* Since a is accepted, all arguments being
in conflict with it must be rejected. =/
del = {x inund | x Ra or a R x};

out = out union del;

und = und - del;

}

Let us prove that in is a stable extension of 7. It is clear that in is conflict-free. Let x" ¢ in. From the previous algorithm,
it is easy to see that there exists x € in s.t. x > x’ and (xXRx’ or xRx). In other words, xR.X'. Thus, in is a stable extension
of T.

Every stable extension is a preferred and a complete extension [16]. Thus, in is a preferred and complete extension of 7.

Let us prove that in is the only complete extension. Suppose that £ C A, with £ # in is another complete extension. Since
none of the arguments of in is attacked (wrt. R;), it is clear that every complete extension must contain those arguments,
i.e., in C £. But, since in is a stable extension, it is maximal conflict-free set, contradiction. So, we have shown that in is the
only complete extension.

Grounded extension is exactly the intersection of all complete extensions [16]. Hence, in is the grounded extension of 7.

Let us now prove that in is the only stable and the only preferred extension. Suppose not, thus there exists another stable
or preferred extension &, such that £ # in. Since we suppose that £ is stable or preferred, then £ is for sure complete [16].
But we have already shown that in was a unique complete extension, contradiction. Thus, in is the unique stable and
preferred extension of 7.



The while loop is executed at most n times, where n is the number of arguments, and its execution contains at most n
comparisons. Thus, algorithm’s time complexity is @(n?). O

Proof of Property 6. It is easy to see that when R is symmetric then R, = R’. Thus, extensions of the two frameworks
must coincide as well. O

Proof of Property 7. It is easy to see that a set is a stable extension of (A4, R) iff it is a preferred extension of (A, R) iff it
is a maximal conflict-free set, since every maximal conflict-free set attacks all arguments in its exterior in this framework.
Let us now suppose that £ is a preferred (stable) extension of 7. This means that £ is maximal conflict-free set in 7. It is
immediate that £ is maximal conflict-free in (A4, R). O

Proof of Property 8. Let £ C A be a stable extension of (A, R) which is not a stable extension of 7. This can be true
iff £ is a maximal conflict-free set but that it is not stable in 7. Formally, (3x’ ¢ £) (#x € £)xR,x’. This is equivalent to
3x ¢ &) (Vx € E)=(xR;x'). It is obvious that —=(xR,x") is equivalent to xR,x' = x' >x. O

Proof of Property 9. Property 6 shows that in the case when R is symmetric, extensions of 7 coincide with extensions of
framework (A, R’), where R’ is defined as in Property 6. Theorems 1 and 2 from [44] imply that 7 is coherent and that it
has at least one stable extension. O

Proof of Property 10. We will first study the democratic relation =.

e From the definition of democratic relation we see that it is reflexive.
e Let us prove that democratic order is a transitive relation. Let X' =4 ) and ) =4 Z. We will prove that X =4 Z. Let
ze Z\ X. Let us study two possible cases:

- Let z¢ ). Since YV =4 Z then 3y € Y\ Z) sit. y > z. If y € X then the proof is over. If it is not the case, then
yeY\X.So, Axe X\)Y) st. x> y. If x¢ Z then the proof is over. If x€ X', x€ Z and x ¢ ) then, since x € Z we
have that (Jy; € Y\ 2) s.t. y1 > x. If y1 € X, then we have y; > x > y > z and the proof is over. If that is not the
case, it must be that y; ¢ X. Thus, (Ix; € X'\ Y) s.t. x1 > y1. If x1 ¢ Z, from the transitivity of preference relation,
we have x; > z. In the case when x; € Z, since it is not in ), we have that (y; € Y\ 2) s.t. y2 > xq1. From y, > yq,
we have that y, # y1. Either we will end the proof or we continue by constructing an infinite sequence of different
arguments y1q,..., yn, ... while we supposed that ) is finite. Contradiction.

—-letz¢ X, ze Y, ze Z.1f 3x e X\ 2) s.t. x > z, the proof is over. Else, Ix s.t. xe YN Z, x ¢ ), x > z. Then, it must be
that (3y € Y\ Z) y > x. From the previous facts, we have also that y ¢ X, since in that case, from the transitivity of
preference relation, we have y > z, contradiction. Thus, y ¢ X, y € ), y ¢ Z. From all those facts and from X =4 ),
I € (XNZ)\Y st. x1 > y. Similarly, Iy € Y\ (X U 2) s.t. y1 > x1. It is obvious how an infinite sequence of
different arguments can be constructed, despite the fact that we supposed that the set A, and, consequently, the sets
X, Y, Z are finite. Contradiction.

e The third property required by the definition of refinement relation is trivially satisfied by >=4.

Now, we prove that =, is also a refinement relation.

e It is trivial that the relation 3=, is reflexive.
e Let us prove that this relation is transitive. Let X =, ) and ) =, Z and let us prove that X >, Z must hold. Let
xe X\ Z. We study two cases:

- x€ Y. In this case, from ) =, Z, it holds that (32 € Z\)) s.t. x> 7. If (32 € Z\ ) s.t. x> 7 and 7' ¢ X, the proof
is over. We now study the second possible case, the one when (A2’ € Z\ (X U))) s.t. x> Z'. Thus, (3z; € Z\ ) s.t.
x>7 and z; € X. Since z; e X\ Y and X = Y, then (3y1 € Y\ X) s.t. z; > y1. Note that transitivity of preference
relation implies that x > yi. If y; € Z the proof is over. Else, let y; ¢ Z. Thus, we have y; € '\ (X U Z). From
Y =e Z, we obtain 3z € Z\ Y s.t. y1 > zo. If zp ¢ X, then the fact that x > z, ends the proof, since it means that
X =¢ Z. Else, zo € X. By following this idea, we will either find an element z € Z\ X s.t. x > z, which will end the
proof or we will construct the chain z; > z; > z3 > --- which contains infinitely many arguments. Contradiction with
the fact that A is finite.

- x¢ ). In this case, from X =, ), we have that (3y € Y\ X) s.t. x> y. If y € Z, the proof is over, since we obtain
X =¢ Z. Else, let y ¢ Z. Now, the rest of the proof is similar to the proof of previous item.

e It is easy to see that the third item of Definition 14 is satisfied in the case of =.. O

Proof of Property 11. It is easy to see why the first and the second items of this property hold. The third one follows from
Property 5. O



Proof of Property 14. Let S be a democratic sub-theory. From Definition 17, S is consistent. Assume now that S is not
a maximal (for set inclusion) consistent set. Thus, 3x € X' \ S s.t. S U {x} is consistent. It is clear that S U {x} >4 S. This
contradicts the fact that S is a democratic sub-theory. O

Proof of Property 15. Let £, &’ be two stable extensions of (Arg(X), Undercut, >), and let £ =4 & with £ # &', It is clear
that —=(£ € &’) and —(&' CE&). Let d’ € £\ € be such that Va” € £\ £ it holds that a’ > a” (this is possible since > is a
total preorder). From & =4 £, we have that Ja € £\ £ s.t. a > a’. This means that Vb’ € &'\ &, a > b’. Since £’ is a stable
extension, then 3a’ € &’ s.t. @R;q, i.e. (A’Ra and —(a > a’)) or (aRa’ and a’ > a). Sets £ and &’ are both conflict-free, so
a’ € &'\ €. Contradiction, since Va’ € £\ £ we have a>ada’. O

Proof of Property 18. Let S C X.

e Assume that S is consistent and Arg(S) is not conflict-free. This means that there exist a,a’ € Arg(S) s.t
a undercuts a’. From Definition 2 of undercut, it follows that Supp(a) U Supp(a’) is inconsistent. Besides, from the
definition of an argument, Supp(a) € S and Supp(a’) € S. Thus, Supp(a) U Supp(a’) € S. Then, S is inconsistent.
Contradiction.

e Assume now that S is inconsistent. This means that there exists a finite set S’ = {h, ..., h} s.t.
-8cs
-S'H1L
- & is minimal (wrt. set inclusion) s.t. previous two items hold.
Since &’ is a minimal inconsistent set, then {h1, ..., h,_1} and {hy} are consistent. Thus, ({h1, ..., hx_1}, =hy), ({he}, hy) €

Arg(S). Furthermore, those two arguments are conflicting (the former undercuts the latter). This means that Arg(S)
is not conflict-free. O

Proof of Theorem 1. Let S be a preferred sub-theory of a knowledge base X. Thus, S is consistent. From Property 18, it
follows that Arg(S) is conflict-free. Assume that a ¢ Arg(S). Since a ¢ Arg(S) and S is a maximal consistent subbase of X
(according to Property 13), then 3h € Supp(a) s.t. SU {h} - L. Assume that h € Xj. Thus, Level(Supp(a)) > j.

Since S is a preferred sub-theory of X, then S;U---US; is a maximal (for set inclusion) consistent subbase of
X1U---UX;. Thus, S{U---US;U{h} + L. This means that there exists an argument a’ = (§', —h) s.t. @’ € Arg(S) and
§' €81 U---US;. Thus, Level(S’) < j. Consequently, a’ >, a. From this fact, together with a'Ra, we obtain a’'Rya. O

The second part of the theorem follows directly from Property 17.

Proof of Theorem 2. Let ¥ be a stratified knowledge base. Throughout the proof, we will use the notation S; =S N X
and PST(X) denotes the set of preferred sub-theories of X. Let £ be a stable extension of (Arg(X), Undercut, >w;p). Let
S =Base(£).

e We will first show that S € PST(X). Suppose that S ¢ PST(X). If S is not consistent, then Property 18 implies that £
is not conflict-free. This contradicts the fact that £ is a stable extension. Thus S is consistent but it is not a preferred
sub-theory. Thus, there exists i € {1,...,n} such that S; U---US; is not a maximal consistent set in X1, ..., Y. Let i
be minimal s.t. S U---US; is not a maximal consistent set in Xy, ..., Xj. This means that there exists x¢ S s.t. x € X;
and S; U---US; U{x} is consistent. Thus, a’ = ({x}, x) is an argument. Thus, (3a € £) s.t. aR.a’. Since S;U---US; U {x}
is consistent then no argument in £ having level at most i cannot be in conflict with a’. Thus, we have that fa € £ s.t.
aR.a’, which proves that £ is not a stable extension.

e We will now prove that £ = Arg(S). Suppose the contrary. From Property 3, £ C Arg(Base(£)), thus £ C
Arg(Base(&)).

- Let us suppose that S is consistent. Since S is consistent, then Property 18 implies that Arg(S) is conflict-free. Since
we supposed that £ C Arg(S), then £ is not maximal conflict-free, contradiction.

- Let us study the case when S is inconsistent. This means that there can be found a set S’ ={h’, ..., h;(} s.t.
*+ S'CS
* S’ L
* &’ is a minimal s.t. the previous two conditions are satisfied.
Let us consider the set £ containing the following k arguments: £’ = {d], ..., a,}, where a; = (5" \ hj, =h}). Since

(Vh; € ') (Fa € &) st. hj € Supp(a) and since £ is conflict-free then (@b € &) st. conc(b) € {=h}, ..., —h,}. Hence,
(Va; € £') we have that a; ¢ £. Formally, £ N £’ = . This also means that, wrt. R, no argument in £ attacks any of
arguments aj, ..., a,. Formally, (Va’' € £) (fla e &) s.t. aRa'. Since £ is a stable extension then arguments of £& must
be attacked wrt. R,. We have just seen that they are not attacked wrt. R. This means that:

(Vie{l,....k}) Qa; €&) (ajRa;) A (a; > aj).



For undercuts to exist, it is necessary that:

(Vie{1,....k}) (hje supp(a)) A (a; > aj).

From (Vi € {1,...,k})a; > a; we have (Vi€ {1,....k}) Level(h;) < Level(q;) < Level(a;). This means that:
(Vi efl,..., k}) Level(h;) < mixLevel(h;).
J#1

Let [; = Level(h)), for all i € {1,...,k} and let I;; € S be s.t. I, = max{ly, ..., l;}. Then, from the previous facts, we
have:

11 <lm

Im < max({l,.... 4} \ {lm})

lk < lm
The row m, i.e. I, < max({l1,...,l} \ {lm}) is an obvious contradiction since we supposed that I is the maximal
value in {ly,...,I;}. O

Proof of Theorem 3. Let 7 = (Arg(XY), Undercut, >w;p) be an argumentation framework built over a stratified knowledge
base X. Let PST(X) denote the set of preferred sub-theories of X.

e For all S € PST(X), Theorem 1 shows that Arg(S) € Ext(T).

e Property 3 implies that Arg is injective.

o Let £ € Ext(T) and let S = Base(£). From Theorem 2, we have £ = Arg(S). Theorem 2 yields the conclusion that
S € PST(XY). Thus, Arg: PST(XY) — Ext(T) is surjective. O

Proof of Theorem 4. Let us denote the set of democratic sub-theories by DMS(X). Let £ = Arg(S) and let x> x’ iff x > x’
and not X’ > x. From Property 18, we see that £ is conflict-free. We will prove that it attacks (wrt. R;) any argument in
its exterior. Let a’ € A\ £ be an arbitrary argument. Since a’ ¢ £ then 3h’ € Supp(a’) s.t. h’ ¢ S. From S € DMS(X) we have
that S is a maximal consistent set. It is clear that SU {h’} - L. Let us identify all its minimal conflicting subsets. Formally,

let Cq, ..., Cy be all sets which satisfy the following three conditions:

1. G CS.

2. C;U{}+ L.

3. C; is minimal (wrt. set inclusion) s.t. the two previous conditions are satisfied.
Those sets allow to construct the following k arguments: a; = (C1, =h’),...,a, = (Cg, —h). It is obvious that all of them
attack @’ wrt. R. If at least one of them attack @’ wrt. R;, then the proof is over. Suppose the contrary. This would mean
that Vi e {1,...,k}, d > a;. Thus, (Vi € {1,...,k}) (3h; € C;) s.t. h’ > h;. In other words, for every argument q;, there exists

one formula h; € Supp(a;), such that h' > h;. Let H = {hq, ..., hg}.

Now, we can define a set S’ as follows: &’ =SU{h’'}\ H. We will show that S’ is consistent. Suppose the contrary. Since
S is consistent, then any inconsistent subset of S’ must contain h’. Let Kj, ..., Kj be all sets which satisfy the following
conditions:

1. K; €S\ {h'}.
2. KiU{h'} - L.
3. K; is a minimal set s.t. the previous two conditions hold.

Let K ={Ky,...,K;} and C = {Cy,...,Cy}. It is easy to see that K € C (this follows immediately from the fact that
S\ {h'} € 8). Furthermore, since (YC; € C) (3h € H) s.t. h € C; then (VK; € K) (3h € H) s.t. h € K;. Since for all K;, we
have that K; N H = ¢ then it must be that j =0, i.e. K = . In other words, there are no inconsistent subsets of S’, which
means that S’ is consistent.

We can notice that '\ S ={h'} and S\ &’ = {hy, ..., hg}. Since S’ is consistent, we see that S’ > S. Contradiction with
SepMs(XY). O

Proof of Theorem 5. Let 7 = (Arg(X), Undercut, >cwip) be an argumentation framework built over a knowledge base X.
Let £ be a stable extension of 7 and let S = Base(£).



e Let us suppose that S is consistent but that it is not a maximal consistent set. This means that 3h € X'\ S s.t. SU {h}
is consistent. From Property 18, & = Arg(S U {h}) is consistent. From Property 3, £ C £’. The same result implies that
E #E'. Thus, £ C &', which means that £ is not a maximal conflict-free set. Contradiction with the fact that £ is a
stable extension.

e Suppose now that S is inconsistent. This means that there can be found a set S’ = {h’l, el h,’<} s.t.
-§8csS
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- & is a minimal s.t. the previous two conditions are satisfied.
Let us consider the set £ containing the following k arguments: £ = {aj....,a,}, where a; = (S"\ h{, ~h}). Since

(Vh; € §') (Fa e &) st. h} € Supp(a) and since £ is conflict-free then (#b € £) s.t. conc(b) € {=h’ ..., —h}. Hence,
(Va; € £') we have that a; ¢ £. Formally, £ N E" = ¢. This also means that, wrt. R, no argument in £ attacks any of
arguments aj, ..., a,. Formally, (Va' € £) (fla € &) s.t. aRd'. Since £ is a stable extension then arguments of £ must be
attacked wrt. R;. We have just seen that they are not attacked wrt. R. This means that:

(Vie{l,....k}) @a; €&) (ajRa;) A (a; > aj).

For undercuts to exist, it is necessary that:

(Vie{1,....k}) (hj <€ supp(a)) A (a; > aj).

For i =1, we have: Ji1 € {1,...,k} s.t. hy > h;;. For i =iy, we have that 3i; € {1,...,k} s.t. hj, > h;,, thus, hy > hj, > h;,.
After k consecutive applications of the same rule, we obtain: hq s h;; >--->h; . It is clearly a contradiction since on one
hand, all the formulae in the chain are different because of the strict preference between them, and, on the other hand,
set {h1, ..., hy} contains k formulae, thus at least two of them in a chain of k + 1 formulae must coincide.

This ends the first part of the proof. Let us now prove that S is a maximal consistent set in X. From Property 3, we have
that £ € Arg(S). Suppose that £ C Arg(S). Property 5 implies that S is a maximal consistent set. Thus, from Property 18,
we have that Arg(S) is conflict-free. This simply means that £ is not a maximal conflict-free set, contradiction. O

Proof of Theorem 6. Let S, S’ C ¥ be maximal (for set inclusion) consistent subbases of X.

(=) Let S=4S'. Let a’ € &'\ £. Then I’ € Supp(d’) s.t. " € S'\ S. Since S =4 S’ then Ih e S\ S’ s.t. h>h'. Let
a= ({h},h). It is clear that a e S\ &’ and a > d’. Thus, & =4 £'.

(&) Let £ =g & . Leth’ € S'\S.Then d’ = ({h'},h') € &'\ E. Thus, Ja € E\E' s.t.a>a'. Since a e £\ &', then 3h € Supp(a)
st.he S\ S'. Itis clear that heh'. O

Proof of Theorem 7. Let us denote the set of democratic sub-theories by DMS(X).

e From Theorem 4, we have that £ is an extension of a basic PAF (A, R, >). We will prove that it is also an extension
of a rich PAF (A, R, >, =4). Let us suppose the contrary, i.e. suppose that there exists £ s.t. £ is a stable extension
and & =4 €. Let 8’ =Base(&’). From Property 5, we have that S’ is maximal consistent set and from Property 6 that
S’ >4 S. Contradiction.

e Property 5 implies that S is a maximal conflict-free set. Suppose that S ¢ DMS(X). This means that 3§’ C ¥ s.t.
S’ e DMS(Y) and S’ >4 S. From Theorem 4, £’ = Arg(S’) is a stable extension of a basic PAF. Property 6 implies that
& >4 &, contradiction. O

Proof of Theorem 8. Let us denote Ext(7) the set of all extensions of a rich PAF 7 and DMS(X) the set of democratic
sub-theories of X. We will prove that Arg: DMS(X) — Ext(7) is a bijection.

e Let S € DMS(X), Theorem 7 shows that Arg(S) € Ext(7).

e Property 3 implies that Arg is injective.

o Let £ € Ext(T) and let S = Base(£). From Theorem 5, we have £ = Arg(S). Theorem 7 yields the conclusion that
S € DMS(XY). Thus, Arg: DMS(XY) — Ext(7) is surjective. O

References

[1] L. Amgoud, S. Vesic, Handling inconsistency with preference-based argumentation, in: A. Deshpande, A. Hunter (Eds.), Proceedings of the 4th Interna-
tional Conference on Scalable Uncertainty Management, SUM'10, Springer, 2010, pp. 56-69.

[2] L. Amgoud, S. Vesic, On the role of preferences in argumentation frameworks, in: Proceedings of the 22nd International Conference on Tools in Al,
ICTAI'10, IEEE, 2010, pp. 219-222.

[3] L. Amgoud, S. Vesic, Two roles of preferences in argumentation frameworks, in: W. Liu (Ed.), Proceedings of the 11th European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’'11, Springer, 2011, pp. 86-97.

[4] P. Besnard, A. Hunter, A logic-based theory of deductive arguments, Artif. Intell. 128 (2001) 203-235.

[5] A. Garcia, G. Simari, Defeasible logic programming: an argumentative approach, Theory Pract. Log. Program. 4 (1) (2004) 95-138.



[6] G. Simari, R. Loui, A mathematical treatment of defeasible reasoning and its implementation, Artif. Intell. 53 (1992) 125-157.
[7] L. Amgoud, S. Kaci, An argumentation framework for merging conflicting knowledge bases, Int. ]. Approx. Reason. 45 (2007) 321-340.
[8] L. Amgoud, H. Prade, Using arguments for making and explaining decisions, Artif. Intell. 173 (3-4) (2009) 413-436.
[9] B. Bonet, H. Geffner, Arguing for decisions: A qualitative model of decision making, in: Proceedings of the 12th Conference on Uncertainty in Artificial
Intelligence, UAI'96, 1996, pp. 98-105.
[10] J. Miiller, A. Hunter, An argumentation-based approach for decision making, in: 24th International Conference on Tools with Artificial Intelligence,
ICTAI'12, 2012, pp. 564-571.
[11] L. Amgoud, S. Belabbes, H. Prade, Towards a formal framework for the search of a consensus between autonomous agents, in: Argumentation in
Multi-Agent Systems, 2006, pp. 264-278.
[12] K. Sycara, Persuasive argumentation in negotiation, Theory Decis. 28 (1990) 203-242.
[13] P. Mcburney, E. Van, S. Parsons, L. Amgoud, A dialogue game protocol for agent purchase negotiations, Auton. Agents Multi-Agent Syst. 7 (3) (2003)
235-273.
[14] X. Fan, F. Toni, Argumentation dialogues for two-agent conflict resolution, in: Computational Models of Argument, COMMA’12, 2012, pp. 249-260.
[15] S. Zabala, 1. Lara, H. Geffner, Beliefs, reasons and moves in a model for argumentation dialogues, in: Proceedings of the Latino-American Conference on
Computer Science, 1999.
[16] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif.
Intell. 77 (1995) 321-357.
[17] L. Amgoud, C. Cayrol, A reasoning model based on the production of acceptable arguments, Ann. Math. Artif. Intell. 34 (2002) 197-216.
[18] TJ.M. Bench-Capon, Persuasion in practical argument using value-based argumentation frameworks, J. Log. Comput. 13 (3) (2003) 429-448.
[19] S. Kaci, L. van der Torre, Preference-based argumentation: Arguments supporting multiple values, Int. ]. Approx. Reason. 48 (3) (2008) 730-751.
[20] S. Modgil, Reasoning about preferences in argumentation frameworks, Artif. Intell. 173 (9-10) (2009) 901-934.
[21] L. Amgoud, C. Cayrol, Inferring from inconsistency in preference-based argumentation frameworks, Int. J. Autom. Reason. 29 (2) (2002) 125-169.
[22] H. Prakken, G. Sartor, Argument-based extended logic programming with defeasible priorities, ]. Appl. Non-Class. Log. 7 (1997) 25-75.
[23] Y. Dimopoulos, P. Moraitis, L. Amgoud, Extending argumentation to make good decisions, in: ADT'09, in: Lect. Notes Comput. Sci., vol. 5783, 2009,
pp. 225-236.
[24] G. Brewka, T. Eiter, Preferred answer sets for extended logic programs, Artif. Intell. 109 (1-2) (1999) 297-356.
[25] G. Brewka, I. Niemeld, M. Truszczynski, Preferences and nonmonotonic reasoning, Al Mag. 29 (4) (2008) 69-78.
[26] R. Reiter, A logic for default reasoning, Artif. Intell. 13 (1980) 81-132.
[27] M. Caminada, L. Amgoud, On the evaluation of argumentation formalisms, Artif. Intell. 171 (5-6) (2007) 286-310.
[28] S. Barbera, W. Bossert, PK. Pattanaik, Ranking sets of objects, Technical report, Université de Montréal, Département de sciences économiques, 2001.
[29] G. Brewka, Preferred subtheories: An extended logical framework for default reasoning, in: Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, 1989, pp. 1043-1048.
[30] C. Cayrol, V. Royer, C. Saurel, Management of preferences in assumption-based reasoning, in: Lect. Notes Comput. Sci., vol. 682, 1993, pp. 13-22.
[31] L. Amgoud, S. Vesic, Repairing preference-based argumentation systems, in: 21st International Joint Conference on Artificial Intelligence, IJCAI'09, 2009,
pp. 665-670.
[32] M. Elvang-Geransson, J. Fox, P. Krause, Acceptability of arguments as ‘logical uncertainty’, in: Proceedings of the European Conference on Symbolic and
Quantitative Approaches to Reasoning and Uncertainty, ECSQARU'93, vol. 747, Springer-Verlag, 1993, pp. 85-90.
[33] N. Gorogiannis, A. Hunter, Instantiating abstract argumentation with classical logic arguments: Postulates and properties, Artif. Intell. 175 (9-10) (2011)
1479-1497.
[34] S. Benferhat, D. Dubois, H. Prade, Argumentative inference in uncertain and inconsistent knowledge bases, in: Proceedings of the 9th Conference on
Uncertainty in Artificial Intelligence, 1993, pp. 411-419.
[35] L. Amgoud, Contribution a I'intégration des préférences dans le raisonnement argumentatif, Ph.D. thesis, Université Paul Sabatier, Toulouse, July 1999.
[36] L. Amgoud, Postulates for logic-based argumentation systems, Int. J. Approx. Reason. (2013), http://dx.doi.org/10.1016/j.ijar.2013.10.004, in press.
[37] L. Amgoud, P. Besnard, Bridging the gap between abstract argumentation systems and logic, in: International Conference on Scalable Uncertainty
Management (SUM), Springer, Washington, DC, USA, 2009, pp. 12-27.
[38] A. Tarski, On some fundamental concepts of metamathematics, in: E.H. Woodger (Ed.), Logic, Semantics, Metamathematics, Oxford Univ. Press, 1956.
[39] L. Amgoud, S. Vesic, A new approach for preference-based argumentation frameworks, Ann. Math. Artif. Intell. 63 (2) (2011) 149-183.
[40] N. Rescher, R. Manor, On inference from inconsistent premises, Theory Decis. 1 (1970) 179-219.
[41] S. Coste, C. Devred, P. Marquis, Symmetric argumentation frameworks, in: 8th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, ECSQARU’05, 2005, pp. 317-328.
[42] S. Modgil, H. Prakken, A general account of argumentation with preferences, Artif. Intell. 195 (2013) 361-397.
[43] C. Cayrol, On the relation between argumentation and non-monotonic coherence-based entailment, in: Proceedings of the 14th International Joint
Conference on Artificial Intelligence, Morgan Kaufmann, 1995, pp. 1443-1448.
[44] L. Amgoud, Y. Dimopoulos, P. Moraitis, Making decisions through preference-based argumentation, in: Proceedings of the 11th International Conference
on Principles of Knowledge Representation and Reasoning, KR'08, AAAI Press, 2008, pp. 113-123.



