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RESEARCH ARTICLE

Equivalence in logic-based argumentation1

Leila Amgouda∗, Philippe Besnarda and Srdjan Vesicb

aIRIT – CNRS, Toulouse, France; bCRIL – CNRS,Lens, France 

This paper investigates when two abstract logic-based argumentation systems are
equivalent. It defines various equivalence criteria, investigates the links between them,
and identifies cases where two systems are equivalent with respect to each of the
proposed criteria. In particular, it shows that under some reasonable conditions on the
logic underlying an argumentation system, the latter has an equivalent finite subsystem,
called core. This core constitutes a threshold under which arguments of the system have
not yet attained their final status and consequently adding a new argument may result in
status change. From that threshold, the statuses of all arguments become stable.
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1. Introduction

Argumentation is a reasoning process in which interacting arguments are built and evaluated.

It is widely studied in Artificial Intelligence, namely for reasoning about inconsistent infor-

mation (Bondarenko, Dung, Kowalski & Toni, 1997; Garcia & Simari, 2004; Governatori,

Maher, Antoniou & Billington, 2004), making decisions (Amgoud & Prade, 2009; Kakas

& Moraitis, 2003; Labreuche, 2006), and modelling agents interactions (Amgoud, Maudet

& Parsons, 2000; Prakken, 2006; Reed, 1998).

One of the most abstract argumentation systems was proposed by Dung (1995). It

consists of a set of arguments and a binary relation representing conflicts among them.

Several semantics were proposed by the same author and by others for evaluating the

arguments (Baroni, Giacomin & Guida, 2005; Caminada, 2006b; Dung, Mancarella &

Toni, 2007). Each of them consists of a set of criteria that should be satisfied by any

acceptable set of arguments, called extension. From the extensions, a status is assigned

to each argument: an argument is sceptically accepted if it appears in each extension, it

is credulously accepted if it belongs to some extensions and not to others, and finally it

is rejected if it is not in any extension. Several key decision problems were identified

(like whether an argument is sceptically accepted under a given semantics), and their

computational complexity investigated (Dunne, 2007; Dunne & Wooldridge, 2009). Most

of the results concern finite argumentation systems (i.e., systems that have finite sets of

arguments).

Almost all existing argumentation systems for reasoning about inconsistent information

are instantiations of this abstract system – except the Delp system developed by Garcia and

Simari (2004) and the one proposed by Besnard and Hunter (2008). An instantiation starts

with a logic (L,CN)where L is the language of this logic andCN its consequence operator. It
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considers as input a knowledge base whose formulae are elements of the language L. From

this base, arguments and attacks among them are defined using the consequence operator

CN. Finally, a semantics is chosen for evaluating the arguments. Examples of such logic-

based systems are those based on propositional logic (Amgoud & Cayrol, 2002; Cayrol,

1995; Gorogiannis & Hunter, 2011). It is worth noticing that most logics induce an infinite

number of arguments from a given knowledge base. This is unfortunately true even when

the knowledge base itself is finite, meaning that such systems cannot benefit from existing

results on finite systems and making it hard to apply them. An important question is then: is

it possible to find a finite subsystem of an infinite one (called target) that is able to compute

all the outputs of the target? This amounts to checking whether the finite subsystem (if any)

is equivalent to its target.

Equivalence is a key notion in several domains. In logic it defines interchangeable

formulae. It can, for instance, be used to identify knowledge bases that have the same sets

of models. The notion of equivalence has also gained interest in the area of knowledge

representation (Lifschitz, Pearce & Valverde, 2001). In general, the idea is to see when

two objects, systems, programs, etc. are not the same but exhibit the same behaviour.

More recently, several works have been done on equivalence in argumentation, namely

equivalence of Dung’s style systems.

Oikarinen and Woltran (2011) distinguished two kinds of equivalence: basic or standard

equivalence and strong equivalence. For each of them, they proposed three equivalence

criteria. Two systems are basically equivalent if they have the same extensions (resp. the

same sets of sceptically/credulously accepted arguments). They are strongly equivalent if

their expansions with any arbitrary argumentation system have the same extensions (resp.

the same sets of sceptically/credulously accepted arguments). Baumann (2012) proposed

four forms of equivalence: normal expansion equivalence, strong expansion equivalence,

weak expansion equivalence and local expansion equivalence. The basic idea behind the

four forms is to put restrictions on the kind of systems that expand the two original

ones, i.e., the two that are compared. For instance, with strong expansion equivalence,

a system can only be expanded by a system whose arguments are never attacked by the

arguments of the former. It was shown that the four forms are ‘between’ basic and strong

equivalence. More links, under various semantics, between the six forms of equivalence

were established by Baumann and Brewka (2013). Another study which tackled the notion

of equivalence in argumentation theory was carried out by Baroni et al. (2012). The authors

defined input/output argumentation systems which characterise the behaviour of systems

under Dung’s semantics. They have shown that systems having the same behaviour can be

interchanged, meaning that they are equivalent.

A common theme in all the works mentioned above is the use of abstract argumentation

systems (i.e., systems where neither the origin nor the structure of arguments and attacks

are known). None of these proposals consider the equivalence of structured or instantiated

argumentation systems. Consequently, the different notions of equivalence may be poor

since they do not consider the contents of arguments and are thus syntax-dependent.

Moreover, the existing notions of equivalence, except the basic one, are more appropriate

in dynamic contexts where the set of arguments of a given system may evolve. This is, for

instance the case in dialogs where new arguments and thus new attacks may be received.

However, in a reasoning context, the set of arguments of a system is static and it is built from

a given knowledge base. In such a setting, one may (for example) want to check whether

two systems built from two different knowledge bases are equivalent. One may also want

to check whether the system can be replaced by an equivalent subsystem in order to reduce

the computation bulk.



The goal of this paper is to study when two reasoning systems, i.e., instantiated

argumentation systems are equivalent. We do not focus either on a particular logic or on a

particular attack relation. Rather, we study abstract but structured argumentation systems.

Indeed, we assume systems that are built under the abstract monotonic logics of Tarski

(1956) and that use any attack relation. We start by extending the list of equivalence criteria

by adding new ones which consider outputs that are proper to logic-based argumentation

systems, like the plausible inferences. We show that these criteria are too rigid since they do

not take into account the structure of arguments and are syntax-dependent. We then refine

them using a new notion of equivalence of arguments and the classical notion of equivalence

of formulae. We investigate the links between the different criteria. Some of the results hold

for any attack relation while others hold only when the attack relations of the two systems

satisfy some intuitive properties. We then identify cases where two systems are equivalent

with respect to each of the proposed criteria.

Another contribution of the paper consists of showing that under some reasonable con-

ditions on the logic (L,CN), each argumentation system has an equivalent finite subsystem,

called the core. The core is seen as the smallest subsystem that retrieves all the outputs

of its target. This notion is of great importance not only for replacing infinite systems

with finite ones, but also for replacing finite systems with smaller ones. Indeed, it is well

known that building arguments from a knowledge base is a computationally complex task.

Consider the case of a propositional base. An argument is usually defined as a logical proof

containing a consistent subset of the base, called a support, and a given statement, called

a conclusion. Thus, there are at least two tests to be undertaken: a consistency test which

is an NP-complete problem and an inference test (i.e., testing whether the conclusion is a

logical consequence of the support) which is a co-NP-complete problem. Hence, finding

the components of an argumentation system is a real challenge. Exchanging a system with

its core may thus considerably reduce the bulk of computation.

The paper is organised as follows. In section 2, we recall the logic-based argumentation

systems we are interested in. In section 3, we study equivalence. We propose various

equivalence criteria, study their interdependencies and provide conditions under which

two systems are equivalent with respect to each of the proposed criteria. In section 4, we

define the notion of a core of an argumentation system, study when a core is finite, and

investigate its role in dynamic situations. The last section is devoted to some concluding

remarks and perspectives. All the proofs are given in the appendix.

2. Logic-based argumentation systems

This section describes the logic-based argumentation systems we are interested in. They are

built around the abstract monotonic logic proposed by Tarski (1956). Such a logic is a pair

(L,CN)where L is any set of well-formed formulae and CN is a consequence operator, i.e.,

a function from 2L to 2L that satisfies the following five postulates:

• X ⊆ CN(X) (Expansion)

• CN(CN(X)) = CN(X) (Idempotence)

• CN(X) =
⋃

Y⊆ f X
CN(Y )2 (Finiteness)

• CN({x}) = L for some x ∈ L (Absurdity)

• CN(∅) 6= L (Coherence)

Intuitively, CN(X) returns the set of formulae that are logical consequences of X

according to the logic at hand. Almost all well-known logics (classical logic, intuitionistic



logic, modal logics, etc.) are special cases of Tarski’s notion of monotonic logic. In such a

logic, the notion of consistency is defined as follows.

Definition 1 (Consistency). A set X ⊆ L is consistent iff CN(X) 6= L. It is inconsistent

otherwise.

Arguments are built from a knowledge base 6, a finite subset of L. They are minimal

(for set inclusion) proofs for some statements, called their conclusions.

Definition 2 (Argument). Let (L,CN) be a Tarskian logic and 6 ⊆ L. An argument built

from 6 is a pair (X, x) s.t.

• X is a finite consistent subset of 6;

• x ∈ L;

• x ∈ CN(X);

• ∄X ′ ⊂ X s.t. x ∈ CN(X ′).

X is the support of the argument and x its conclusion.

The following example illustrates the previous definition.

Example 3 Let (L,CN) be propositional logic (a Tarskian logic) and6 = {x,¬y, x → y}

be a knowledge base. Examples of arguments that may be built from this base are:

• ({x}, x), ({¬y},¬y), ({x → y}, x → y);

• ({x, x → y}, y), ({x,¬y}, x ∧ ¬y), ({¬y, x → y},¬x);

• ({x}, x ∧ x), ({x}, x ∨ y), ({x}, x ∨ z);

• . . .

The previous definition specified what we accept as an argument. It is worth mentioning

that the set of all arguments that may be built from a knowledge base may be infinite even

when the base is itself finite. This depends on the underlying logic. This is, for instance, the

case under propositional logic. Thus, this is also the case in the previous example.

Notations: For an argument a = (X, x), Conc(a) = x and Supp(a) = X . For a set

S ⊆ L, Arg(S) = {a|a is an argument (in the sense of Definition 2) and Supp(a) ⊆ S}.

For any set E ⊆ Arg(L) of arguments, Base(E) =
⋃

a∈E Supp(a).

An attack relation R is defined on a given set A of arguments, i.e., R ⊆ A × A.

The writing aRb (or (a, b) ∈ R) means that the argument a attacks the argument b.

This relation expresses disagreements between arguments. Amgoud and Besnard (2009)

argue that it should capture the inconsistency of the knowledge base. An example of such

a relation is the so-called assumption attack relation (Elvang-Gøransson, Fox & Krause,

1993). According to this relation, an argument attacks another if it undermines one of the

formulae of its support. In the sequel, the attack relation is left unspecified.

A logic-based instantiation of Dung’s argumentation system is defined as follows.

Definition 4 (Argumentation system). An argumentation system built over a knowledge

base 6 is a pair F = (A,R) where A ⊆ Arg(6) and R ⊆ A × A is an attack relation.

Almost all existing argumentation systems consider the whole setArg(6) of arguments.

For the purpose of this paper, we do not need to make this assumption. The reason is that

we are looking for equivalent systems, thus, we may be interested in a subsystem which is

equivalent to the ‘complete’ system (i.e., the one with the whole set Arg(6) of arguments).

We may also need to compare two subsystems of a given complete system. When the set of

arguments is infinite, then the corresponding argumentation system is said to be infinite.



Definition 5 (Finite argumentation system).An argumentation systemF = (A,R) is finite

iff the set A is finite. Otherwise it is infinite.

In what follows, arguments are evaluated using the semantics proposed by Dung (1995).

Before recalling them, let us first introduce the two requirements on which they are based:

conflict-freeness and defence.

Definition 6 (Conflict-freeness and Defence). Let F = (A,R) be an argumentation sys-

tem, E ⊆ A and a ∈ A.

• E is conflict-free iff ∄a, b ∈ E s.t. aRb;

• E defends a iff ∀b ∈ A, if bRa then ∃c ∈ E s.t. cRb.

The next definition introduces the different semantics we are considering in this

paper. Note that there are several other semantics in the literature like semi-stable

semantics (Caminada, 2006b), ideal semantics (Dung et al., 2007), and the recursive ones

(Baroni et al., 2005). However, for the purpose of this paper, we do not need to recall them.

The main aim of the paper is to formalise the concept of equivalence in argumentation, and

to show how it can be used for different purposes. The ideas hold under any semantics.

Thus, we choose the most common ones.

Definition 7 (Acceptability semantics). Let F = (A,R) be an argumentation system and

E ⊆ A. We say that E is admissible iff it is conflict-free and defends all its elements.

• E is a complete extension iff it is admissible and contains any argument it defends.

• E is a preferred extension iff it is a maximal (for set inclusion) admissible set.

• E is a stable extension iff it is conflict-free and ∀a ∈ A \ E , ∃b ∈ E s.t. bRa.

• E is a grounded extension iff it is a minimal (for set inclusion) complete extension.

Let Extx (F) denote the set of all extensions of the argumentation system F under

semantics x where x ∈ {c, p, s, g} and c (resp. p, s, g) stands for complete (resp. preferred,

stable and grounded). When we do not need to refer to a particular semantics, we use the

notation Ext(F) for short.

Throughout the paper, we use the term ‘all reviewed semantics’ to refer to the four

semantics stated in the previous definition (i.e., complete, preferred, stable and grounded

semantics). When a result is stated without referring to a particular semantics, it means

that it holds for all the reviewed semantics. It is worth recalling that grounded semantics

guarantees one extension while all the other semantics may ensure several extensions. Note

also that, in general, an argumentation system may have an infinite number of extensions

even if the knowledge base 6 is finite. Let us consider the following example.

Example 8. Let (L,CN) be a Tarski’s logic such that the set L contains an infinite

number of formulae, L = {x0, x1, x2, . . .}) and

CN(X) =

{

∅ if X = ∅

{xi , xi+1, xi+2, . . .} else, where i is the minimal number s.t. xi ∈ X.
Consider now the knowledge base6 = {x1} and the attack relation defined as follows:

For two arguments a and b, aRb iff Conc(a) 6= Conc(b).

The argumentation system (Arg(6),R) has an infinite number of stable extensions:

{({x1}, x1)}, {({x1}, x2)}, {({x1}, x3)}, . . ..

An extension (under a given semantics) represents a coherent position or point of view.

Thus, it contains arguments that can be accepted together. However, the status of a given



argument is determined with respect to all the extensions.An argument is either 1) sceptically

accepted (if it belongs to all the extensions), or 2) credulously accepted (if it belongs to

some but not all extensions), or 3) rejected (if it does not belong to any extension).

Definition 9 (Status of arguments). Let F = (A,R) be an argumentation system and

a ∈ A.

• a is sceptically accepted iff a ∈
⋂

Ei∈Ext(F)
Ei .

• a is credulously accepted iff a ∈
⋃

Ei∈Ext(F)
Ei .

• a is rejected iff a /∈
⋃

Ei∈Ext(F)
Ei .

Let Status(a,F) be a function which returns the status of argument a in system F .

The following definition summarises all the possible outputs of an argumentation system.

Definition 10 (Outputs). Let F = (A,R) be an argumentation system built over a knowl-

edge base 6.

• Ext(F) is the set of extensions of F under a given semantics.

• Sc(F) = {a ∈ A|a is sceptically accepted}.

• Cr(F) = {a ∈ A|a is credulously accepted}.

• Outputsc(F) = {Conc(a)|a is sceptically accepted}.

• Outputcr (F) = {Conc(a)|a is credulously accepted}.

• Bases(F) = {Base(E)|E ∈ Ext(F)}.

The first set contains the extensions of a system F under a given semantics. The four

next sets contain the sceptically and credulously accepted arguments (resp. conclusions).

The set Bases(F) contains the sub-bases of6 which are computed by the extensions of F .

Note that the three last outputs can only be defined for structured argumentation systems.

Finally, it is worth noticing that all the five last outputs follow from the extensions.

3. Equivalence

The notion of equivalence in argumentation theory is of great importance since it defines

which systems are interchangeable. This is crucial for comparing systems using different

attack relations, or for replacing a system with a smaller one.

3.1. Equivalence criteria

We assume a fixed Tarskian logic (L,CN). This means that we study the equivalence of two

systems that are grounded on the same logic. This assumption is not strong since:

(1) the kind of applications in which equivalence is needed assume that the two systems

to be compared use the same logic; and

(2) it is difficult to compare different logics since they may have different expressive

power.

We consider two arbitrary argumentation systems F = (A,R) and F ′ = (A′,R′) that

are defined using the fixed logic. Note that the two systems may be built over different

knowledge bases (respectively 6 and 6′).

The study of equivalence of two argumentation systems passes through the definition

of equivalence criteria. We propose two families of criteria. Both compare the outputs of

the two systems. However, the first family is syntax-dependent while the second family



takes advantage of similarities between arguments (respectively formulae). The following

definition introduces the criteria of the first family. Recall that the first three criteria were

already proposed by Oikarinen and Woltran (2011).

Definition 11 (Equivalence criteria). LetF = (A,R) andF ′ = (A′,R′) be two argumen-

tation systems built using the same Tarskian logic (L,CN).F and F ′ are equivalent with

respect to criterion EQi, denoted by F ≡EQi F ′, iff EQi holds where i ∈ {1, . . . , 6} and:

EQ1 Ext(F) = Ext(F ′);

EQ2 Sc(F) = Sc(F ′);

EQ3 Cr(F) = Cr(F ′);

EQ4 Outputsc(F) = Outputsc(F
′);

EQ5 Outputcr (F) = Outputcr (F
′);

EQ6 Bases(F) = Bases(F ′).

The first three criteria concern arguments whereas the other three refer to formulae. For

instance, criterion EQ1 ensures that the two argumentation systems have exactly the same

extensions (under a given semantics) whereas criterion EQ4 compares the conclusions that

are drawn from the knowledge bases of the two systems. Note that rejected arguments are

not considered when comparing two argumentation systems. Indeed, the set of rejected

arguments is not an important output of a system (compared to sceptical and credulous

arguments). Moreover, it is exactly the complement of the set of credulous arguments. Let

us consider the following example.

Example 12. Let (L,CN) be propositional logic. Let F = (A,R) and F ′ = (A′,R′) be

two argumentation systems such that:

• A = {a1, a2} and R = {(a1, a2)};

• A′ = {a2, a3} and R′ = {(a3, a2)};

with:

• a1 = ({t ∧ ¬x},¬x);

• a2 = ({x, y}, x ∧ y);

• a3 = ({w ∧ ¬y},¬y).

Under grounded (resp. complete, preferred, stable) semantics, Ext(F) = {{a1}} and

Ext(F ′) = {{a3}}. It is easy to see thatF andF ′ would be equivalent if we compare rejected

arguments since their sets of rejected arguments coincide (i.e., the set {a2}). However, the

two systems have almost nothing in common since neither their conclusions (¬x resp. ¬y)

nor their arguments coincide.

The previous criteria do not take into account the possible similarities/equivalences

between arguments or between formulae. Consequently, they are too rigid and may miss

some clear equivalences between argumentation systems as illustrated by the following

example.

Example 13. Let (L,CN) be propositional logic. Let us consider two argumentation sys-

tems F and F ′ such that Ext(F) = {E}, Ext(F ′) = {E ′} and

• E = {({x → y}, x → y)};

• E ′ = {({x → y},¬x ∨ y)}.

The two systems F and F ′ are equivalent with respect to criterion EQ6 since Bases(F) =

Bases(F ′) = {{x → y}}. However, they are not equivalent with respect to the remaining



criteria since the two arguments ({x → y}, x → y) and ({x → y},¬x ∨ y) (resp. the two

formulae x → y and ¬x ∨ y) are considered as different.

This example shows that the six criteria are syntax-dependent. Indeed, they consider the

two arguments ({x → y}, x → y) and ({x → y},¬x ∨ y) as different even if they have

the same supports and logically equivalent conclusions. Let us now consider a different

example which shows another limit of the previous criteria.

Example 14. Let (L,CN) be propositional logic. Let us consider two argumentation sys-

tems F and F ′ such that Ext(F) = {E}, Ext(F ′) = {E ′} and

• E = {({x,¬¬y}, x ∧ y)};

• E ′ = {({x, y}, x ∧ y)}.

The two systems F and F ′ are equivalent with respect to EQ4 and EQ5 but are not

equivalent with respect to the remaining criteria, including EQ6. However, for each formula

in Bases(F) = {{x,¬¬y}}, there is an equivalent one in Bases(F) = {{x, y}} and vice

versa.

The two previous examples show that in order to have more refined equivalence cri-

teria, the logical equivalence between formulae and between sets of formulae should be

considered.

Definition 15 (Equivalence of formulae). Let x, y ∈ L and X, Y ⊆ L.

• The two formulae x and y are equivalent, denoted by x ≡ y, iff CN({x}) = CN({y}).

We write x 6≡ y otherwise.

• X and Y are equivalent, denoted by X ∼= Y , iff ∀x ∈ X, ∃y ∈ Y s.t. x ≡ y and

∀y ∈ Y, ∃x ∈ X s.t. x ≡ y. We write X 6∼= Y otherwise.

Example 16. In the case of propositional logic, the two sets {x,¬¬y} and {x, y} from

Example 14 are equivalent.

Note that if X ∼= Y , then CN(X) = CN(Y ). However, the converse is not true. For

instance, CN({x ∧ y}) = CN({x, y}) while {x ∧ y} 6∼= {x, y}. One might ask why the

equality of CN(X) and CN(Y ) is not used in order to state that X and Y are equivalent. The

previous example might have already given some of our motivation for such a definition:

wanting to make a distinction between {x, y} and {x ∧ y}. The following example of two

argumentation systems whose credulous conclusions are respectively {x,¬x} and {y,¬y}

is more drastic: it is clear that CN({x,¬x}) = CN({y,¬y}) while the two sets are in no way

similar.

In order to define an accurate notion of equivalence between two argumentation systems,

we also take advantage of the equivalence of arguments. There are three ways of defining

such equivalence, as shown in the next definition.

Definition 17 (Equivalence of arguments). Let a, a′ ∈ Arg(L).

• a ≈1 a′ iff Supp(a) = Supp(a′) and Conc(a) ≡ Conc(a′).

• a ≈2 a′ iff Supp(a) ∼= Supp(a′) and Conc(a) = Conc(a′).

• a ≈3 a′ iff Supp(a) ∼= Supp(a′) and Conc(a) ≡ Conc(a′).

Example 18. The two arguments ({x → y}, x → y) and ({x → y},¬x∨ y) from Example

13 are equivalent with respect to criteria ≈1 and ≈3.



Note that each criterion ≈i is an equivalence relation (i.e., reflexive, symmetric and

transitive).

Property 19. Each criterion ≈i is an equivalence relation (with i ∈ {1, 2, 3}).

The following property summarises the links between the three criteria and shows that

criterion ≈3 is more general than the two others.

Property 20. Let a, a′ ∈ Arg(L).

• If a ≈1 a′, then a ≈3 a′;

• If a ≈2 a′, then a ≈3 a′.

It is worth mentioning that two argumentation systems may have arguments that are

equivalent with respect to ≈1 and other arguments that are equivalent with respect to ≈2.

Thus, neither of the two criteria (≈1,≈2) can capture both equivalences. However, criterion

≈3 does. Thus, for the purpose of our paper, we will consider criterion ≈3. Throughout the

paper, we refer to this criterion by ≈ for short.

The notion of equivalence of two arguments is extended to an equivalence of sets of

arguments as follows.

Definition 21 (Equivalence of sets of arguments). Let E, E ′ ⊆ Arg(L). The two sets E and

E ′ are equivalent, denoted by E ∼ E ′, iff ∀a ∈ E, ∃a′ ∈ E ′ s.t. a ≈ a′ and ∀a′ ∈ E ′, ∃a ∈ E

s.t. a ≈ a′.

Example 22. The two extensions {({x → y}, x → y)} and {({x → y},¬x ∨ y)} from

Example 13 are equivalent.

We are now ready to introduce the family of refined equivalence criteria.

Definition 22 (Refined equivalence criteria). Let F = (A,R) and F ′ = (A′,R′) be two

argumentation systems built using the same Tarskian logic. F and F ′ are equivalent with

respect to criterion EQib, denoted byF ≡EQib F ′, iff EQib holds where i ∈ {1, 2, 3, 4, 5, 6}

and:

• EQ1b there exists a bijection f : Ext(F) → Ext(F ′) s.t. ∀E ∈ Ext(F), E ∼

f (E);

• EQ2b Sc(F) ∼ Sc(F ′);

• EQ3b Cr(F) ∼ Cr(F ′);

• EQ4b Outputsc(F)
∼= Outputsc(F

′);

• EQ5b Outputcr (F)
∼= Outputcr (F

′);

• EQ6b ∀S ∈ Bases(F), ∃S′ ∈ Bases(F ′) s.t. S ∼= S′ and ∀S′ ∈ Bases(F ′),

∃S ∈ Bases(F) s.t. S ∼= S′.

Example 23. The two argumentation systems F and F ′ from Example 13 are equivalent

with respect to the six refined criteria.

Example 24. The two argumentation systems F and F ′ from Example 14 are equivalent

with respect to the six refined criteria.

It is easy to check that each criterion EQib refines its strong version EQi .

Property 25. For two argumentation systems F and F ′, if F ≡EQi F ′ then F ≡EQib F ′

with i ∈ {1, . . . , 6}.

Finally, we show that each of the twelve criteria is an equivalence relation.



Property 26. For all i ∈ {1, . . . , 6}, the criterion EQi (resp. EQib) is an equivalence

relation.

3.2. Links between criteria

In the previous section, we proposed twelve equivalence criteria between argumentation

systems. The following result establishes the dependencies between them.

Theorem 27. Let F and F ′ be two argumentation systems built on the same logic (L,CN).

Table 1 summarises the dependencies (F ≡x F ′) ⇒ (F ≡x ′ F ′) under any of the reviewed

semantics.

Table 1 is read as follows: for two criteria, c in row i and c′ in column j , the + sign

at the intersection of row i and column j means that if two systems are equivalent with

respect to c then they are equivalent with respect to c′. For example, the + sign at the

intersection of the row corresponding to EQ1b and the column corresponding to EQ3b

means that if two argumentation systems are equivalent with respect to EQ1b then they

must be equivalent with respect to EQ3b. It is worth noticing that two argumentation

systems that are equivalent with respect to EQ1 are also equivalent with respect to any

of the remaining criteria. This is not the case for its refined version EQ1b. For instance,

two systems that are equivalent with respect to EQ1b are not necessarily equivalent with

respect to EQ2b and EQ4b. Thus, EQ1 is the most general criterion. This is not surprising

since the extensions of a system are at the heart of all the other outputs of an argumentation

system. However, as seen in the previous section, the criterion EQ1 is too rigid since it

does not take into account the internal structure of arguments.

Note that Theorem 27 is a full characterisation in the sense that no other links exist

between criteria. In other words, if there is no + sign in Table 1, then it is not the case that

the criterion in the corresponding row implies the criterion in the corresponding column.

Note some dependencies that might at first glance be expected to hold but do not in the

general case. Given the huge number of cases, we do not provide counter-examples for all

of them, since the paper would become unfeasibly long. The next two examples serve as

counter-examples for several cases and we strongly believe that the reader can construct

counter-examples for other missing dependencies.

Table 1. Links between criteria under any of the reviewed semantics.

EQi/EQj EQ1 EQ1b EQ2 EQ2b EQ3 EQ3b EQ4 EQ4b EQ5 EQ5b EQ6 EQ6b

EQ1 + + + + + + + + + + + +

EQ1b + + + +

EQ2 + + + +

EQ2b + +

EQ3 + + + +

EQ3b + +

EQ4 + +

EQ4b +

EQ5 + +

EQ5b +

EQ6 + +

EQ6b +



The next example shows that EQ1b does not imply EQ1, EQ2, EQ3, EQ4, EQ5 nor

EQ6 (in the general case). Even more interestingly, from this example we see that EQ1b

does not imply either EQ2b or EQ4b.

Example 28. Suppose stable semantics and let L = {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, c}

with CN defined as follows: for all X ⊆ L,

CN(X) =







L \ {c}, if c /∈ X and X 6= ∅

L, if c ∈ X

∅, if X = ∅.

Let a1 = ({r1}, r2), a2 = ({r3}, r4), a3 = ({r5}, r6), a4 = ({r7}, r8), a5 = ({r9}, r10).

LetA = {a1, a2, a3},R = {(a2, a3), (a3, a2)},A
′ = {a4, a5} andR′ = {(a4, a5), (a5, a4)}.

Sc(F) = {a1}, Sc(F
′) = ∅. F ≡EQ1b F ′ since a bijection verifying conditions of EQ1b

can be defined as: f : Ext(F) → Ext(F ′), f ({a1, a2}) = {a4}, f ({a1, a3}) = {a5}.

However, criteria like EQ2b and EQ4b are not satisfied.

We can also show that EQ4 does not imply EQ1, EQ1b, EQ2, EQ2b, EQ3, EQ3b, EQ6,

EQ6b, as illustrated by the following example.

Example 29. Suppose stable semantics, let (L,CN) be propositional logic and let A =

{({x ∧ y}, x)}, A′ = {({x ∧ z}, x)}, R = ∅, R′ = ∅. Outputsc(F) = Outputsc(F
′) =

{x}.

The previous links between the criteria hold under all the acceptability semantics from

Definition 7.As might be expected, there are more links between criteria for single-extension

semantics, i.e., grounded semantics.

Theorem 30. The links between the twelve equivalence criteria under grounded semantics

are summarised in Table 2.

The previous results hold for any pair of argumentation systems that are grounded on

the same Tarskian logic and the same attack relations that are used by the systems. For

example, in the case of Theorem 27, this result is also ‘complete’ in the sense that no other

links exist except those depicted in Table 2.

Table 2. Links between criteria under grounded semantics.

EQi/EQj EQ1 EQ1b EQ2 EQ2b EQ3 EQ3b EQ4 EQ4b EQ5 EQ5b EQ6 EQ6b

EQ1 + + + + + + + + + + + +

EQ1b + + + + + +

EQ2 + + + + + + + + + + + +

EQ2b + + + + + +

EQ3 + + + + + + + + + + + +

EQ3b + + + + + +

EQ4 + + + +

EQ4b + +

EQ5 + + + +

EQ5b + +

EQ6 + +

EQ6b +



In what follows, we show that there are additional links between some criteria when

the attack relations of the two systems satisfy some properties, namely those discussed by

Gorogiannis and Hunter (2011). Below we recall the ones that are important for our study.

C1 ∀a, b, c ∈ A, if Conc(a) = Conc(b) then (aRc ⇔ bRc).

C1b ∀a, b, c ∈ A, if Conc(a) ≡ Conc(b) then (aRc ⇔ bRc).

C2 ∀a, b, c ∈ A, if Supp(a) = Supp(b) then (cRa ⇔ cRb).

C2b ∀a, b, c ∈ A, if Supp(a) ∼= Supp(b) then (cRa ⇔ cRb).

The first two properties say that two arguments which have the same (resp. equivalent)

conclusions attack the same arguments. The second two properties say that arguments which

have the same (resp. equivalent) supports are attacked by the same arguments.

The following result establishes some links between the four properties.

Property 31. Let R be an attack relation.

• If R satisfies C1b then it satisfies C1.

• If R satisfies C2b then it satisfies C2.

Before presenting the new links, let us first study how the equivalence relation≈ between

arguments is related to an attack relation which satisfies the two properties C1b and C2b.

We show that equivalent arguments (with respect to ≈) behave in the same way with respect

to attacks in the case that the attack relation satisfies these two properties.

Property 32. Let (A,R) be an argumentation system s.t. R satisfies C1b and C2b. For

all a, a′, b, b′ ∈ A, (a ≈ a′ and b ≈ b′) implies (aRb iff a′Rb′).

The next result shows that equivalent arguments belong to the same extensions in an

argumentation system whose attack relation satisfies C1b and C2b.

Property 33. Let (A,R)be anargumentation system s.t.R satisfiesC2b.For all a, a′ ∈ A,

if a ≈ a′, then ∀E ∈ Ext(F), a ∈ E iff a′ ∈ E .

An obvious consequence of this property is that equivalent arguments have the same

status in any argumentation system.

Property 34. Let (A,R) be an argumentation system s.t. R satisfies C1b and C2b. For

all a, a′ ∈ A, if a ≈ a′, then Status(a,F) = Status(a′,F).

We also show that two equivalent arguments which belong to two equivalent argumen-

tation systems with respect to criterion EQ1b have the same status.

Property 35. Let F = (A,R), F ′ = (A′,R′) be two argumentation systems built from

the same logic (L,CN) such that R and R′ satisfy C1b and C2b. If F ≡EQ1b F ′, then for

all a ∈ A and for all a′ ∈ A′, if a ≈ a′ then Status(a,F) = Status(a′,F ′).

Finally, we show that if two argumentation systems whose attack relations satisfy C1b

and C2b are equivalent with respect to EQ1b, then they are also equivalent with respect to

EQ2b and EQ4b.

Theorem 36. Let F = (A,R), F ′ = (A′,R′) be two argumentation systems built from

the same logic (L,CN) such that R and R′ satisfy C1b and C2b. If F ≡EQ1b F ′, then

F ≡x F ′ with x ∈ {EQ2b, EQ4b}.



3.3. Cases of equivalent argumentation systems

We previously proposed different equivalence criteria of two argumentation systems built

from the same logic.An important question now is: are there distinct argumentation systems

which are equivalent with respect to those criteria?. Recall that in case of the criteria

proposed by Oikarinen and Woltran (2011) (i.e., EQ1, EQ2 and EQ3), the answer is

negative. Indeed, the authors have shown that when two argumentation systems do not

have self-attacking arguments, they are equivalent if and only if they coincide. Amgoud

and Besnard (2009) have shown that logic-based argumentation systems do not have self-

attacking arguments. This means that the previous criteria are not useful in this context. In

what follows, we show that their refinements make it possible to compare different systems.

We focus on the criterion EQ1b since it is at the same time general like EQ1 but much

more flexible (as it is syntax-independent).

We start by showing that under some reasonable conditions on the attack relation, an

argumentation system built from a knowledge base 6 has a finite number of extensions

even if its set of arguments is itself infinite.

Theorem 37. Let (A,R) be an argumentation system built over 6. If 6 is finite and R

satisfies C2, then (A,R) has a finite number of extensions under all reviewed semantics.

We are now interested in the case of two argumentation systems that may be built from

two distinct knowledge bases but use the same attack relation. For instance, both systems

use the ‘rebut’ relation or both systems use ‘assumption attack’, etc. Recall that Arg(L)

is the set of all arguments that can be built from a fixed logical language L using a fixed

consequence operator CN. We denote by RL the attack relation which is used in the two

systems with RL ⊆ Arg(L)×Arg(L). The following result shows under which conditions

two systems are equivalent with respect to EQ1b.

Theorem 38. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems s.t.

A,A′ ⊆ Arg(L) and R = RL|A,R
′ = RL|A′ . If RL satisfies C1b and C2b and

A ∼ A′, then F ≡EQ1b F ′.

The following corollary follows from the links between the criteria.

Corollary 39. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems s.t.

A,A′ ⊆ Arg(L) and R = RL|A,R
′ = RL|A′ . If RL satisfies C1b and C2b and

A ∼ A′, then F ≡x F ′ with x ∈ {EQ2b, EQ3b, EQ4b, EQ5b, EQ6b}.

4. Core(s) of an argumentation system

In this section we introduce a new concept: the core of an argumentation system. It is a

proper subsystem of an argumentation system which considers only one argument among

equivalent ones.

Notation: for an arbitrary set X , an arbitrary equivalence relation ∼ on X , and x ∈ X ,

[x] = {x ′ ∈ X |x ′ ∼ x} and X/ ∼= {[x]|x ∈ X}. For any X ⊆ L, Cncs(X) = {x ∈

L|∃Y ⊆ X such that CN(Y ) 6= L and x ∈ CN(Y )}. In other words, Cncs(X) is the set of

formulae that are drawn from consistent subsets of X .

We define a core as follows.

Definition 40 (Core of an argumentation system). Let F = (A,R) and F ′ = (A′,R′) be

two argumentation systems. F ′ is a core of F iff:

• A′ ⊆ A;



• ∀C ∈ A/ ≈, ∃!a ∈ C ∩ A′;

• R′ = R|A′ (i.e., R′ is the restriction of R on A′).

It is worth noting that an argumentation system may have several cores. The set of

arguments of each of them is equivalent to the set of arguments of the original system.

Property 41. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems. If F ′ is

a core of F , then A ∼ A′.

When the attack relation satisfies some intuitive properties, an argumentation system is

equivalent to any of its cores.

Theorem 42. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems s.t. R

and R′ satisfy C1b and C2b. If F ′ is a core of F , then F ≡EQ1b F ′.

It follows that the outputs of an argumentation system coincide with those of its cores.

Corollary 43. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems s.t. R

and R′ satisfy C1b and C2b. If F ′ is a core of F , then:

• Sc(F) ∼ Sc(F ′);

• Cr(F) ∼ Cr(F ′);

• Outputsc(F)
∼= Outputsc(F

′);

• Outputcr (F)
∼= Outputcr (F

′);

• Bases(F) = Bases(F ′).

A core is seen as a compact version of an argumentation system. The statuses of its

arguments are those computed in the original system. Moreover, it is easy to show that each

argument which does not belong to a core has an equivalent argument with the same status

in the original system.

Property 44. Let F = (A,R) be an argumentation system and F ′ = (A′,R′) its core. If

R satisfies C1b and C2b then:

• If a ∈ A′, then Status(a,F) = Status(a,F ′);

• If a /∈ A′, then Status(a,F) = Status(b,F ′) for some b ∈ A′ with a ≈ b.

It is worth noticing that the cores of a given argumentation system are equivalent. This

follows from the fact that the equivalence criteria (e.g., EQ1b) are equivalence relations,

thus transitive. So, if F is an argumentation system and F ′ and F ′′ its cores, then from

F ≡EQ1b F ′ and F ≡EQ1b F ′′, we have F ′ ≡EQ1b F ′′.

Property 45. Let F ′ and F ′′ be two cores of an argumentation system F = (A,R) such

that R satisfies C1b and C2b. It holds that F ′ ≡EQ1b F ′′.

So far, we have shown how to define a proper subsystem of an argumentation system

which is able to subsequently compute all of its outputs. However, there is no guarantee

that the subsystem is finite (i.e., it has a finite set of arguments). In fact, the finiteness of

cores depends broadly on the logic underlying the argumentation system (i.e., (L,CN)). We

show that finiteness is ensured by logics in which any consistent finite set of formulae has

finitely many logically non-equivalent consequences when the knowledge base is finite.

Two examples of such logics are Parry’s (1989) and the fragment of intuitionistic logic

(introduced by McKinsey and Tarski) studied by McCall (1962).

Theorem 46. Let F = (A,R) be an argumentation system built over a knowledge base6

(i.e., A ⊆ Arg(6)). If Cncs(6)/ ≡ is finite, then every core of F is finite.



To sum up, under some reasonable conditions on the attack relation and the logic, any

argumentation system has finite and equivalent cores.

Corollary 47. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems s.t. R

and R′ satisfy C1b and C2b and Cncs(6)/ ≡ is finite. If F ′ is a core of F , then F ′ is

finite and F ≡EQ1b F ′.

4.1. Core(s) in propositional logic

The previous section has shown that argumentation systems which are built under some

particular logics have finite cores. Propositional logic is not one of them since the set

Cncs(6)/ ≡ is not finite. Let us consider the following counter-example.

Example 48. Let (L,CN) be propositional logic and let 6 = {x}. The set Cncs(6)

contains the following formulae: x, x ∨ z1, x ∨ z2, x ∨ z3, . . . and is thus infinite.

Thus, under propositional logic, the set of all arguments that can be built from a finite

knowledge base is infinite. The proof of the following property follows from the idea of the

previous example.

Property 49. Let (L,CN) be propositional logic and 6 a finite knowledge base having at

least one consistent formula. The set Arg(6) is infinite.

Despite the previous properties (on Cncs(6) and Arg(6)), it is possible to define finite

cores for any argumentation system under propositional logic. The idea is to understand

the reasons of infiniteness and try to avoid them. There are several sources of infiniteness

of the set of arguments. The first one is the fact of duplicating several arguments with

the same support and equivalent conclusions. For instance, the arguments 〈{x}, x ∨ y〉,

〈{x},¬x → y〉 and 〈{x}, (¬x → y)∨ (x ∨¬x)〉 are built from6 = {x, y} and are in some

sense redundant, or equivalent with respect to the relation ≈. The case is similar for the two

arguments 〈{x}, x〉 and 〈{x}, x ∧ x〉. It is easy to see that the number of such arguments is

infinite. Property 34 shows that such arguments have the same status in an argumentation

system whose attack relation verifies the two properties C1b and C2b.

The second source of infiniteness of a set of arguments is due to atoms that have

no occurrence within the knowledge base 6 but occur in conclusions of arguments. For

instance, the two arguments 〈{x}, x ∨ z〉 and 〈{x}, x ∨ z ∨ w〉 belong to the set Arg(6)

although z and w do not occur in6 = {x, y}. This section shows that such arguments have

no impact on the other arguments of Arg(6).

Another source of infiniteness might be an infinite knowledge base6. It can contain an

infinite amount of non-redundant information and in such cases it is impossible to find a

finite core of the corresponding argumentation system. That is why, throughout the paper,

we suppose that 6 is finite.

In order to illustrate how to deal with the sources of infiniteness in a concrete example,

the remainder of the section presents a detailed study of the case when a particular attack

relation (called assumption attack) is used together with a stable semantics. In the next

section, we show how some of the results can be generalised to large class of logics. Let us

first introduce some notations.

Notations:Atoms(6) is the set of atoms occurring in 6. Arg(6)↓ is the subset of

Arg(6) that contains only arguments with conclusions based on Atoms(6). For instance,

for 6 = {x, y}, Atoms(6) = {x, y}. Thus, an argument such as ({x}, x ∨ z ∨w) does not

belong to the set Arg(6)↓.



We now define the attack relation we use in this section.

Definition 50 (Assumption attack). Let 6 be a propositional knowledge base and a, b ∈

Arg(6). The argument a undermines b, denoted aRasb, iff ∃x ∈ Supp(b) s.t. Conc(a) ≡

¬x.

It is worth noticing that this relation satisfies the two properties C1b and C2b.

Property 51. The relation Ras verifies the two properties C1b and C2b.

Now, note that the setArg(6)↓ is infinite (due to equivalent arguments). In what follows,

we show that its arguments have the same status in the two systems F = (Arg(6),R) and

F↓ = (Arg(6)↓,R↓) (where R↓ is of course the restriction of R to Arg(6)↓). The first

result shows that arguments which use external variables (i.e., variables which are not in

Atoms(6)) in their conclusions can be omitted from the reasoning process.

Theorem 52. Let F = (Arg(6),Ras) be an argumentation system built over a proposi-

tional knowledge base6, andF↓ = (Arg(6)↓,Ras↓) its subsystem. For all a ∈ Arg(6)↓,

Status(a,F) = Status(a,F↓) under a stable semantics.

Moreover, we show next that their status is still known. It is that of any argument in

Arg(6)↓ with the same support.

Theorem 53. Let F = (Arg(6),Ras) be an argumentation system built over a propo-

sitional knowledge base 6. For all a ∈ Arg(6) \ Arg(6)↓, under a stable semantics,

Status(a,F) = Status(b,F) where b ∈ Arg(6)↓ and Supp(a) ≈ Supp(b).

To sum up, the two previous theorems clearly show that one can use the subsystem

F↓ = (Arg(6)↓,Ras↓) instead of F = (Arg(6),Ras) without losing any information.

This system is still infinite due to redundant arguments. However, we prove next that the

set Arg(6)↓ is partitioned into a finite number of equivalence classes with respect to the

equivalence relation ≈.

Theorem 54. For every propositional knowledge base 6, it holds that |Arg(6)↓/ ≈ | ≤

2n · 22m , where n = |6| and m = |Atoms(6)|.

This result is of great importance since it shows how it is possible to partition an infinite

set of arguments into a finite number of classes. Note that each class may contain an infinite

number of arguments. An example of such an infinite class is the one which contains (but

is not limited to) all the arguments having {x} as a support and x, x ∧ x, . . . as conclusions.

A consequence of this result is that the cores of an argumentation system which considers

only the set Arg(6)↓ of arguments are finite.

Theorem 55. Let 6 be a propositional knowledge base and F = (A,Ras) be an argu-

mentation system such that A ⊆ Arg(6)↓. Then every core of F is finite.

Since the attack relation Ras satisfies the two properties C1b and C2b, then from

Theorem 42, an argumentation system that does not accept external variables in its arguments

is equivalent to any of its cores.

Corollary 56. Let 6 be a propositional knowledge base and F = (A,Ras) be an argu-

mentation system using a stable semantics such that A ⊆ Arg(6)↓. F ≡EQ1b F ′ where

F ′ is a core of F .

Note that no core is equivalent to the original argumentation F = (Arg(6),Ras)

with respect to EQ1b. This is because the set Output(G)/≡ of any core G is finite



while Output(F)/≡ is infinite (due to conclusions containing atoms not occurring in6).

However, the next result shows that it is possible to compute the output of the original

argumentation system from the output of one of its cores.

Theorem 57. LetF be an argumentation system built over a propositional knowledge base

6 using stable semantics and let G be one of its cores.

Outputsc(F) = {x ∈ L s.t. Outputsc(G) ⊢ x}.

An important question now is how to choose a core. A simple solution would be to pick

exactly one formula from each set of logically equivalent formulae. Since a lexicographic

order on set L is usually available, we can take the first formula from that set according

to that order. Instead of defining a lexicographic order, one could also choose to take the

disjunctive (or conjunctive) normal form of a formula.

4.2. On the finiteness of core in other logics

The previous section presented a study of cores in a concrete example (propositional logic,

assumption attack, stable semantics). In this section, we show that if the atoms not appearing

in6 are not used in the conclusions of arguments, there is a large class of logics with finite

cores. The main technical challenge is that the notion of an abstract logic defined by Tarski

is too abstract – namely there is no notion of atom or variable, so it is not possible to speak

of omitting atoms appearing in6. Thus, we will base our result on the notion of an algebra.

First, recall that an algebra is a tuple (A, ( fi )i∈I ) where each fi is an ni -ary operation over

A. The similarity type of the algebra is (ni )i∈I .

In this section, we consider only logics satisfying the following four conditions, which

we call bounded algebraic logics.

(1) The language of such a logic is a term algebra L = (F, o1, . . . , on) such that n ∈ ω

and ni ∈ ω for i = 1..n (that is, the language only has finitely many logical symbols,

none of them is infinite in character: there is no infinitary disjunction, no infinitary

conjunction, etc.).

(2) A model of such a logic can be characterised as an homomorphism from L to an

algebra whose similarity type is exactly that of L (not all such homomorphisms

need be models of the logic).

(3) Completeness holds (that is, CN(8) = CN(9) iff m(8) = m(9) in all models m

of (L,CN)).

(4) Such a logic is to satisfy absorption laws for o1, . . . , on as follows.

Absorption laws for unary logical symbols:

Let {o1, . . . , om} be the set of unary operators of L. We define a prefix as a finite

sequence of operators. The logic is supposed to satisfy the following condition: for every

subset {oi , . . . , ok} of the set of unary operators, for every atomic formula α, for every

model m of (L,CN), there exists l < ω such that for every prefix P over {oi , . . . , ok} there

exists a prefix P ′ over {o1, . . . , om} such that length(P ′) ≤ l and m(P(γ )) = m(P ′(γ )).

The system of absorption laws which is required for such logics need not be non-

redundant or optimal in any way – all that is required is that the system exists (possibly

through equivalence).

Since the number of unary operators is finite, there exists K < ω which is an upper

bound of the length of prefixes P ′ for different subsets of unary operators.



As an illustration, take propositional intuitionistic logic. There is only one unary oper-

ator, namely ¬. We have l = 2 since γ ≡ γ , ¬γ ≡ ¬γ , ¬¬γ ≡ ¬¬γ , ¬¬¬γ ≡ ¬γ ,

¬¬¬¬γ ≡ ¬¬γ , ¬¬¬¬¬γ ≡ ¬γ , etc.

As another example, in propositional modal logic S5, such an absorption law is ⋄¬⋄γ ≡

¬ ⋄ γ . In this case, we have l = 3.

For a formula 8, the sublanguage L8 obtained by using only non-logical symbols

occurring in 8 and the logical symbols from L is easily defined (as the sub-algebra of L

generated by the non-logical symbols occurring in 8). Also, since a formula is a member

of the term algebra L, the notion of a sub-formula coincides with the notion of a sub-term

in L.

Given a formula2 from L, let x1, . . . , xl be all the atoms occurring in it. Let Fk define

the set of all formulas from L2 in which each x j occurs at most k times and no oi occur

such that ni < 2. Clearly, for every k, we have that Fk is finite. Let us define F+
k as the set

obtained as follows: for a formula ϕ, replace every sub-formula θ in ϕ with Pθ where P

ranges over all prefixes of length less or equal to K . Do this for every formula ϕ in Fk .

Lemma 58. For every k, F+
k is finite.

Absorption laws for n-ary logical symbols:

It is required that the logic satisfies the following condition: given a formula 2, there

exists k < ω such that for every non-unary operator oi , for every γ1, . . . , γn ∈ F+
k there

exists δ ∈ F+
k such that for every model m of (L,CN) we have

m(oi (γ1, . . . , γn)) = m(δ).

As an illustration, in propositional classical logic, such an absorption law is (β∧γ )∨γ ≡

γ .

Please observe that, in a number of logics, if oi (γ1, . . . , γni ) is in F+
k then it may happen

that the corresponding absorption law is identity.

Theorem 59. For every formula α ∈ L2, there exists σ ∈ F+
k s.t. CN(α) = CN(σ ).

We define CNL2(2) to be CN(2) ∩ L2. By applying the previous theorem in view of

the lemma we obtain the following result.

Corollary 60. Given a formula 2 from L, CNL2(2) is partitioned into finitely many

CN-equivalence classes.

The main theorem of this section is now a direct consequence of the previous result.

Theorem 61. Let (L,CN) be a bounded algebraic logic. Let 6 be a finite set of formulas

from L. Let F = (A,R) be an argumentation system such that A is a set of arguments

whose conclusions are all in CN(6) ∩ L6 . Then, every core of F is finite.

Note that unlike Wójcicki (1988), which calls algebraic logics those systems that satisfy

Tarski’s finiteness axiom, we restrict the meaning of algebraic logic to those that admit an

algebraic semantics in the above direct manner (excluding for instance semantics based on

cylindrical algebras, as designed for predicate first-order logic). Algebraic semantics for

well-known logics can be found in the literature (Rasiowa & Sikorski, 1963).

4.3. Dynamics of argument status

Several works have studied the dynamics of an argumentation system. They mainly inves-

tigate how the acceptability or status of an argument may evolve when the argumentation



system is extended with new arguments. For instance, Amgoud and Vesic (2012) show that

an argument may be sceptically accepted in a system, and becomes rejected in an extended

version of the system. Similarly, an argument may be rejected or credulously accepted in

a system and becomes sceptically accepted in an extended system. It has been shown that

the same phenomenon occurs when arguments are removed from an argumentation system

(Bisquert, Cayrol, de Saint-Cyr & Lagasquie, 2011). In what follows, we show that the

notion of core is at the heart of this change in arguments’ statuses.

Throughout this section, we consider a fixed Tarskian logic (L,CN) and an attack relation

R(L) ⊆ Arg(L) × Arg(L) which satisfies the two properties C1b and C2b. Given an

argumentation system F = (A,R) and a set E of arguments,

• F ⊕ E = (A′,R′) with A′ = A ∪ E and R′ = R(L)|A′ .

• F ⊖ E = (A′,R′) with A′ = A \ E and R′ = R(L)|A′ .

Before presenting the formal results, let us introduce a new definition.

Definition 62. Let F = (A,R) and G be argumentation systems. F contains a core of G

iff there exists an argumentation system H = (Ah,Rh) s.t. Ah ⊆ A and Rh ⊆ R and H

is a core of G.

The next result shows that if an argumentation system contains a core of its complete

version, then adding new arguments does not impact on the status of existing arguments.

Theorem 63. Let F = (A,R) be an argumentation system built over a knowledge base

6 such that R satisfies C1b and C2b. If F contains a core of G = (Arg(Base(A)),

R(L)|Arg(Base(A))), then for all E ⊆ Arg(Base(A)),

• F ≡EQ1b F ⊕ E;

• ∀a ∈ A,Status(a,F) = Status(a,F ⊕ E);

• ∀e ∈ E \ A,Status(e,F ⊕ E) = Status(a,F), where a ∈ A is any argument

s.t. Supp(a) ≈ Supp(e).

It is clear that the previous result holds when F is itself a core of G. The following

example shows that when a system does not contain a core of the system built over its base,

new arguments may change the status of the existing ones.

Example 64. Let (L,CN) be propositional logic and let the attack relation R(L) be the

assumption attack relation. Let F = (A,R) be an argumentation system such that A =

{a1 = ({strad, strad → exp}, exp), a2 = ({¬strad},¬strad)}. Recall that R =

R(L)|A. thus, R = {(a2, a1)}. The argument a2 is sceptically accepted whereas a1 is

rejected. Let e = ({strad}, strad). It is clear that e ∈ Arg(Base(A)). However, the

status of each of a1 and a2 changes in the system F ⊕{e}. Namely, both arguments become

credulously accepted.

The previous example illustrates a situation where an argumentation system F does not

contain a core of the system constructed from its base. This means that not all available

information is represented in F ; thus, it is not surprising that it is possible to revise

the statuses of arguments. In what follows, we also provide a situation where removing

arguments from F will not impact the status of arguments in F .

Theorem 65. Let F = (A,R) be an argumentation system built over a knowledge base

6 such that R satisfies C1b and C2b and let E ⊆ A. If F ⊖ E contains a core of G =

(Arg(Base(A)),R(L)|Arg(Base(A))), then:



• F ≡EQ1b F ⊖ E;

• ∀a ∈ A \ E , Status(a,F) ≈ Status(a,F ⊖ E).

The obvious consequence of the above result is that if F ⊖ E is itself one of the

cores of G then the statuses of its arguments are not changed after removing arguments

from E .

5. Conclusion

In this paper, we tackled the question: when are two logic-based argumentation systems

equivalent? We proposed various equivalence criteria. Some of them are shown to be

syntax-dependent whereas others are more flexible and take advantage of equivalences

between arguments and between formulae. The links between the criteria are largely

investigated. Some of the results hold for any acceptability semantics and any attack

relation, while others make reasonable assumptions on the attack relations or are shown

under particular semantics. The comparative study revealed that there is one particular

criterion which is both flexible and general. Thus, in the second part of the paper, we only

focused on this criterion. We studied under which conditions two systems are equivalent

with respect to this criterion. We have shown how to move from infinite argumentation

systems to finite ones and how to replace a system with a proper subsystem without losing

information.

It is worth mentioning that equivalence between arguments and sets of arguments has

also been studied from a computational complexity perspective (Wooldridge, Dunne &

Parsons, 2006). The authors focused on one particular argumentation system: the one that is

built on propositional logic and that uses the assumption attack relation. According to this

work, two arguments are logically equivalent if and only if their conclusions are logically

equivalent. Thus, the two arguments a = ({y, y → x}, x) and a′ = ({z, z → x}, x) are

equivalent. Note that in our paper, these two arguments are not equivalent. We consider

them not equivalent since they are based on different hypotheses. It can be the case that

one of these hypotheses is attacked but not the other one. For example, the argument

b = ({¬y},¬y) attacks a but not a′. This example shows that the equivalence relation

considered by Wooldridge et al. is too simplistic and is not sufficient to guarantee that all

information from a knowledge base is represented in an argumentation system. Wooldridge

et al. also propose an equivalence criterion between sets of arguments. According to this

criterion, two sets of arguments, X and Y , are equivalent if there is a bijection between them,

i.e., a function f s.t. ∀x ∈ X , f (x) is equivalent with x (using their equivalence criterion

between arguments). In this paper, we proposed a more flexible criterion. Let us consider

the following example: let X = {({x}, x), ({x},¬¬x)} and Y = {({x}, x)}. According to

our criterion, the two sets X and Y are equivalent while they are not equivalent with respect

to the criterion used by Wooldridge et al. (2006). Note that our criterion allows us to reduce

an infinite system to a finite one, which is impossible if using the definition demanding for

a bijection between the two sets.

Notes

1. This paper is a revised and extended version of two conference papers: Amgoud and Vesic (2011)
and Amgoud, Besnard & Vesic (2011).

2. The notation Y ⊆ f X means that Y is a finite subset of X .
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Appendix

Property 19. Each criterion ≈i is an equivalence relation (with i ∈ {1, 2, 3}).

Proof. The three relations are reflexive since relations ∼=, ≡ and = are reflexive, they are symmetric
since ∼=, ≡ and = are symmetric and they are transitive since ∼=, ≡ and = are transitive. �

Property 20. Let a, a′ ∈ Arg(L).

• If a ≈1 a′, then a ≈3 a′;
• If a ≈2 a′, then a ≈3 a′.

Proof. The claim follows from the fact that for every two sets of formulae X and Y , it holds that
X = Y implies X ∼= Y and X ≡ Y . �

Property 26. For two argumentation systems F and F ′, if F ≡EQi F ′ then F ≡EQib F ′ with
i ∈ {1, . . . , 6}.

Proof. The property follows from the observations that for every pair of sets of arguments E , E ′,
we know that E = E ′ implies E ∼ E ′ and that for every pair of sets of formulae X , Y , it holds that
X = Y implies X ∼= Y . �

Property 27. For all i ∈ {1, . . . , 6}, the criterion EQi (resp. EQib) is an equivalence relation.

Proof. The result follows from the elementary properties of bijections, together with the fact that
both ∼ and ∼= are equivalence relations. �

Property 33. Let R be an attack relation.

• If R satisfies C1b then it satisfies C1.
• If R satisfies C2b then it satisfies C2.

Proof. The proof follows directly from the two following observations: first, for two formulae ϕ
and ψ , it holds that ϕ = ψ implies ϕ ≡ ψ ; second, for two sets of formulae X and Y , if X = Y , then
X ∼= Y . �

Property 34. Let (A,R)beanargumentation systems.t.R satisfiesC1b andC2b.Forall a, a′, b, b′ ∈
A, (a ≈ a′ and b ≈ b′) implies (aRb iff a′Rb′).

Proof. Let a ≈ a′ and b ≈ b′ and let aRb. Since Supp(b) ∼= Supp(b′) then from C2b we have
aRb′. From C1b and Conc(a) ≡ Conc(a′), we obtain a′Rb′. To show that a′Rb′ implies aRb is
similar. �

Property 35. Let (A,R) be an argumentation system s.t. R satisfies C2b. For all a, a′ ∈ A, if
a ≈ a′, then ∀E ∈ Ext(F), a ∈ E iff a′ ∈ E .

Proof. To prove this result, we use the notion of complete labelling (Caminada, 2006a). Since
arguments a and a′ have the same sets of attackers, then for every complete labelling L we have
L(a) = L(a′). This means that for every complete extension E , it holds that a ∈ E if and only a′ ∈ E .
The proof follows from the fact that stable, preferred and grounded extensions are also complete
extensions. �

Property 36. Let (A,R) be an argumentation system s.t.R satisfiesC1b andC2b. For all a, a′ ∈ A,
if a ≈ a′, then Status(a,F) = Status(a′,F).

Proof. Let x ∈ {c, p, s, g} and denote by Extx (F) the set of extensions under this semantics. From
Property 33, we see that for all Ei ∈ Extx (F) it holds that a ∈ Ei if and only if a′ ∈ Ei . Consequently,

• for all Ei ∈ Extx (F), a ∈ Ei if and only if for all Ei ∈ Extx (F), a
′ ∈ Ei ;

• for all Ei ∈ Extx (F), a /∈ Ei if and only if for all Ei ∈ Extx (F), a
′ /∈ Ei .

The proof now follows directly from these two observations. �

Property 37. Let F = (A,R), F ′ = (A′,R′) be two argumentation systems built from the same
logic (L,CN) such that R and R′ satisfy C1b and C2b. If F ≡EQ1b F ′, then for all a ∈ A and for

all a′ ∈ A′, if a ≈ a′ then Status(a,F) = Status(a′,F ′).



Proof. Let x ∈ {c, p, s, g}. If F has no extensions under semantics x , then all the arguments of F

and F ′ are rejected. In the rest of the proof we study the case Extx (F) 6= ∅. Let f be the bijection
from EQ1b and let us prove that for every E ∈ Extx (F), a ∈ E if and only if a′ ∈ f (E).

Let E ∈ Extx (F) and let a ∈ E . From EQ1b, we conclude that there exists a′′ ∈ f (E) such that
a ≈ a′′. Since ≈ is transitive, a′ ≈ a′′. Thus, from Property 33, we have that a′ ∈ f (E).

Let us now suppose that a′ ∈ f (E) and prove that a ∈ E . From EQ1b, there exists a′′′ ∈ E such
that a′ ≈ a′′′. From the transitivity of ≈, a′′′ ≈ a. From Property 33, a ∈ E .

Thus, we see that for every extension E of F , we have that a ∈ E if and only if a′ ∈ f (E). From
this, we can conclude that:

• a ∈
⋂

Ei∈Extx (F)
Ei iff a′ ∈

⋂

E ′
i∈Extx (F ′) E

′
i
;

• a ∈
⋃

Ei∈Extx (F)
Ei iff a′ ∈

⋃

E ′
i∈Extx (F ′) E

′
i
;

• a /∈
⋃

Ei∈Extx (F)
Ei iff a′ /∈

⋃

E ′
i∈Extx (F ′) E

′
i
.

In other words, if a is sceptically accepted, a′ is sceptically accepted, if a is credulously accepted,
a′ is credulously accepted and if a is rejected then a′ is rejected. �

Property 43. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems. If F ′ is a core of
F , then A ∼ A′.

Proof. The property follows directly from Definition 40. �

Property 46. LetF = (A,R) be an argumentation system andF ′ = (A′,R′) its core. IfR satisfies
C1b and C2b then:

• If a ∈ A′, then Status(a,F) = Status(a,F ′);
• If a /∈ A′, then Status(a,F) = Status(b,F ′) for some b ∈ A′ with a ≈ b.

Proof.

• From Theorem 42, F ≡EQ1b F ′. From Property 35, Status(a,F) = Status(a,F ′).

• From the first part of the property, Status(b,F) = Status(b,F ′). Let us show that
Status(a,F) = Status(b,F). Since a ≈ b and R satisfies C1b and C2b, then a and b
are attacked by the same arguments. This means that for every complete labelling L Caminada
(2006a), it holds that L(a) = L(b). Since stable, preferred and grounded extensions are
complete extensions,Status(a,F) = Status(b,F)with respect to any of those semantics.
Thus, Status(a,F) = Status(b,F ′).

�

Property 51. Let (L,CN) be propositional logic and 6 a finite knowledge base having at least one
consistent formula. The set Arg(6) is infinite.

Proof. Let ϕ ∈ 6 be a consistent formula and let without loss of generalityψ1,ψ2, . . . be the atoms
not appearing in ϕ. Set Arg(6) contains all the following arguments: ({ϕ}, ϕ ∨ ψ1), ({ϕ}, ϕ ∨ ψ2),
({ϕ}, ϕ ∨ ψ3), . . .. Thus, Arg(6) is infinite. �

Lemma 60. For every k, F+
k

is finite.

Proof. Clearly, each formula from Fk offers finitely many occurrences to be replaced and there
are finitely many substituting strings. Therefore, each formula from Fk gives rise to finitely many

formulas in F+
k

. Since Fk is finite, it then follows that so is F+
k

. �

Lemma 68. Let (Ac,Rc) be a core of F↓ = (A↓ = Arg(6)↓,R↓ = R(L)|A↓
) and let A1

be an arbitrary set which contains Ac, i.e., Ac ⊆ A1 ⊆ Arg(6). We define R1 = R|A1
, as

expected, and F1 = (A1,R1). Let S1, . . . , Sn be all the maximal consistent subsets of 6, and let
E1 = Arg(S1) ∩ A1, . . . , En = Arg(Sn) ∩ A1. Then, Ext(F1) = {E1, . . . , En}.

Proof. We will first prove that for any maximal consistent subset Si of6, the set Ei = Arg(Si )∩A1
is a stable extension of F1. It is easy to see that if Si is consistent then Arg(Si ) is conflict-free. Let us
prove that Ei attacks any argument in A1 \ Ei . Let a′ ∈ A1 \ Ei . Since a′ /∈ Ei , then ∃h ∈ Supp(a′)

s.t. h /∈ Si . Since Supp(a′) ⊆ 6 and Si is a maximal consistent subset of 6, it follows that Si ∪ {h}
is inconsistent. Then, there exists a minimal set C ⊆ Si s.t. C ∪ {h} is inconsistent. Let a = (C,¬h).



Then, since a uses only atoms from 6 (since h ∈ 6) and since (Ac,Rc) is a core of F↓, it follows

that ∃a1 ∈ Ac s.t. a1 ≈1 a. Since Supp(a1) ⊆ Si then a1 ∈ Ei . Also, a1R1a
′. Hence, Ei is a stable

extension of F1.
We will now prove that for any E ′ ∈ Ext(F1), there exists a maximal consistent subset of 6,

denoted S′, s.t. E ′ = Arg(S′) ∩ A1. To show this, we will show that: 1) Base(E ′) is consistent; 2)
Base(E ′) is a maximal consistent set in 6; 3) E ′ = Arg(Base(E ′)) ∩ A1.

(1) Let S′ = Base(E ′). Suppose that S′ is an inconsistent set and let C ⊆ S′ be a minimal
inconsistent subset of S′. Let C = { f1, . . . , fk}, and let us construct the following argument:
a = (C \ { f1},¬ f1). Since E ′ is conflict-free, then a /∈ E ′ and ∄a1 ∈ E ′ s.t. a1 ≈1 a. Since
Ac ⊆ A1, there exists an argument a1 ∈ A1 s.t. a1 ≈1 a. This means that a1 ∈ A1 \ E ′.
Since E ′ is a stable extension, E ′ must attack a1. Formally, ∃a′ ∈ E ′ s.t. a′R1a1. So,
Conc(a′) ≡ ¬ f2 or Conc(a′) ≡ ¬ f3, . . ., or Conc(a′) ≡ ¬ fk . Without loss of generality,
let Conc(a′) ≡ ¬ fk . Since fk ∈ S′, there exists at least one argument ak in E ′ s.t. fk ∈
Supp(ak). Consequently, E ′ is not conflict-free, since a′ attacks at least one argument in E ′.
Contradiction. Hence, it must be that S′ is consistent.

(2) Let S′ = Base(E ′) and suppose that S′ is not a maximal consistent set in 6. According to
(1), S′ is consistent, hence ∃ f ∈ 6 \ S′ s.t. S′ ∪ { f } is consistent. Thus, for the argument
b = ({ f }, f ), we have that ∃b1 ∈ A1 \ E ′ s.t. b1 ≈ b, but no argument in E ′ attacks b1.
(This is since ¬ f cannot be inferred from S′; consequently, no argument can be constructed
from S′ having its conclusion logically equivalent to ¬ f .) Contradiction. Hence it must be
that S′ is a maximal consistent set.

(3) It is easy to see that for any set of arguments E ′, we have E ′ ⊆ Arg(Base(E ′)). Since
S ′ = Base(E ′) is a consistent set, then the set of arguments Arg(Base(E ′)) ∩ A1 must
be conflict-free. From the fact that E ′ is a stable extension of F1, we conclude that the
case E ′ ( Arg(Base(E ′)) ∩ A1 is not possible (since every stable extension is a maximal
conflict-free set).

We will now show that if S, S′ are two different maximal consistent subsets of6, E = Arg(S)∩
A1 and E ′ = Arg(S′) ∩ A1, then E 6= E ′. Without loss of generality, let f ∈ S \ S′. Let a f ∈ A1
be an argument s.t. Supp(a f ) = { f } and Conc(a f ) ≡ f . Such an argument must exist since A1

contains Ac, and (Ac, Rc) is a core of F↓. It is clear that a ∈ E \ E ′, which shows that E 6= E ′. �

Theorem 29. Let F and F ′ be two argumentation systems built on the same logic (L,CN). Table 1
summarises the dependencies (F ≡x F ′) ⇒ (F ≡x ′ F ′) under any of the reviewed semantics.

Proof. Throughout the proof, we use notation F = (A,R) and F ′ = (A′,R′). We suppose any of
the semantics from Definition 7.

First, note that EQ1 implies all the other criteria.
Let us now show that EQ1b implies EQ3b. Let a ∈ Cr(F). Let us prove that ∃a′ ∈ Cr(F ′)

s.t. a ≈ a′. Since a ∈ Cr(F) then ∃E ∈ Ext(F) s.t. a ∈ E . Let f be a bijection from EQ1b and
let E ′ = f (E). From EQ1b, E ∼ E ′, thus ∃a′ ∈ E ′ s.t. a ≈ a′. This means that ∀a ∈ Cr(F),
∃a′ ∈ Cr(F ′) such that a ≈ a′. To prove that ∀a′ ∈ Cr(F ′), ∃a ∈ Cr(F) such that a ≈ a′ is similar.
Thus, Cr(F) ∼ Cr(F ′).

Let us now show that EQ3b implies EQ5b. Let Cr(F) ∼ Cr(F ′) and let ϕ ∈ Outputcr (F).
Thus, there exists a ∈ Cr(F) such that ϕ = Conc(a). From Cr(F) ∼ Cr(F ′), we conclude that
there exists a′ ∈ Cr(F ′) such that a ≈ a′. Thus, there exists ϕ′ ∈ Outputcr (F) such that ϕ ≡ ϕ′.
Another direction of the implication is symmetric. Thus, we conclude that EQ3b implies EQ5b.

Since EQ1b implies EQ3b and EQ3b implies EQ5b, it follows that EQ1b implies EQ5b.
Let us prove that EQ1b implies EQ6b. Suppose that EQ1b hold and let f be the bijection from

this criterion. Let S ∈ Bases(F) and let E ∈ Ext(F) be an extension such that S = Base(E).
Denote E ′ = f (E) and S′ = Base(E ′). Since E ∼ E ′, it follows that S ∼= S′. Thus, EQ1b implies
EQ6b.

From Property 25, we see that EQ2 implies EQ2b.
Let us show that EQ2 implies EQ4. Since Outputsc(F) = {Conc(a)|a ∈ Sc(F)}, we conclude

that Sc(F) = Sc(F ′) implies Outputsc(F) = Outputsc(F
′). In other words, EQ2 implies EQ4.

Since EQ2 implies EQ4 and EQ4 implies EQ4b (Property 25), it follows that EQ2 implies EQ4b.
Let us prove that EQ2b implies EQ4b. Let ϕ ∈ Outputsc(F). Thus, there exists a ∈ Sc(F),

such thatConc(a) = ϕ. From EQ2b it follows that there existsϕ′ ∈ Outputsc(F
′) such thatϕ ≡ ϕ′.



Consequently, there exists a′ ∈ Sc(F ′) such that Conc(a′) = ϕ′. This means that Outputsc(F) ∼=
Outputsc(F

′). Hence EQ2b implies EQ4b.
From Property 25, EQ3 implies EQ3b.
Let us show that EQ3 implies EQ5. Since Outputcr (F) = {Conc(a)|a ∈ Cr(F)}, it follows

that Cr(F) = Cr(F ′) implies Outputcr (F) = Outputcr (F
′). Hence EQ3 implies EQ5.

Since EQ3 implies EQ5 and EQ5 implies EQ5b (Property 25), it follows that EQ3 implies EQ5b.
Note that we have already seen that EQ3b implies EQ5b.
That EQ4 implies EQ4b, EQ5 implies EQ5b and EQ6 implies EQ6b is shown by Property 25. �

Theorem 32. The links between the twelve equivalence criteria under grounded semantics are
summarised in Table 2.

Proof. Note that we only need to prove the links that do not exist in Theorem 27. Also, note that
there is always exactly one extension, thus EQ1 coincides with EQ2 and EQ3. For the same reason,
EQ1b coincides with EQ2b and EQ3b. EQ1b implies EQ2b since there is exactly one extension. Since
EQ2b implies EQ4b in the general case, it follows that EQ1b also implies EQ4b. Since EQ2 coincides
with EQ1 and EQ1 implies all the other criteria, it follows that EQ2 also implies all the other criteria.
As already mentioned, EQ2b is equivalent to EQ1b. The same holds for EQ2b and EQ3b. It is also
easy to see that EQ2b implies EQ5b and EQ6b (since there is exactly one extension). EQ4 coincides
with EQ5 for the above-mentioned reason (that there is exactly one extension). The same applies to
EQ4b and EQ5b. �

Theorem 38. Let F = (A,R), F ′ = (A′,R′) be two argumentation systems built from the
same logic (L,CN), R and R′ satisfy C1b and C2b. If F ≡EQ1b F ′, then F ≡x F ′ with
x ∈ {EQ2b, EQ4b}.

Proof. Suppose that the two systems are equivalent with respect to EQ1b and let us prove that EQ2b
is satisfied. If Ext(F) = ∅, then from EQ1b, Ext(F ′) = ∅. In this case, EQ2b trivially holds, since
Sc(F) = Sc(F ′) = ∅. Else, let Ext(F) 6= ∅.

Let Sc(F) = ∅ and let us prove that Sc(F ′) = ∅. By means of contradiction, suppose the
contrary and let a′ ∈ Sc(F ′). Let E ′ ∈ Ext(F ′). Argument a′ is sceptically accepted, thus a′ ∈ E ′.

Let f be a bijection from EQ1b and let us denote E = f −1(E ′). From F ≡EQ1b F ′, we obtain

E ∈ Ext(F). Furthermore, E ∼ E ′, and, consequently, there exists a ∈ E s.t. a ≈ a′. Property 35
implies that a is sceptically accepted in F , contradiction.

Let Sc(F) 6= ∅ and let us prove that Sc(F) ∼ Sc(F ′). Let a ∈ Sc(F). Since F ≡EQ1b F ′

and since a is in at least one extension, then there exists a′ ∈ A′ s.t. a′ ≈ a. Furthermore, Property 35
implies that a′ is sceptically accepted in F ′. Thus for all a ∈ Sc(F) there exists a′ ∈ Sc(F ′) such
that a′ ≈ a. The proof that for all a′ ∈ Sc(F ′) there exists a ∈ Sc(F) such that a ≈ a′ is similar.

Since EQ2b implies EQ4b in the general case, as shown in Theorem 27, we can conclude that F

and F ′ must also be equivalent with respect to EQ4b. �

Theorem 39. Let (A,R) be an argumentation system built over6. If6 is finite and R satisfies C2,
then (A,R) has a finite number of extensions under all reviewed semantics.

Proof. Let x ∈ {c, p, s, g} and let S1, . . . , Sn ⊆ 6 be all the consistent subsets of 6. We will
use the notation Ai = {a ∈ A|Supp(a) = Si }, with i ∈ {1, . . . , n}. (Note that some of the sets
in A1, . . . ,An may be empty, but that is not important for the proof.) Let us prove that for every
E ∈ Extx (F), for every two arguments a, a′ ∈ Ai and a′, we have a ∈ E if and only if a′ ∈ E . To
prove this result, we rely on the notion of the complete labelling (Caminada, 2006a). Since a and a′

are attacked by the same arguments, they have the same labels. Thus for every complete extension
E ∈ Extc(F), we have a ∈ E if and only if a′ ∈ E . Since every stable, preferred and grounded
extension is a complete one, we can conclude that for every E ∈ Extx (F) we have that a ∈ E if and
only if a′ ∈ E . This means that for every i ∈ {1, . . . , n}, for every extension E ∈ Extx (F), we have
that E either contains all elements of Ai or none of them. Formally, ∀E ∈ Ext(F), ∀i ∈ {1, . . . , n},
we have E ∩ Ai = Ai or E ∩ Ai = ∅. Consequently, there are at most 2n different extensions. �

Theorem 40. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems s.t. A,A′ ⊆
Arg(L) and R = RL|A,R

′ = RL|A′ . If RL satisfies C1b and C2b and A ∼ A′, then F ≡EQ1b

F ′.



Proof. Let x ∈ {c, p, s, g}. Define the function f ′ : 2A → 2A′
as follows: f ′(B) = {a′ ∈ A′|∃a ∈

B s.t. a′ ≈ a}. Let f be the restriction of f ′ to Extx (F). We see that the image of this function is
Extx (F

′) and that f is a bijection between Extx (F) and Extx (F
′) satisfying EQ1b. �

Theorem 44. Let F = (A,R) and F ′ = (A′,R′) be two argumentation systems s.t. R and R′

satisfy C1b and C2b. If F ′ is a core of F , then F ≡EQ1b F ′.

Proof. The result is obtained by applying Theorem 38 to F and F ′. �

Theorem 48. Let F = (A,R) be an argumentation system built over a knowledge base 6 (i.e.,
A ⊆ Arg(6)). If Cncs(6)/ ≡ is finite, then every core of F is finite.

Proof. Let F ′ = (A′,R′) be a core of F and let us prove that F ′ is finite. Since6 is finite, it follows
that {Supp(a)|a ∈ A′} must be finite. If for all H ∈ {Supp(a)|a ∈ A′}, the set {a ∈ A′|Supp(a) =
H} is finite, then the set A′ is clearly finite. Else, there exists H0 ∈ {Supp(a)|a ∈ A′}, s.t. the set
AH0

= {a ∈ A′|Supp(a) = H0} is infinite. From the definition of A′, one obtains that ∀a, b ∈ AH0
,

Conc(a) 6≡ Conc(b). It is clear that ∀a ∈ AH0
, Conc(a) ∈ Cncs(6). This implies that there are

infinitely many different formulae having pairwise non-equivalent conclusions inCncs(6), formally,
the set Cncs(6)/ ≡ is infinite, contradiction. This means that for every H0 ∈ {Supp(a)|a ∈ A′},
the set AH0

= {a ∈ A′|Supp(a) = H0} is finite. �

Theorem 54. LetF = (Arg(6),Ras) be an argumentation system built over a propositional knowl-
edge base 6, and F↓ = (Arg(6)↓,Ras↓) its subsystem. For all a ∈ Arg(6)↓, Status(a,F) =
Status(a,F↓) under stable semantics.

Proof. Let S1, . . . , Sn be all the maximal consistent subsets of 6. Since (Arg(6)↓,R↓) and
(Arg(6),R) both contain at least one core of (Arg(6)↓,R↓) (in fact, they both contain all cores of
this set), Lemma 68 implies that extensions of (Arg(6),R) are exactly Arg(Si ), and extensions of
(Arg(6)↓,R↓) are exactly Arg(Si ) ∩ Arg(6)↓, when 1 ≤ i ≤ n. Thus, the two frameworks have
the same number of extensions and any argument of Arg(6)↓ is in the same number of extensions
in them. Consequently, its status must be the same in both frameworks. �

Theorem 55. Let F = (Arg(6),Ras) be an argumentation system built over a propositional
knowledge base 6. For all a ∈ Arg(6) \ Arg(6)↓, Status(a,F) = Status(b,F) where
b ∈ Arg(6)↓ and Supp(a) ≈ Supp(b).

Proof. Let a ∈ Arg(6) \ Arg(6)↓ and b ∈ Arg(6)↓ and let Supp(a) ≈ Supp(b). Since Ras

satisfies C1b and C2b, it follows that in every complete labelling (Caminada, 2006a) a and b have
the same label. This means that a and b belong to exactly the same stable extensions. Hence their
status is the same. �

Theorem 56. For every propositional knowledge base 6, it holds that |Arg(6)↓/ ≈ | ≤ 2n · 22m ,
where n = |6| and m = |Atoms(6)|.

Proof. There are at most 2n different supports of arguments. It is well known that there are at most

22m logically non-equivalent Boolean functions of m variables. Thus, for any support H , there are at

most 22m different non-equivalent arguments, where m is the number of different atoms in 6. �

Theorem 57. Let 6 be a propositional knowledge base and F = (A,Ras) be an argumentation
system such that A ⊆ Arg(6)↓. Then every core of F is finite.

Proof. Follows directly from Theorem 54 and Definition 40. �

Theorem 59. Let F be an argumentation system built over a propositional knowledge base6 using
stable semantics and let G be one of its cores. Outputsc(F) = {x ∈ L s.t. Outputsc(G) ⊢ x}.

Proof. Let G = (Ag,Rg). ⇒ Let h ∈ Outputsc(F). This means that ∃a ∈ A s.t. a ∈ Sc(F) and
Conc(a) = h. Let a = (H, h) and let H = { f1, . . . , fk}. Since a is an argument, H is consistent and
no formula in H can be deduced from other formulae in H . Thus, a′ = (H, f1 ∧ . . .∧ fk) must also
be an argument. Note that its conclusion only contains atoms from 6, thus a′ ∈ A′. Consequently,
there must exist an argument ag ∈ Ag s.t. ag ≈1 a′. G is a core of F ′, thus they are equivalent w.r.t.
EQ1b (Theorem 42). Since equivalent arguments have the same status in equivalent frameworks
(Property 35), ag is sceptically accepted in G. So, Outputsc(G) ⊢ f1 ∧ . . . ∧ fk . Consequently,
Outputsc(G) ⊢ h.



⇐ Let f be a propositional formula that can be deduced from Outputsc(G). Let S1, . . . , Sn
be all the maximal consistent subsets of 6. According to Lemma 68, ∃a ∈ Ag s.t. Supp(a) ⊆
S1 ∩ . . . ∩ Sn and Conc(a) = f . Let us denote H = Supp(a). Obviously, H ⊢ f . Furthermore,
H ⊆ S1 ∩ . . .∩ Sn . From these two facts, we conclude that there must exist an argument a′ ∈ Arg(6)

s.t. Supp(a′) ⊆ H and Conc(a′) = f . From Lemma 68, a′ is sceptically accepted in F . Thus,
f ∈ Outputsc(F). �

Theorem 61. For every formula α ∈ L2, there exists σ ∈ F+
k

s.t. CN(α) = CN(σ ).

Proof. By induction on the structure of formulas from L2. Base step. If α is an atomic formula, then

α ∈ F+
k

. Induction step. Induction hypothesis.Assume that for each formulaλ ∈ L2 of depth less than

n there existsµ ∈ F+
k

such thatCN(λ) = CN(µ). Consider α ∈ L2 whose depth is less than n+1, i.e.,
α is of the form oi (γ1, . . . , γni ) where every γh is of depth less than n. By the induction hypothesis,

there existγ ′
1
, . . . , γ ′

ni
in F+

k
such thatCN(γh) = CN(γ ′

h
) for h = 1..ni . Equivalently,m(γh) = m(γ ′

h
)

for allm.As (L,CN) is algebraic,m(o(γ1, . . . , γni )) = m(o(γ ′
1
, . . . , γ ′

ni
)). There exists an absorption

law that applies here because every γ ′
h

is in F+
k

. In symbols, m(o(γ ′
1
, . . . , γ ′

ni
)) = m(δ′) for some

δ′ ∈ F+
k

. Therefore, there exists δ′ ∈ F+
k

which is CN-equivalent to o(γ ′
1
, . . . , γ ′

ni
) hence CN-

equivalent to α. �

Theorem 65. Theorem 63 Let F = (A,R) be an argumentation system built over a knowledge base
6 such thatR satisfiesC1bandC2b. IfF contains a coreofG = (Arg(Base(A)),R(L)|Arg(Base(A))),
then for all E ⊆ Arg(Base(A)),

• F ≡EQ1b F ⊕ E;
• ∀a ∈ A,Status(a,F) = Status(a,F ⊕ E);
• ∀e ∈ E \ A,Status(e,F ⊕ E) = Status(a,F), where a ∈ A is any argument s.t.
Supp(a) ≈ Supp(e).

Proof. Let F ′ = F ⊕ E with F ′ = (A′,R′) and let H = (Ah ,Rh) be a core of G s.t. Ah ⊆ A.
We will first show that H is a core of both F and F ′. Let us first show that H is a core of F . We will
show that all conditions of Definition 40 are verified.

• We have already seen why Ah ⊆ A.
• We will show that ∀a ∈ A, ∃!a′ ∈ Ah s.t. a′ ≈ a. Let a ∈ A. Since a ∈ Ag and H is a core

of G, it follows that ∃!a′ ∈ Ah s.t. a′ ≈ a.
• Since R = R(L)|A and Rh = R(L)|Ah

, from Ah ⊆ A we obtain that Rh = R|Ah
.

Thus, H is a core of F . Let us now show that H is also a core of F ′.

• Since Ah ⊆ A and A ⊆ A′, it follows that Ah ⊆ A′.
• Let a ∈ A′. Since a ∈ Ag and H is a core of framework G, it follows that ∃!a′ ∈ Ah s.t.

a′ ≈ a.
• Since R′ = R(L)|A′ , Rh = R(L)|Ah

and Ah ⊆ A′, we obtain that Rh = R′|Ah
.

We have shown that H is a core of F and of F ′. From Theorem 42, F ≡EQ11 H and

F ′ ≡EQ11 H. Since ≡EQ11 is an equivalence relation, F ≡EQ11 F ′. Let a ∈ A. From Property

35, Status(a,F) = Status(a,F ′).
Let e ∈ A′ \ A and let a ∈ A be an argument such that Supp(a) ≈ Supp(e). Since a and e

are attacked by the same arguments, they are in the same complete labellings. (Caminada, 2006a);
thus they are in the same extensions. Consequently, they have the same status: Status(e,F ′) =
Status(a,F ′). Since we have seen that Status(a,F ′) = Status(a,F), it follows that
Status(e,F ′) = Status(a,F). �

Theorem 66. Let F = (A,R) be an argumentation system built over a knowledge base 6 and let
E ⊆ A. If F ⊖ E contains a core of G = (Arg(Base(A)),R(L)|Arg(Base(A))), then:

• F ≡EQ1b F ⊖ E;
• ∀a ∈ A \ E , Status(a,F) = Status(a,F ⊖ E).

Proof. This result is a consequence of Theorem 63. �


