Computing the Codimension of the Singularity at the Origin for Delay Systems: The Missing Link with Birkhoff Incidence Matrices

Islam Boussaada, Silviu-Iulian Niculescu

To cite this version:

HAL Id: hal-01123621
https://hal.science/hal-01123621
Submitted on 6 Jul 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Computing the Codimension of the Singularity at the Origin for Delay Systems: The Missing Link with Birkhoff Incidence Matrices

Islam Boussaada1 and Silviu-Iulian Niculescu2

Abstract—A standard framework in analyzing Time-delay systems consists first, in identifying the associated crossing roots and secondly, then, in characterizing the local bifurcations of such roots with respect to small variations of the system parameters. Moreover, the dynamics of such spectral values are strongly related to their multiplicities (algebraic/geometric). This paper focuses on an interesting type of such singularities; that is when the zero spectral value is multiple. The simplest case, which is quite common in applications, is characterized by a zero spectral value may exceed the dimension of the delay-free system of differential equations. To the best of the authors’ knowledge, the bound of such a multiplicity for Time-delay systems was not deeply investigated in the literature. Our contribution is two fold. First, we emphasize the link between the multiplicity characterization and Birkhoff matrices. Secondly, we elaborate a constructive bound for the zero spectral value in the regular case; i.e. when the delay polynomials of a given quasipolynomial are complete, as well as in the singular case; i.e. when such polynomials are sparse. In the last case, the established bound is sharper than Polya-Szeg\H{o} generic bound.

I. INTRODUCTION

Consider the following infinite-dimensional system with \(N \) constant delays:

\[
\dot{x} = \sum_{k=0}^{N} A_k x(t - \tau_k)
\]

where \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) denotes the state-vector, under appropriate initial conditions belonging to the Banach space of continuous functions \(C([-\tau_N, 0], \mathbb{R}^n) \). Here \(\tau_j, j = 1 \ldots N \) are strictly increasing positive constant delays with \(\tau_0 = 0 \) and \(0 < \tau_1 < \tau_2 < \ldots < \tau_N \), the matrices \(A_j \in \mathcal{M}_n(\mathbb{R}) \) for \(j = 0 \ldots N \). It is well known that the asymptotic behavior of the solutions is determined from the roots of the characteristic equation \(1 \), \(2 \), that is a transcendental equation in the Laplace variable \(\lambda \) in which appears exponential terms induced by delays. More precisely, system (1) has a characteristic function \(\Delta : \mathbb{C} \times \mathbb{R}^N_+ \to \mathbb{C} \) of the form:

\[
\Delta(\lambda, \tau) = \det \left(\lambda I - A_0 - \sum_{k=1}^{N} A_k e^{-\tau_k \lambda} \right)
\]

or shorter, denoted \(\Delta(\lambda) \), which gives

\[
\Delta(\lambda) = P_0(\lambda) + \sum_{M^k \in S_{N,n}} P_{M^k}(\lambda) e^{\sigma_{M^k} \lambda}
\]

\[
= P_0(\lambda) + \sum_{k=1}^{N} P_{M^k}(\lambda) e^{\sigma_{M^k} \lambda}
\]

where \(\sigma_{M^k} = -M^k \tau^T, \tau = (\tau_1, \ldots, \tau_N) \) is the delays vector and \(S_{N,n} \) is the set of all the possible row vectors \(M^k = (M^k_1, \ldots, M^k_N) \) belonging to \(\mathbb{N}^N \) such that \(1 \leq M^k_1 + \ldots + M^k_N \leq n \) and \(\bar{N}_{N,n} = \#(S_{N,n}) \). For instance, \(S_{3,2} = \{(1,0,0), (0,1,0), (0,0,1), (2,0,0), (1,1,0), (1,0,1), (0,2,0), (0,1,1), (0,0,2)\} \), is ordered first by increasing sums \((\sum_{i=1}^{N} M^k_i) \) then by lexicographical order, in this case one has:

\[M^2 = (0,1,0) \quad \text{and} \quad \bar{N}_{3,2} = 9. \]

Without any lost of generality, assume that \(P_0 \) is a monic polynomial of degree \(n \) in \(\lambda \) with unitary leading monomial and the polynomials \(P_{M^k} \) are such that \(\deg(P_{M^k}) = n - \sum_{s=1}^{N} M^k_s \leq (n - 1) \) \(\forall M^k \in S_{N,n} \) and \(D_q \) will designate the degree of the quasipolynomial \(\sum_{k=1}^{N} P_{M^k} \). One can prove that the quasipolynomial function (3) admits an infinite number of zeros, see \(3 \), \(2 \). The study of zeros of entire function \(4 \) in the form (3) plays a crucial role in the analysis of asymptotic stability of the zero solution of given system (1). Indeed, the zero solution is asymptotically stable if all the zeros of (3) are in the open left-half complex plane \(5 \). Accordingly to this observation, the parameter space which is spanned by the coefficients of the polynomials \(P_k \), can be split into stability and instability domains (Nothing else that the so-called D-decomposition, see for instance \(5 \) and references therein). These two domains are separated by a boundary, called the critical boundary, corresponding to the spectra consisting in roots with zero real parts. When the intersection of the spectrum with such a boundary is nonempty then the equilibrium point is said to be nonhyperbolic. The local behavior at a nonhyperbolic singularity is described by the versal deformation of the singularity; that is, replacing the original vector field \(f(.) \) by a perturbation-dependent vector field \(g(., \epsilon) \) such that when the vector parameter vanish \(\epsilon = (\epsilon_1, \ldots, \epsilon_k) = 0 \) one has \(f(\cdot) = g(\cdot, \epsilon)\vert_{\epsilon=0} \). This deformation \(g \) is said to be versal if any other deformation occurs as a deformation induced from it \(g \) and the number of its parameters \(k \) is minimal. The codimension of such a singularity is nothing else than the integer \(k \).
In this paper, we investigate this type of singularity and
give an answer to the question above. This work is motivated
by the fact that the knowledge of such information is
Crucial: first, in the linear analysis for time-delay systems,
for instance, the analysis of sensitivity as well as the study local
bifurcation. Secondly, when dealing with a nonlinear analysis
and the center manifold computations are involved. Indeed,
when the zero spectral value is the only eigenvalue with zero
real part, then the center manifold dimension is none other
than the codimension of the generalized Bogdanov-Takens
singularity [13], [14], [15].

The following result in [12] gives some valuable information
allowing to have a first estimation of such a bound for the
multiplicity.

Proposition 1 (Pólya-Szegő, [12], pp. 144). Let \(\tau_1, \ldots, \tau_N \)
denote real numbers such that

\[
\tau_1 < \tau_2 < \ldots < \tau_N,
\]

and \(d_1, \ldots, d_N \) positive integers satisfying

\[
d_1 \geq 1, \, d_2 \geq 1, \ldots, d_N \geq 1, \quad d_1 + d_2 + \ldots + d_N = D + N.
\]

Let \(f_{i,j}(s) \) stands for the function \(f_{i,j}(s) = s^{d_1-1} e^{\tau_i s} \), for
\(1 \leq j \leq d_i \) and \(1 \leq i \leq N \).

Let \(\sharp \) be the number of zeros of the function

\[
f(s) = \sum_{1 \leq i \leq N, 1 \leq j \leq d_i} c_{i,j} f_{i,j}(s),
\]

that are contained in the horizontal strip \(\alpha \leq \Im(z) \leq \beta \).

Assuming that

\[
\sum_{1 \leq k \leq d_1} |c_{1,k}| > 0, \ldots, \sum_{1 \leq k \leq d_N} |c_{N,k}| > 0,
\]

then

\[
\frac{(\tau_N - \tau_1)(\beta - \alpha)}{2\pi} - D + 1 \leq \sharp \leq \frac{(\tau_N - \tau_1)(\beta - \alpha)}{2\pi} + D + N - 1.
\]

See also [16] for a modern formulation of the mentioned
result. The proof of Pólya-Szegő result is mainly based on
Rouché Theorem. It can be generically exploited to establish
a bound for the multiplicity of the zero spectral value that
we denote by \(\sharp_{PS} \). Indeed, setting \(\alpha = \beta = 0 \) allows to
\(\sharp_{PS} \leq D + N - 1 \) where \(D \) stands for the degree of the
quasipolynomial function \(f \) and \(N \) designate the associated
number of polynomials. This gives a sharp bound in the case
of complete polynomials i.e. polynomials having all their

II. PREREQUISITES AND MOTIVATIONS

Although the algebraic multiplicity of each spectral value
of a time-delay system is finite (a direct consequence of
Rouché Theorem, see [12]), to the best of the authors’
knowledge, the estimation of the upper bound of the codi-
menion of the zero spectral value did not receive a complete
characterization especially when the physical parameters of
a given time-delay model are subject to algebraic constraints.
It is worthy to note that, the root at the origin is invariant with
respect to the delay parameters, however, its multiplicity is
strongly dependent on the existing links between the delays
and the other parameters of the system.

In this paper, we investigate this type of singularity and
commonly, the time-delay induces desynchronizing and/or
destabilizing effect on the dynamics. However, new theoreti-
cal developments in control of finite-dimensional dynamical
systems suggest the use of delays in the control laws for
stabilization purposes. For instance, the papers [9], [10] are
considered by the stabilization of the inverted pendulum by
delayed control laws and furnish concrete situations where
the codimension of the zero spectral value exceeds the
number of the coupled scalar equations modeling the inverted
pendulum on cart. In [9], the authors prove that delayed
proportional-derivative (PD) controller stabilize the inverted
pendulum by identifying a codimension three singularity for
a system of two coupled delayed equations. In [10], the same
singularity is characterized by using a particular delay block
configuration. It is shown that two delay blocks offset a PD
delayed controller. By the present work we investigate the
link between the system parameters (delays and coefficients)
and the upper bound for the codimension of the zero spectral
value.

The remaining paper is organized as follows: Section 2 is
dedicated to the background on some old problems, namely,
the zeros of entire functions as well as the problem of
multivariate interpolation. The challenges of the cited prob-
lems motivate the present investigation. Section 3, includes
some important results from [11] (an extended version of
the present work) allowing to recover the generic Pólya-
Szegő bound \(\sharp_{PS} \). A resulting constructive framework is
presented. Next, under some sparsity patterns, the main result
is proposed and proved in section 4. A control oriented
illustrative example and some concluding remarks end the
paper.
terms ordered from the greatest degree up to the independent term. Nevertheless, it is obvious that the Pólya-Szegő bound remains unchanged when certain coefficients \(c_{i,j}\) vanish without affecting the degree of the quasipolynomial function. Such a remark allows us to claim that Pólya-Szegő bound does not take into account the algebraic constraints on the parameters. However, such constraints are commonly encountered in control problems due to models structures: explicit situations will be given in the next section concerned by motivating examples. Moreover, when one needs the conditions insuring a given multiplicity bounded by \(\mathcal{Z}_{PS}\), then computations of the successive differentiations of the quasipolynomial have to be made.

By the present paper, we emphasize a systematic approach allowing to a sharper bound for the zero spectral value multiplicity. Indeed, the proposed approach does not only take into account the algebraic constraints on the coefficients \(c_{i,j}\) but it also furnishes appropriate conditions guaranteeing such a multiplicity. Furthermore, the symbolic approach we adopt in this study underlines the connexion between the codimension of the zero singularity problem and incidence matrices of the so-called Confluent Vandermonde Matrix as well as the Birkhoff Matrix, see for instance [17], [18], [19], [20], [11]. To the best of the author knowledge, the first time the Vandermonde matrix appears in a control problem is reported in [21], where the controllability of a finite dimensional dynamical system is guaranteed by the invertibility of such a matrix, see [21, p. 121]. Next, in the context of time-delay systems, the use of Vandermonde matrix properties was proposed by [22], [5] when controlling one chain of integrators by delay blocks. Here we further exploit the algebraic properties of such matrices into a different context.

Initially, Birkhoff and Vandermonde matrices are derived from the problem of polynomial interpolation of an unknown function \(g\), that can be presented in a general way by describing the interpolation conditions in terms of Birkhoff incidence matrices, see for instance [23]. For a given integers \(n \geq 1\) and \(r \geq 0\), the matrix

\[
\mathcal{E} = \begin{pmatrix}
e_{1,0} & \cdots & e_{1,r} \\
\vdots & & \vdots \\
e_{n,0} & \cdots & e_{n,r}
\end{pmatrix},
\]

is called an incidence matrix if \(e_{i,j} \in \{0,1\}\) for every \(i\) and \(j\). Such a matrix contains the data providing the known information about the function \(g\). Let \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n\) such that \(x_1 < \ldots < x_n\), the problem of determining a polynomial \(\hat{P} \in \mathbb{R}[x]\) with degree less or equal to \(r\) that interpolates \(g\) at \((x, \mathcal{E})\), i.e. which satisfies the conditions:

\[
\hat{P}^{(j)}(x_i) = g^{(j)}(x_i)
\]

is known as the Birkhoff interpolation problem. An incidence matrix \(\mathcal{E}\) is said to be poised if such a polynomial \(\hat{P}\) is unique. This amounts to saying that the coefficients of the interpolating polynomial \(\hat{P}\) are solutions of a linear square system with associated square matrix \(\mathcal{Y}_E\) that we call in the sequel by Birkhoff matrix. This matrix is parametrized in \(x\) and is shaped by \(\mathcal{E}\). It turns out that the incidence matrix \(\mathcal{E}\) is poised if and only if the Birkhoff matrix \(\mathcal{Y}_E\) is non singular for all \(x\) such that \(x_1 < \ldots < x_n\). The characterization of poised incidence matrices is solved for interpolation problem for low degrees, for instance, the problem still unsolved for any degree \(n \geq 6\), see for instance [20], [24]. As an illustration of the above notions, let consider the reduced example from [24] with the incidence matrix

\[
\mathcal{E} = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix},
\]

for which we associate the Birkhoff matrix

\[
\mathcal{Y}_E^T = \begin{pmatrix}
1 & x_1 & x_1^2 & x_1^3 \\
0 & 1 & 2x_1 & 3x_1^2 \\
0 & 0 & 2 & 6x_2 \\
0 & 1 & 2x_3 & 3x_3^2
\end{pmatrix}.
\]

The interpolation problem is solvable if and only if

\[
12x_3x_2 + 6x_2^2 - 12x_2x_1 - 6x_3^2
\]

does not vanish for all values of \(x\) such that \(x_1 < x_2 < x_3\). For the sake of the space limit, one can afford to replace in the sequel the incidence matrix \(\mathcal{E}\) by an appropriate vector \(\mathcal{V}_E\) reproducing exactly the same information, for instance, in the case of (4), one has \(\mathcal{V}_E = (x_1, x_1, \ast, \ast, x_2, \ast, x_3)\). We point out that when no stars appear in \(\mathcal{V}_E\), and if in addition no any variable is repeated in the sequence defining \(\mathcal{V}_E\) then we are dealing with the classical Vandermonde matrix, otherwise, (there are at least a repeated variable in \(\mathcal{V}_E\)) the matrix \(\mathcal{Y}_E\) is the so called Confluent Vandermonde matrix.

In the sequel, by generalized Birkhoff matrix we associate to a given positive integer \(s \geq 0\) and an incidence matrix \(\mathcal{E}\) (or equivalently \(\mathcal{V}_E\)) the square matrix \(\mathcal{Y}_E^s\) defined by:

\[
\mathcal{Y}_E^s = [\mathcal{Y}_1 \mathcal{Y}_2 \ldots \mathcal{Y}_M] \in M_{s\delta}(\mathbb{R})
\]

where

\[
\mathcal{Y}_i = [\kappa^{(k_{i1})}(x_i) \kappa^{(k_{i2})}(x_i) \ldots \kappa^{(k_{id_i})}(x_i)]
\]

such that \(k_{ii} \geq 0\) for all \((i, l) \in \{1, \ldots, M\} \times \{1, \ldots, d_l\}\) and \(\sum_{i=1}^M d_i = \delta\) where

\[
\kappa(x_i) = [x_i^s \ldots x_i^{d+s-1}]^T, \quad \text{for } 1 \leq i \leq M.
\]

When \(s = 0\), the matrix \(\mathcal{Y}_E\) is nothing else than the standard Birkhoff matrix and thus \(\kappa(x_i) = [1 \ldots x_i^{d-1}]^T\). If in addition \(\mathcal{V}_E\) does not contain stars then we recover the confluent Vandermonde matrix. The particular case \(d_i = 1\) for \(i = 1 \ldots N\) is associated to the standard Vandermonde matrix and in this case \(M = \delta\) since \(\mathcal{Y}_E\) is assumed to be a square matrix.

The explicit development of numeric/symbolic algorithms for LU-factorization and inversion of the Vandermonde and confluent Vandermonde matrices [25], [26] is still an attracting topic due to their specific structure and their implications in various applications, see for instance [21], [27] and references therein. The authors propose in [11] an
explicit recursive formula for the LU-factorization for three configurations of the generalized Birkhoff matrix defined by (5)-(7). To the best of the authors’ knowledge, such an explicit formulas seems to be unavailable in the mathematical literature and linear algebra textbooks, see for instance [20].

The Birkhoff matrix configurations we consider are: the first one, the regular case, no stars in \(\mathcal{V}_E \) that is the generalized confluent Vandermonde matrix. The second configuration is when the polynomials associated with the delays in the quasipolynomial are sparse, that is, \(\mathcal{V}_E \) containing stars. For instance, that is the case for the variable blocks \(x_2 \) and \(x_3 \) in the example (4).

Furthermore, as a byproduct of the approach, we will present first a different proof for the Polya-Szegő bound \(\delta_{PS} \) of the origin multiplicity deduced from proposition 1, then, we will establish sharper bound for such a multiplicity under the nondegeneracy of an appropriate Birkhoff matrix.

To summarize, the contribution of the present paper is threefold:

1) In the general case, the Birkhoff interpolation problem may or may not have a unique solution. No general form for its determinant is known, and thus no general formula for the interpolating polynomial (when it exists) is known. The problem still unsolved [20], [24] since such a formulae depends directly in the chosen incidence matrix among a multitude of configurations.

2) We identify the link between the multiplicity of the zero singularity associated with time-delay systems (even in the presence of coupling delays) and the generalized Birkhoff matrix.

3) In the generic case (all the polynomials \(P_{M,k > 0} \) are complete), the Polya-Szegő bound \(\delta_{PS} \) is completely recovered using an alternative method Vandermonde-based. Moreover, when at least one of the polynomials contains a star, then under the nondegeneracy of an appropriate Birkhoff matrix we establish a bound for the multiplicity which is sharper than the Polya-Szegő bound \(\delta_{PS} \).

It is worthy to note that, in the simplest case of uncoupled delays, such a bound was recovered in [28] and a simplified framework is presented.

The following notations are adopted. Let \(\xi \) stands for the vector composed from \(x_1 \), counting their repetition \(d_1 \) through columns of \(\Upsilon \), that is

\[
\xi = \left(x_1, \ldots, x_1, \ldots, x_M, \ldots, x_M \right).
\]

For instance one has \(\xi_1 = x_1 \) and \(\xi_{d_1+\alpha+1} = \xi_{d_1+\alpha+1} = x_3 \).

In the light of the above notations and under the setting \(d_0 = 0 \), without any loss of generality: \(\xi_k = \xi_{d_1+\alpha+1} = \xi_{\sum_{i=0}^{g(k)-1} d_1 + \alpha(k)} \), where \(0 \leq r \leq M-1 \) and \(\alpha \leq d_0+1 \), here \(g(k) \) denotes the index of component of \(x \) associated with \(\xi_k \), that is \(x_{g(k)} = \xi_k \) and by \(\alpha(k) \) the order of \(\xi_k \) in the sequence of \(\xi \) composed only by \(x_{g(k)} \). Obviously, \(g(k) = r+1 \) and \(\alpha(k) = \alpha \).

III. Recovering Polya-Szegő Generic Bound

In this section we focus on the regular case, that is when all the polynomials of the studied part of the quasipolynomial are complete. However, the complementary configuration, when the polynomials of the delayed part are sparse, that is, when the incidence vector \(\mathcal{V}_E \) contains a star or a sequence of successive stars will be considered in the next section.

We start this section by defining some results on generalized confluent Vandermonde matrices that will be useful for the remaining paper. For the sake of simplicity, since we are concerned by the regular case, \(\Upsilon_E \) will be denoted \(\Upsilon \).

It is well known that Vandermonde and confluent Vandermonde matrices \(V \) can be factorized into a lower triangular matrix \(L \) and an upper triangular matrix \(U \) where \(V = LU \), see for instance [29], [30]. In what follows, we show that the same applies for the generalized confluent Vandermonde matrix (5)-(7) by establishing explicit formulas for \(L \) and \(U \) where \(\Upsilon = LU \). The factorization is unique if no row or column interchanges are made and if it is specified that the diagonal elements of \(L \) are unity. The following theorem concerning (5)-(7) with \(s = n+1 \) will be used in the sequel, but by the same way it can be easily adapted for any positive integer \(s \). The following result is proved in [11] using a total 2D recurrence.

Theorem 2 ([11]). Given the generalized confluent Vandermonde matrix (5)-(7) with incidence vector \(\mathcal{V}_E \) wanting stars, the unique LU-factorization with unitary diagonal elements \(L_{i,i} = 1 \) is given by the formulae:

\[
\begin{align*}
L_{i,1} &= x_1^{i-1} \quad \text{for} \quad 1 \leq i \leq \delta, \\
U_{1,i} &= \Upsilon_{1,i} \quad \text{for} \quad 1 \leq j \leq \delta, \\
L_{i,j} &= L_{i-1,j-1} + L_{i-1,j} \xi_j \quad \text{for} \quad 2 \leq j \leq i, \\
U_{i,j} &= (\alpha(j) - 1)U_{i-1,j-1} + U_{i-1,j} \left(x_{g(j)} - \xi_{i-1}\right) \quad \text{for} \quad 2 \leq i \leq j.
\end{align*}
\]

(8)

The explicit computation determinant of the generalized confluent Vandermonde matrix \(\Upsilon \) follows directly from (8):

Corollary 3 ([11]). The determinant of the generalized confluent Vandermonde matrix \(\Upsilon \) is given by:

\[
\det(\Upsilon) = \prod_{j=1}^{\delta} (U_{j,j}),
\]

where \(U_{j,j} \) for \(1 \leq j \leq \delta \) are defined by:

\[
\begin{align*}
U_{1,1} &= x_1^{n+1}, \\
U_{j,j} &= U_{j-1,j} \left(x_{g(j)} - \xi_{j-1}\right) \quad \text{when} \quad j > 1 \quad \text{and} \quad \alpha(j) = 1, \\
U_{j,j} &= (\alpha(j) - 1)U_{j-1,j-1} \quad \text{otherwise}.
\end{align*}
\]

Moreover, the diagonal elements of the matrix \(U \) associated with the generalized confluent Vandermonde matrix \(\Upsilon \)
are obtained as follows:

\[
U_{1,1} = x^1_{1}^{n+1},
\]

\[
U_{j,j} = x^k_{j}^{n+1} \prod_{l=1}^{k} (x_{k+1} - x_l)^{d_l}
\]

when \(j = 1 + d_k \) for \(1 \leq k \leq M - 1 \),

\[
U_{j,j} = (j - 1 - d_k) U_{j-1,j-1}
\]

when \(d_k + 1 < j \leq d_{k+1} \) for \(1 \leq k \leq M - 1 \).

Moreover, the generalized confluent Vandermonde matrix \(\mathcal{V} \) is invertible if and only if \(\forall i : 1 \leq i \leq \delta \) we have \(x_i \neq 0 \) and \(x_i \neq x_j \).

In view of the obtained results on generalized confluent Vandermonde matrix we are now able to prove the following proposition. Let us define \(a_{i,j} \) the coefficient of the monomial \(\lambda^j \) for the polynomial \(P_{M} \) for \(1 \leq i \leq \tilde{N}_{N,n} \) and denote \(P_{M^0} = P_0 \). Thus, \(a_{0,n} = 1 \) and \(a_{i,k} = 0 \) \(\forall k \geq d_i = n - \sum_{s=1}^{N} d_s \), where \(d_i - 1 \) is nothing else than the degree of \(P_{M^i} \).

Proposition 4 ([11]). The multiplicity of the zero root for the generic quasipolynomial function (3) cannot be larger than \(\tilde{P}_{PS} = D + \tilde{N}_{N,n} \), where \(D \) is the degree of the quasipolynomial and \(\tilde{N}_{N,n} + 1 \) the number of the associated polynomials. Moreover, such a bound is reached if and only if the parameters of (3) satisfy simultaneously for \(0 \leq k \leq \tilde{P}_{PS} - 1 \):

\[
a_{0,k} = - \sum_{i \in \tilde{N}_{N,n}} \left(a_{i,k} + \sum_{l=0}^{k-1} a_{l,i} \sigma_{i,k-l} \frac{(k-l)!}{(k-l)!} \right) \quad (9)
\]

Remark 1. In the generic case, the Polya-Szegő bound \(\tilde{P}_{PS} \) is completely recovered. The proof of Proposition 4 gives an alternative method for identifying such a bound.

Remark 2. When the coefficients of a given time-delay system (1) are fixed, it turns the same to consider the generic case accompanied with an appropriate algebraic constraint additionally to an inequality constraint due to dealing with positive delays. When written in terms of the coefficients of the associated quasipolynomial (3), the algebraic constraint becomes \(\mathcal{C}(a) = 0 \) additionally to the inequality constraint \(\tau_k > 0 \).

Remark 3. The above claim can be interpreted as follows. Under the hypothesis:

\[
\Delta(i \omega) = 0 \Rightarrow \omega = 0 \quad \text{H}
\]

that is all the imaginary roots are located at the origin, then the dimension of the projected state on the center manifold associated with zero singularity for equation (3) is less or equal to its number of nonzero coefficients minus one. Indeed, under (H), the codimension of the zero spectral value \(\equiv \) the dimension of the state on the center manifold since in general the state’s dimension on the center manifold is none other than the sum of the dimensions of the generalized eigenspaces associated with the spectral values having a zero real part.

We need first to introduce some notations. Let denote by \(\Delta^{(k)}(\lambda) \) the \(k \)-th derivative of \(\Delta(\lambda) \) with respect to the variable \(\lambda \). We say that zero is an eigenvalue of algebraic multiplicity \(m \geq 1 \) for (1) if \(\Delta(0) = \Delta^{(k)}(0) = 0 \) for all \(k = 1, \ldots, m - 1 \) and \(\Delta^{(m)}(0) \neq 0 \). We assume in what follows that \(\sigma_k \neq \sigma_k' \) for any \(k \neq k' \) where \(k, k' \in \tilde{S}_{N,n} \). Indeed, when for some value of the delay vector \(\tau \) there exists some \(k \neq k' \) such that \(\sigma_k = \sigma_k' \) then the number of auxiliary delays and the number of polynomials is reduced by considering a new family of polynomials \(\tilde{P} \) such that \(\tilde{P}_M = \tilde{P}_{M^i} + \tilde{P}_{M'j} \).

Since we are dealing only by the values of \(\Delta_i(0) \), we suggest to translate the problem into the parameter space (the space of the coefficients of the \(P_i \)), this will be more appropriate and will consider parametrization by \(\sigma \). In the appendix we introduce a lemma that allows to establish an \(m \)-set of multivariate algebraic functions (polynomials) vanishing at zero when the multiplicity of the zero root of the transcendental equation \(\Delta(\lambda) = 0 \) is equal to \(m \).

Proof: [Proof of Proposition 4] The condition (9) follows directly from Lemma 1, (see Appendix). In what follows, we recover the bound \(\tilde{P}_{PS} \) by using explicitly the Vandermonde matrices. Then, when assuming that some coefficients of the quasipolynomial vanish without affecting its degree, we show that a sharper bound can be related to the number of nonzero parameters rather than the degree.

We shall consider the variety associated with the vanishing of the polynomials \(\nabla_k \) (defined in Lemma 1 in the appendix) , that is \(\nabla_k(0) = \ldots = \nabla_{m-1}(0) = 0 \) and \(\nabla_{m}(0) \neq 0 \) and we aim to find the maximal \(m \) (codimension of the zero singularity).

Let us exhibit the first elements from the family \(\nabla_k \)

\[
\begin{align*}
\nabla_0(0) &= \sum_{s=0}^{\tilde{N}_{N,n}} a_{s,0} = 0, \\
\nabla_{1}(0) &= \sum_{s=0}^{\tilde{N}_{N,n}} a_{s,1} + \sum_{s=1}^{\tilde{N}_{N,n}} a_{s,0} \sigma_s = 0, \\
\nabla_{2}(0) &= 2 \sum_{s=0}^{\tilde{N}_{N,n}} a_{s,2} + 2 \sum_{s=1}^{\tilde{N}_{N,n}} a_{s,1} \sigma_s + \sum_{s=1}^{\tilde{N}_{N,n}} a_{s,0} \sigma_s^2 = 0,
\end{align*}
\]

if we consider \(a_{i,j} \) and \(\sigma_k \) as variables, the obtained algebraic system is nonlinear and solving it in all generality (without attributing values for \(n \) and \(N \)) becomes a very difficult task. Indeed even by using Gröbner basis methods [31], this task is still complicated since the set of variables depends on \(N \) and \(n \). However, considering \(a_{i,j} \) as variables and \(\sigma_k \) as parameters gives the problem a linear aspect as it can be seen from (9). Let adopt the following notation: \(a_0 = (a_{0,0}, a_{0,1}, \ldots, a_{0,n-1})^T \) and \(a_i = (a_{i,0}, a_{i,1}, \ldots, a_{i,d_i-1})^T \) for \(1 \leq i \leq \tilde{N}_{N,n} \). Next, denote by \(\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_{\tilde{N}_{N,n}}) \) and \(a = (a_1, a_2, \ldots, a_{\tilde{N}_{N,n}})^T \).

Consider now the ideal \(I_1 \) generated by the \(n \) polynomials

\[
< \nabla_0(0), \nabla_1(0), \ldots, \nabla_{n-1}(0) >.
\]

As it can be seen from (9) and Lemma 1 (see appendix), the variety \(V_1 \) associated
with the ideal \(I_1 \) having the following linear representation
\[
a_0 = \mathcal{Y}_1 a \text{ such that } \mathcal{Y}_1 \in \mathcal{M}_{n,D_q + \bar{N}_{N,n}}(\mathbb{R}[\sigma]) \text{ where } D_q \text{ is the degree of } \sum_{k=1}^{\bar{N}_{N,n}} P_{M_k} \text{ and } D_q = D - n (D \text{ the degree of the quasi-polynomial (3)). In some sense, in this variety there are no any restriction on the components of } a \text{ if } a_0 \text{ is left free. Since } a_0, k = 0 \text{ for all } k > n, \text{ the remaining equations consist of an algebraic system only in } a \text{ and parametrized by } \sigma. \text{ Consider now the ideal denoted } I_2 \text{ and generated by } D_q + \bar{N}_{N,n} \text{ polynomials defined by } D_q = < \nabla_{n+1}(0), \nabla_{n+2}(0), \ldots, \nabla_{D_q + \bar{N}_{N,n}}(0) >. \text{ It can be observed that the variety } \mathcal{V}_2 \text{ associated with } I_2 \text{ can be written as } \mathcal{V}_2 a = 0 \text{ which is nothing else that an homogeneuous linear system with } \mathcal{V}_2 \in \mathcal{M}_{D_q + \bar{N}_{N,n}}(\mathbb{R}[\sigma]). \text{ More precisely, } \mathcal{Y}_2 \text{ is nothing else than the generalized confluent Vandermonde matrix (5)-(7) with } x = \sigma, s = n, \text{ and } \bar{N}_{N,n} \text{ and } D_q + \bar{N}_{N,n} \text{ associated with some incidence vector:}
\[
\mathcal{V}_2 = \left(\frac{\sigma_M, \ldots, \sigma_M, \ldots, \sigma_M^{N_{N,n},}, \ldots, \sigma_M^{N_{N,n},}}{n - \sum_{s=1}^{N_{N,n}} \sum_{t=1}^{n-s} a_{t,s} \sigma_t^{(n-s)!}} \right)
\]

Now, using Corollary 3 and the assumption that \(\sigma_i \) are distinct non zero auxiliary delays we can conclude that the determinant of \(\mathcal{V}_2 \) can not vanish. Thus the only solution for this subsystem is the zero solution, that is \(a = 0 \).

Finally, consider the polynomial defined by \(\nabla_n(0) \), by lemma 1 (see appendix)
\[
\nabla_n(0) = 0 \iff 1 = - \sum_{i=1}^{\bar{N}_{N,n}} \sum_{s=0}^{n-1} a_{i,s} \sigma_i^{(n-s)!}
\]

substituting the unique solution of \(\mathcal{V}_2 \) into the last equality leads to an incompatibility result. In conclusion, the maximal codimension of the zero singularity is less or equal to \(D_q + \bar{N}_{N,n} + n \) which is exactly Polya-Szeg\"o bound \(\tau_{PS} = D_q + (n+1) \) proving i).

\(D + \bar{N}_{N,n} \)

Remark 4. It is noteworthy that the codimension of the zero singularity may decrease if the vector parameter \(a_0 \) is not left free. Indeed, if some parameter component \(a_{0,k} \) is fixed for \(0 \leq k \leq n-1 \), then the variety associated to the first ideal \(I_1 \) may impose additional restrictions on the vector parameter \(a \).

IV. MAIN RESULT: ON BEYOND OF POLYA-SEG\Ö BOUND

Polynomials in nature (e.g. from applications) are not necessarily generic they often have some additional structure which we would like to take into account showing what it reflects in the multiplicity bound.

Proposition 5. Consider a quasi-polynomial function \(\mathcal{Y}_v \) containing one or several incomplete polynomials, for which we associate an incidence vector \(\mathcal{V}_v \) which is nothing than (10) such that the vanishing coefficients are replaced by stars.

When the associated generalized Birkhoff matrix \(\mathcal{Y}_v \) is nonsingular then the multiplicity of the zero root for the quasi-polynomial function (3) cannot be larger than \(n \) plus the number of nonzero coefficients of the polynomial family \((P_{M_k})_{M_k \in S_{N,n}} \).

Proof: [Proof of Proposition 5] By the same way as for the proof of proposition 4: when \(z \) coefficients from the polynomial family \((P_{M_k})_{M_k \in S_{N,n}} \) vanish without affecting the degree of the quasi-polynomial, then \(a^T \in \mathbb{R}[D_q + \bar{N}_{N,n}] \) and thus the matrix \(\mathcal{Y}_v \) of the proof of proposition 4 becomes \(\mathcal{Y}_v \in \mathcal{M}_{D_q + \bar{N}_{N,n}}(\mathbb{R}[\sigma]). \) For such proving that the maximal codimension of the zero singularity is less or equal to \(D_q + \bar{N}_{N,n} - z + n < \tau_{PS} \).

Remark 5. Obviously, the number of non-zero coefficients of a given quasi-polynomial function is bounded by its degree plus its number of polynomials. Thus, the bound elaborated in Proposition 5 is sharper than \(\tau_{PS} \), even in the generic case, that is when all the parameters of the quasi-polynomials are left free, these two bounds are equal. Indeed, in the generic case, that is when the number of the left free parameters is optimal, the Polya-Szeg\"o bound \(\tau_{PS} = D_q + \bar{N}_{N,n} + n \) which is nothing else than \(n \) plus the number of parameters of the polynomial family \((P_{M_k})_{M_k \in S_{N,n}} \).

V. ILLUSTRATION ON INVERTED PENDULUM: AN EFFECTIVE APPROACH VS POLYA-SZEGÖ BOUND

A natural consequence of propositions 4-5 is to explore the situation when the codimension of zero singularity reaches its upper bound. Starting the section by a generic example, we show the convenience of the proposed approach even in the case of coupling delays. Then the obtained symbolic results are applied to identify an effective sharp bound in the case of concrete physical system (with constraints on the coefficients). Namely, the stabilization of an inverted pendulum on cart via a multi-delayed feedback.

We associate to the general planar time-delay system with two positive delays \(\tau_1 \neq \tau_2 \) the quasi-polynomial function:

\[
\Delta(\lambda) = \lambda^2 + a_{0,0,1}\lambda + a_{0,0,0} + (a_{1,0,0} + a_{1,0,1})e^{\lambda}\sigma_{0,1} + (a_{0,1,0} + a_{0,1,1})e^{\lambda}\sigma_{0,1} + a_{2,0,0}e^{\lambda}\sigma_{2,0} + a_{1,1,0}e^{\lambda}\sigma_{1,1} + a_{0,2,0}e^{\lambda}\sigma_{0,2}.
\]

(11)

Generically, the multiplicity of the zero singularity is bounded by \(\tau_{PS} = 9 \). However, in what follows, we present two configurations where such a bound cannot be reached. The first, corresponds to the case when \(\sigma_i = \sigma_j \) for \(i \neq j \) and the second, when some components of the coefficient vector \(a = (a_{1,0,0}, a_{0,1,0}, a_{0,0,1}, a_{2,0,0}, a_{1,1,0}, a_{0,2,0})^T \) vanish.

Formula (9) allows us to explicitly computing the confluent Vandermonde matrices \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) and the expression of \(\nabla_2(0) \) from the proof of Proposition 4 such that \(\mathcal{T}_1 a = a_0 \), \(\nabla_2(0) = 0 \) and \(\mathcal{T}_2 a = 0 \) where \(a_0 = (a_{0,0,0}, a_{0,0,1})^T \):
\[\Upsilon_1 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ \sigma_{1,0} & 1 & \sigma_{0,1} & 1 & \sigma_{2,0} & \sigma_{1,1} & \sigma_{0,2} \end{bmatrix}, \]

\[\nabla_2(0) - 2 = \begin{bmatrix} \sigma_{1,0} & 2 & \sigma_{1,0} & \sigma_{0,1} & 2 & \sigma_{0,1} & \sigma_{2,0} & \sigma_{1,1} & \sigma_{0,2} \end{bmatrix} a \]

As shown in the proof of Proposition 4, \(\Upsilon_2 \) is a singular matrix when \(\sigma_i = \sigma_j \) for \(i \neq j \). For instance, when \(\sigma_{2,0} = \sigma_{0,1} \) that is 2\(\tau_1 = \tau_2 \), then the bound of multiplicity of the zero singularity decrease since the polynomials \(P_{2,0} \) and \(P_{0,1} \) will be collected \(\tilde{P}_{0,1} = P_{0,1} + P_{2,0} \).

Consider now a system of two coupled equations with two delays modeling a friction free inverted pendulum on cart. The adopted model is studied in [32], [9], [33], [10] and in the sequel we keep the same notations. In the dimensionless form, the dynamics of the inverted pendulum on a cart in figure 1 is governed by the following second-order differential equation:

\[\left(1 - \frac{3\epsilon}{4} \cos^2(\theta) \right) \ddot{\theta} + \frac{3\epsilon}{8} \dot{\theta}^2 \sin(2\theta) - \sin(\theta) + U \cos(\theta) = 0, \]

where \(\epsilon = m/(m + M) \), \(M \) the mass of the cart and \(m \) the mass of the pendulum and \(D \) represents the control law that is the horizontal driving force. A generalized Bogdanov-Takens singularity with codimension three is identified in [9] by using \(U = a \theta(t - \tau) + b \dot{\theta}(t - \tau) \). Motivated by the technological constraints, it is suggested in [10] to avoid the use of the derivative gain that requires the estimation of the angular velocity that can induce harmful errors for real-time simulations and propose a multi-delayed-proportional controller \(U = a_{1,0} \theta(t - \tau_1) + a_{2,0} \theta(t - \tau_2) \), this choice is argued by the accessibility of the delayed state by some simpler sensor. By this last controller choice and by setting \(\epsilon = \frac{1}{4} \), the associated quasipolynomial function \(\Delta \) becomes:

\[\Delta(\lambda) = \lambda^2 - \frac{16}{7} + \frac{16a_1}{7} e^{-\lambda \tau_1} + \frac{16a_2}{7} e^{-\lambda \tau_2}. \]

A zero singularity with codimension three is identified in [10]. Moreover, it is shown that the upper bound of the codimension for the zero singularity for (12) is three (can be easily checked by (9)) and this configuration is obtained when the gains and delays satisfy simultaneously:

\[a_{1,0} = -\frac{7}{7 + 8 \tau_1}, \quad a_{2,0} = \frac{8 \tau_1^2}{-7 + 8 \tau_1^2}, \quad \tau_2 = \frac{7}{8 \tau_1}. \]

However, using Polya-Szegő result, one has \(\sharp_{PS} = D - 1 = (3 + 2 + 2) - 1 = 6 \) exceeding the effective bound which is three. This is a further justification for the algebraic constraints on the parameters imposed by the physical model, for instance the vanishing of \(a_{0,1} \).

Let consider now the sparse case associated with the control law \(U = a_{1,0} \theta(t - \tau_1) + a_{2,1} \theta(t - \tau_2) \). The quasipolynomial function \(\Delta \) becomes:

\[\Delta(\lambda) = \lambda^2 - \frac{16}{7} + a_{1,0} e^{-\lambda \tau_1} + a_{2,1} e^{-\lambda \tau_2}. \]

using Polya-Szegő result, one has \(\sharp_{PS} = D - 1 = (3 + 2 + 3) - 1 = 7 \) however, using the proposition 5, one knows that the zero multiplicity can not be larger than 4. Indeed, the multiplicity 4 is reached only when \(a = \frac{7}{4}, \quad b = \frac{16}{7} \), \(\tau_1 = \frac{16 + 8\sqrt{3}}{2}, \quad \tau_2 = \frac{136}{336} (42 + 28 \sqrt{3})^{3/2} - \frac{42 + 8 \sqrt{3}}{8} \).

Remark 6. The obtained framework can be useful in the analysis of a wide range of applications modeled by time-delay systems. For instance, the analysis of a double-inverted pendulum is given in [28] and a biological model describing a vector disease is given in [11].

VI. CONCLUDING REMARKS

This paper addressed the problem of identifying the maximal dimension of the generalized eigenspace associated with a zero singularity for time-delay systems as well as the explicit conditions guaranteeing such a dimension. Under the assumption that all the imaginary roots are located at the origin, our result gives the relation between the assumption that all the imaginary roots are located on one side and \(N \) the number of the delays and \(n \) the degree of the polynomial \(P_0 \) from the other side. The presented upper bound is sharper than the one deduced from Polya-Segő result [12], since it relies on the number of nonzero coefficients rather than the degree of the quasipolynomial. Moreover, our approach takes into account the possible algebraic constraints on the system coefficients, for instance, the vanishing of certain coefficients. Finally,
the effective method elaborated in this paper emphasizes the
connexions between the codimension problem and incidence
matrices of a class of generalized Birkhoff matrices for
which we presented in different significant configurations an
explicit LU-factorization.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of the paper.

APPENDIX

Lemma 1. Zero is a root of $\Delta^{(k)}(\lambda)$ for $k \geq 0$ if and only
if the coefficients of P_{M^i} for $0 \leq j \leq N_{N,n}$ satisfy the
following assertion

$$a_{0,k} = \sum_{i \in S_{N,n}} \left[a_{i,k} + \sum_{l=0}^{k-1} a_{i,l}\sigma_{k-l} \right].$$

(A.1)

Proof: We define the family ∇_k for all $k \geq 0$ by

$$\nabla_k(\lambda) = \sum_{i=0}^{N_{N,n}} \frac{d^k}{d\lambda^k} P_{M^i}(\lambda)$$

$$+ \sum_{j=0}^{k-1} \left(\binom{k}{j} \sum_{i=1}^{N_{N,n}} \sigma_{i,j} \frac{d^j}{d\lambda^j} P_{M^i}(\lambda) \right).$$

(A.2)

here, $M^0 \triangleq 0$ and $\frac{d^k}{d\lambda^k} f(\lambda) \triangleq f^{(k)}(\lambda)$. Obviously, the defined family ∇_k is polynomial since P_i and their derivatives are
polynomials. Moreover, zero is a root of $\Delta^{(k)}(\lambda)$ for $k \geq 0$
if and only if zero is a root of $\nabla_k(\lambda)$. This can be proved by
induction. More precisely, differentiating k times $\Delta(\lambda)$ the
following recursive formula is obtained:

$$\Delta^{(k)}(\lambda) = \sum_{i=0}^{N_{N,n}} \frac{d^k}{d\lambda^k} P_{M^i}(\lambda) e^{\sigma_{i,\lambda}}$$

$$+ \sum_{j=0}^{k-1} \left(\binom{k}{j} \sum_{i=1}^{N_{N,n}} \sigma_{i,j} \frac{d^j}{d\lambda^j} P_{M^i}(\lambda) e^{\sigma_{i,\lambda}} \right).$$

Since only the zero root is of interest, we can set $e^{\sigma_{i,\lambda}} = 1$
which define the polynomial functions ∇_k. Moreover, careful
inspection of the obtained quantities presented in (A.2) and
substituting $\frac{d^k}{d\lambda^k} P_i(0) = k!a_{i,k}$ leads to the formula (A.1).

REFERENCES

[1] O. Diekmann, S. V. Gils, S. V. Lunel, H. Walther, Delay equations,
Vol. 110 of Applied Mathematical Sciences, Functional, complex, and
Translations of Mathematical Monographs, American Mathematical
Society, Providence, Rhode Island, 1964, trad. du russe : Rasprostredenie
kosnej celyh funkcij.
systems: an Eigenvalue-based approach, Vol. 12 of Advances in Design
and Control, Society for Industrial and Applied Mathematics (SIAM),
vibrations: A time-delay system approach, MED 2012, 20th Mediter-
[8] S. Campbell, Y. Yuan, Zero singularities of codimension two and three
with delayed feedback control near a triple-zero eigenvalue singularity,
stabilization: Characterisation of codimension-three triple zero bifur-
cation via multiple delayed proportional gains, Submitted (2013) 1–18.
time-delay systems: A link with Vandermonde and Birkhoff incidence
Integral Calculus, Theory of Functions, Springer-Verlag, New York,
[14] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical sys-
[15] Y. Kuznetsov, Elements of applied bifurcation theory; Second edition,
[16] F. Wielonsky, A Rolle’s theorem for real exponential polynomials in
[17] A. Björck, T. Elfving, Algorithms for confluent vandermonde systems,
[18] W. Gautschi, On inverses of vandermonde and confluent vandermonde
[19] W. Gautschi, On inverses of vandermonde and confluent vandermonde
[20] L. Gonzalez-Vega, Applying quantifier elimination to the Birkhoff
[22] S.-I. Niculescu, W. Michiels, Stabilizing a chain of integrators using
[24] F. Rouillier, M. Din, E. Schost, Solving the birkhoff interpolation
problem via the critical point method: An experimental study, in:
J. Richter-Gebert, D. Wang (Eds.), Automated Deduction in Geom.,
[25] L. Melkemi, F. Rajeh, Block lu-factorization of confluent vandermonde
[27] S.-H. Hou, W.-K. Pang, Inversion of confluent vandermonde matrices,
1547.
[28] I. Boussaada, D. Irofi, S.-I. Niculescu, Computing the codimension
of the singularity at the origin for delay systems in the regular case:
A vandermonde-based approach, 13th European Control Conference,
[29] H. Oruc, factorization of the vandermonde matrix and its applications,
[30] L. Melkemi, Confluent vandermonde matrices using Sylvester’s struc-
tures, Research Report of the Ecole Normale Supérieure de Lyon (98-
[31] D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms. An
introduction to computational algebraic geometry and commutative
algebra, Undergraduate Texts in Mathematics, Springer, New York,
2007.
[32] F. M. Atay, Balancing the inverted pendulum using position feedback,
[33] J. Sieber, B. Krauskopf, Extending the permissible control loop latency
for the controlled inverted pendulum, Dynamical Systems 20 (2)