
HAL Id: hal-01123557
https://hal.science/hal-01123557v1

Submitted on 5 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shared memory parallelism and low-rank approximation
techniques applied to direct solvers in FEM simulation
Patrick Amestoy, Alfredo Buttari, Guillaume Joslin, Jean-Yves L’Excellent,

Mohamed Sid-Lakhdar, Clément Weisbecker, Michele Forzan, Cristian Pozza,
Rémy Perrin, Valène Pellissier

To cite this version:
Patrick Amestoy, Alfredo Buttari, Guillaume Joslin, Jean-Yves L’Excellent, Mohamed Sid-Lakhdar,
et al.. Shared memory parallelism and low-rank approximation techniques applied to direct
solvers in FEM simulation. IEEE Transactions on Magnetics, 2014, vol. 50 (n° 2), pp. 1-4.
�10.1109/TMAG.2013.2284024�. �hal-01123557�

https://hal.science/hal-01123557v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12721

To link to this article : DOI :10.1109/TMAG.2013.2284024
URL : http://dx.doi.org/10.1109/TMAG.2013.2284024

To cite this version : Amestoy, Patrick and Buttari, Alfredo and Joslin,
Guillaume and L'Excellent, Jean-Yves and Sid-Lakhdar, Mohamed and
Weisbecker, Clément and Forzan, Michele and Pozza, Cristian and
Perrin, Rémy and Pellissier, Valène Shared memory parallelism and
low-rank approximation techniques applied to direct solvers in FEM
simulation. (2014) IEEE Transactions on Magnetics, vol. 50 (n° 2). pp.
1-4. ISSN 0018-9464

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12721/
http://oatao.univ-toulouse.fr/12721/
http://oatao.univ-toulouse.fr/12721/
http://dx.doi.org/10.1109/TMAG.2013.2284024
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Shared-Memory Parallelism and Low-Rank Approximation

Techniques Applied to Direct Solvers in FEM Simulation

Patrick Amestoy1, Alfredo Buttari2, Guillaume Joslin3, Jean-Yves L’Excellent4,5, Mohamed Sid-Lakhdar5,
Clément Weisbecker1, Michele Forzan6, Cristian Pozza6, Remy Perrin7, and Valène Pellissier7

1Institut National Polytechnique de Toulouse, Institut de Recherche en Informatique de Toulouse, Toulouse 60026, France
2Centre national de la recherche scientifique, Institut de Recherche en Informatique de Toulouse, Toulouse 31000, France

3Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse 31000, France
4Institut national de recherche en informatique et en automatique, Montbonnot 38334, France

5École Normale Supérieure, Lyon 69364, France
6Department of Industrial Engineering, University of Padova, Padova 35131, Italy

7CEDRAT, Meylan 38240, France

In this paper, the performance of a parallel sparse direct solver on a shared-memory multicore system is presented. Large size
test matrices arising from finite element simulation of induction heating industrial applications are used to evaluate the performance
improvements due to low-rank representations and multicore parallelization.

Index Terms— Eddy currents, FEMs, linear systems, parallel algorithms, sparse matrices.

I. INTRODUCTION

IN 3-D finite element simulation of induction heating
processes, the solution time is a limiting factor in the design

and optimization of new devices. Time-harmonic electromag-
netic (EM) problems coupled with thermal (TH) problems
are solved in sequence, and the linear system solution in the
EM problem is often the bottleneck. For this reason, solver
performances have been verified only for the solution of the
EM problem with constant material properties in a quasi-
stationary time-harmonic regime. Although iterative methods
are widely applied for the solution of this kind of problem, in
this paper the performances of direct solvers are investigated.
Therefore, an efficient direct method to solve large sparse
complex matrices should exploit parallelization and reduce
memory consumption. In this paper, a reduction of memory
requirements through low-rank (LR) techniques and factoriza-
tion times through shared-memory parallelism in multifrontal
massively parallel sparse direct solver (MUMPS) will be
discussed [4]. Memory usage and factorization times are com-
pared with another popular sparse direct solver, parallel direct
solver (PARDISO) [11]. Matrices arise from the modelization
of induction heating industrial devices. Heating of a susceptor
by pancake coils and gear induction hardening is taken as test
benchmarks [1]–[3]. Geometric model design, meshing, and
matrix building are performed by a commercial software [5].
Starting from the same geometry (Pancake or Gear), meshes
are gradually refined to solve problems of different sizes
leading to matrices ranging from 320 k to 2.5 M degrees of
freedom.

Fig. 1. Geometry of the pancake coil.

II. DESCRIPTION OF THE FIRST BENCHMARK

To assess the performance of different sparse solvers for
complex linear systems, the model of a pancake inductor
designed to heat a graphite susceptor has been taken as the
first benchmark problem. This system is used in a furnace
for the production of solar grade silicon by the directional
solidification system I-DSS [1]. In Fig. 1, the model geometry
is presented and Fig. 2 shows its mesh. The numerical solution
of the EM problem has been carried out by applying the well
known A, AV formulation and using the complex representa-
tion of the sinusoidal quantities [2], [14]. The magnetic vector
potential coupled with the scalar electric potential formulation
has been chosen because it guarantees a precise solution of
the eddy current distribution, mostly in models where there is
no highly permeable conducting region [14], [15]. Usually this
formulation originates systems with more degrees of freedom
than the so-called scalar one (used in the second benchmark).
This model has been solved using four different types of
discretizations, with a number of elements ranging from 600 k
up to 2.9 M volume elements, leading to complex sparse
systems from 320 k to 1.5 M unknowns. Typical eddy currents
distribution is shown in Fig. 3.

Fig. 2. Mesh of the pancake coil.

Fig. 3. Eddy current distribution in the graphite susceptor. Values range from
1.2 to 120 kA/m2.

III. DESCRIPTION OF THE SECOND BENCHMARK

Simulations of induction hardening process is one of the
most challenging tasks for multi-physics simulation. A com-
plete process description requires not only to compute the
EM-TH coupled problem, but also to couple these results
with other different physics, able to calculate the metallurgical
transformation and residual stresses [3]. To obtain reliable
results of the entire process, the solution of EM-TH coupled
problem must be as accurate as possible. To properly describe
the EM field distribution, a fine and possibly mapped mesh
has to be built mostly in the heat affected region. In general,
the model should consider the non-linear material properties
of the steel, and consequently the solution requires to apply
an iterative method. Furthermore, to properly describe the
dependence upon temperature of material properties, the time-
dependent TH problem, part of coupled solution, has to be
solved using several time steps.

Sometimes, all these requirements lead to a very long
computation time. For the purpose of this paper, only the EM
steady-state problem is solved with linear magnetic properties.
The model used as benchmark describes a slice of the whole
system and it is shown in Fig. 4. The 3-D eddy current problem
is solved through T -T0-φ formulation where the magnetic
field within conducting regions is

H = T + T0 − ∇8 (1)

where T (A/m) is the unknown electric vector potential and
φ (A) is the total magnetic scalar potential. T0 (A/m) rep-
resents the given imposed electric vector potential, which
describes a prescribed current distribution, fed by an external
source. Then, the induced current density can be derived from

Fig. 4. Figure represents only a slice of the whole inductor workpiece
geometry because of symmetries.

Fig. 5. Mesh of inductor, workpiece, and clampers.

Fig. 6. Eddy current distribution in the gear. Values range from 200 kA/m2

to 300 MA/m2.

the Ampère’s law [14]

J = ∇ × (T + T0). (2)

The model mesh, shown in Fig. 5, contains 5 × 105 volume
elements. With this discretization, the dimension of linear
system is 370 k or 2.5 M when, respectively, first- and second-
order elements are used. Typical eddy currents distribution is
shown in Fig. 6.

IV. TESTING ENVIRONMENT

The hardware platform for the evaluation is a dual Intel
Xeon (X5670, six cores) with 96 Gb RAM. MUMPS version
4.10.0 [4] and another popular tool Intel MKL parallel direct
solver (PARDISO) version 10.3.9 are compared, both in the
in-core (IC) and out-of-core (OOC) mode. The effect of
swapping temporary data on virtual memory is also evaluated.
Configuration details are reported in Table I.

V. PRELIMINARY RESULTS

Although MUMPS is based on a message passing model for
parallel computation, a single MPI process with multithreaded

TABLE I

TESTED MATRICES

Fig. 7. IC factorization time (12 cores, small cases).

TABLE II

MEMORY NEEDED FOR FACTORIZATION (GB, LARGE CASES)

Fig. 8. IC (with swap) and OOC factorization times for large cases.

BLAS libraries is used for tests, as a better performance
with such a configuration has been observed on multicore
architectures. Both MUMPS and PARDISO are executed using
12 threads and the corresponding factorization times are shown
in Fig. 7 and Table II. The IC factorization times are slightly
different with MUMPS and PARDISO, leading to very close
behavior on 12 cores (see Fig. 7). Memory usage for IC
executions is also very similar (see Table II). In the OOC
mode, MUMPS is slightly slower than PARDISO on small
matrices, but uses less memory since PARDISO does not

TABLE III

LR IMPROVEMENTS

perform I/O when memory is found to be sufficient, as for
Pancake 3.

The missing values for PARDISO in OOC (in Table II and
Fig. 8) are due to an error during the factorization step in OOC
and with multithreads. Timings on largest problems (Fig. 8)
show that MUMPS is less penalized by memory swapping
than PARDISO.

VI. IMPROVEMENTS BY LR APPROXIMATION

TECHNIQUES

A LR matrix can be represented in a form which decreases
its memory requirements and the complexity of involved basic
linear algebra operations, such as matrix–matrix products. This
is formalized in [6].

Let A be a matrix of size m × n. Let kε be the approximated
numerical rank of A at accuracy ε. A is said to be a LR matrix
if there exist three matrices W of size m × kε, Z of size
n × kε, and E of size m × n such that

A = W · Z T + E (3)

where ‖E‖2 ≤ ε and kε (m + n) < mn.
kε is commonly referred to as the numerical rank at preci-

sion ε and can be computed, together with W and Z with a
rank-revealing QR factorization. LR approximation techniques
are based upon the idea to ignore E and simply represent A

as the product of W and Z T, at accuracy ε.
In practice, matrices coming from applicative problems are

not LR, which means that they cannot be directly approx-
imated. However, LR approximations can be performed on
sub-blocks defined by an appropriately chosen partitioning of
matrix indexes [6], [7]. Theoretical studies based on math-
ematical properties of the underlying operators have shown
that variable sets that are far away in the domain are likely
to have weak interactions which translates into the fact that
the corresponding matrix block has a LR. To benefit from
this property, a format called block LR (BLR) is used [8].
This format can be exploited within internal data structures
of the multifrontal method used in the MUMPS software to
decrease the memory consumption and the operation count of
the solver [9].

In Table III, results show that the method is more efficient
on large problems, which is a good property in the context
of large scale computing (note that there is no compression
for Pancake 2 with ε = 10−10). This property has also
been observed in many other applications. For Pancake 2,

significant gains are obtained with a LR threshold of 10−8; the
memory footprint is reduced by almost a factor of three and the
complexity is almost halved. In this case, a few steps of iter-
ative refinement are performed to recover full precision from
the original approximated precision of 10−10. For Pancake 4
with LR threshold precision of 10−14, a good compression is
obtained naturally without any loss of accuracy. Note that by
choosing a more aggressive threshold ε, the BLR format can
be used to efficiently produce loosely approximated factors
that can be used as effective preconditioners for iterative
solvers.

VII. IMPROVEMENTS OF SHARED-MEMORY

PARALLELISM IN MUMPS

To solve a sparse linear system, the multifrontal method
transforms the initial sparse matrix into a (elimination) tree
of much smaller dense matrices. This tree is traversed in
a topological order and each node is computed following a
partial LU decomposition. Then, a two-pass solve operation
is applied on each node of the tree to find the solution of the
original system.

The structure of the tree offers an inner parallelism, called
tree parallelism, in which different processes work on data
subsets, stored on different nodes of a network. This kind
of parallelism is already exploited by MUMPS in distributed
memory environments [9]. However, in shared-memory envi-
ronments only node parallelism is applied; many processes
collaborate on the decomposition, working on the same node.
In this approach, threaded BLAS libraries are preferred to
parallelize dense matrix operations. To make a step further, the
fork-join model of parallelism has been implemented in a new
code, based on OpenMP programming. Our first goal was then
to exploit tree parallelism in shared-memory environments, by
adopting algorithms commonly used in distributed memory
environments and by rearranging them to a multithreading
model. Therefore, the so-called AlgL0 algorithm consists in
finding a separating layer in the tree, called L0, such that node
parallelism will still be applied above it, but tree parallelism
will be applied under it through OpenMP.

The use of adequate memory mapping policies allows to
improve the performance of MUMPS on symmetric multi-
processor and non-uniform memory access architectures. The
local alloc policy, which consists in mapping the memory
pages on the local memory of the processor that first touches
them, is applied on data structures used under L0, in order
to achieve a better data locality and cache exploitation. The
interleave policy, which consists in allocating the memory
pages on all memory banks in a round-robin fashion such that
the allocated memory is spread over all the physical memory,
has been used on data structures above L0 in order to improve
the bandwidth.

Both MUMPS 4.10.0 and MUMPS 4.10.0 with new AlgL0
algorithm have been tested on the set of test matrices, with the
stated memory allocation techniques. As reported in Table IV,
this approach brings a remarkable reduction of computational
time on all tested matrices. The benefit tends to decrease on
large matrices because the fraction of workload in the top of

TABLE IV

TIME SAVE BY USING MUMPS 4.10.0 WITH AlgL0 ALGORITHM

the tree (above L0) gradually increases in comparison with
the workload in the bottom of the tree. Furthermore, this gain
should rise through the use of the interleave policy.

VIII. CONCLUSION

Significant improvements of parallel sparse direct solver
MUMPS have been successfully tested in 3-D numerical
simulation of induction heating industrial applications. Results
show a remarkable reduction of both memory usage and
number of performed operations. Furthermore, both tree and
node parallelism are exploited to reduce the solution time.

REFERENCES

[1] F. Dughiero, M. Forzan, D. Ciscato, and F. Giusto, “Multi-crystalline
silicon ingots growth with an innovative induction heating direc-
tional solidification furnace,” in Proc. 37th IEEE PVSC, Jun. 2011,
pp. 002151–002156.

[2] F. Dughiero, M. Forzan, C. Pozza, and E. Sieni, “A translational
coupled electromagnetic and thermal innovative model for induction
welding of tubes,” IEEE Trans. Magn., vol. 48, no. 2, pp. 483–486,
Feb. 2012.

[3] S. Lupi, F. Dughiero, and M. Forzan, “Modelling single- and
double-frequency induction hardening of gear-wheels,” in Proc.

5th Int. Symp. Electromagn. Process. Mater., Sendai, Japan, 2006,
pp. 473–478.

[4] (2013, Sep.). MUMPS [Online]. Available: http://graal.ens-
lyon.fr/MUMPS/

[5] (2013, Sep.). CEDRAT [Online]. Available: http://www.cedrat.com
[6] M. Bebendorf, Hierarchical Matrices—A Means to Efficiently Solve

Elliptic Boundary Value Problems (Lecture Notes in Computational
Science and Engineering), 1st ed. New York, NY, USA: Springer-
Verlag, 2008.

[7] S. Börm, Efficient Numerical Methods for Non-Local Operators.
Zürich, Switzerland: European Mathematical Society, 2010.

[8] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and
C. Weisbecker, “Improving multifrontal methods by means of low-rank
approximations techniques,” in Proc. SIAM Conf. Appl. Linear Algebra,
Valencia, Spain, 2012, pp. 1–25.

[9] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent,
and C. Weisbecker, “Grouping variables in frontal matrices to improve
low-rank approximations in a multifrontal solver,” in Proc. Int. Conf.

Precond. Tech. Sci. Ind. Appl., Bordeaux, France, 2011, pp. 1–63.
[10] P. Amestoy, A. Buttari, A. Guermouche, J.-Y. L’Excellent, and

M. Sid-Lakhdar, “Exploiting multithreaded tree parallelism for multi-
core systems in a parallel multifrontal solver,” in Proc. 15th SIAM Conf.

Parallel Process. Sci. Comput., Savannah, GA, USA, 2012, pp. 1–25.
[11] O. Schenk and K. Gärtner, “Solving unsymmetric sparse systems of

linear equations with PARDISO,” J. Future Generat. Comput. Syst.,
vol. 20, no. 3, pp. 475–487, 2004.

[12] H. Kurose, D. Miyagi, N. Takahashi, N. Uchida, and K. Kawanaka,
“3-D eddy current analysis of induction heating apparatus consid-
ering heat emission, heat conduction, and temperature dependence
of magnetic characteristics,” IEEE Trans. Magn., vol. 45, no. 3,
pp. 1847–1850, Mar. 2009.

[13] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Superfast multi-
frontal method for large structured linear systems of equations,” SIAM

J. Matrix Anal. Appl., vol. 31, no. 3, pp. 1382–1411, 2009.
[14] O. Bíró, “Edge element formulations of eddy current problems,”

Comput. Methods Appl. Mech. Eng., vol. 169, no. 3, pp. 391–405,
1999.

[15] T. Mifune, T. Iwashita, and M. Shimasaki, “A fast solver for FEM
analyses using the parallelized algebraic multigrid method,” IEEE

Trans. Magn., vol. 38, no. 2, pp. 369–372, Mar. 2002.

