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On debiasing restoration algorithms: applications to total-variation and nonlocal-means

Bias in image restoration algorithms can hamper further analysis, typically when the intensities have a physical meaning of interest, e.g., in medical imaging. We propose to suppress a part of the bias the method bias -while leaving unchanged the other unavoidable part the model bias. Our debiasing technique can be used for any locally affine estimator including ℓ1 regularization, anisotropic total-variation and some nonlocal filters.

Introduction

Restoration of an image of interest from its single noisy degraded observation necessarily requires imposing some regularity or prior on the solution. Being often only crude approximations of the true underlying signal of interest, such techniques always introduce a bias towards the prior. However, in general, this is not the only source of bias. In many cases, even though the model was perfectly accurate, the method would remain biased. This part of the bias often emerges from technical reasons, e.g., when approaching an NP-hard problem by an easier one (typically, using the ℓ 1 convex relaxation of an ℓ 0 pseudo-norm).

It is well known that reducing bias is not always favorable in terms of mean square error because of the so-called bias-variance trade-off. It is important to highlight that a debiasing procedure is expected to re-inject part of the variance, therefore increasing the residual noise. Hence, the mean square error is not always expected to be improved by such techniques. Debiasing is nevertheless essential in applications where the image intensities have a physical sense and critical decisions are taken from their values. For instance, the authors of [START_REF] Denis De Senneville | Extended Kalman filtering for continuous volumetric MR-temperature imaging[END_REF] suggest using image restoration techniques to estimate a temperature map within a tumor tissue for real time automatic surgical intervention. In such applications, it is so crucial that the estimated temperature is not biased. A remaining residual noise is indeed favorable compared to an uncontrolled bias.

We introduce a debiasing technique that suppresses the extra bias -the method bias -emerging from the choice of the method and leave unchanged the bias that is due to the unavoidable choice of the model -the model bias. To that end, we rely on the notion of model subspace essential to carefully define different notions of bias. This leads to a mathematical definition of debiasing for any locally affine estimators that respect some mild assumptions.

Interestingly, our debiasing definition for the ℓ 1 synthesis (also known as LASSO [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] or Basis Pursuit [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF]) recovers a well known debiasing scheme called refitting that goes back to the "Hybrid LASSO" [START_REF] Efron | Least angle regression[END_REF] (see [START_REF] Lederer | Trust, but verify: benefits and pitfalls of least-squares refitting in high dimensions[END_REF] for more details).

For the ℓ 1 analysis [START_REF] Elad | Analysis versus synthesis in signal priors[END_REF], including the ℓ 1 synthesis but also the anisotropic total-variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], we show that debiasing can be performed with the same complexity as the primal-dual algorithm of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] producing the biased estimate.

In other cases, e.g., for an affine version of the popular nonlocal-means [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], we introduce an iterative scheme that requires only a few run of an algorithm of the same complexity as the original one producing the biased estimate.

Background

We consider observing f = f 0 + w ∈ R P a corrupted linear observation of an unknown signal u 0 ∈ R N such that f 0 = Φu 0 where Φ ∈ R N ×P is a linear operator and w is a random vector modeling the noise fluctuations. We assume that E[w] = 0 where E is the expectation operator. The linear operator Φ is a degrading operator typically with P N and with a non-empty kernel encoding some information loss such that the problem becomes ill-posed.

We focus on estimating the unknown signal u 0 . Due to the ill-posedness of the observation model, we consider variational approaches that attempt to recover u 0 from the single observation f as a solution of the optimization problem

u ⋆ f ∈ argmin u∈R N E(u, f ) . (1) 
where E : R N ×R P → R is assumed to have at least one minimum. The objective E is typically chosen to promote some structure, e.g., smoothness, piece-wise constantness, sparsity, etc., that is captured by the so-called model subspace M * f . Providing u ⋆ f is uniquely defined and differentiable at f , we define M ⋆ f ⊆ R N as the tangent affine subspace at f of the mapping f → u ⋆ f , i.e.,

M ⋆ f = u ⋆ f +Im[J ⋆ f ] = u ∈ R N ; ∃z ∈ R P , u = u ⋆ f + J ⋆ f z with J ⋆ f = ∂u ⋆ f ∂f f (2) 
where J ⋆ f is the Jacobian operator at f of the mapping f → u ⋆ f (see [START_REF] Vaiter | Model selection with low complexity priors[END_REF] for an alternative but related definition of model subspace). When u ⋆ f ∈ Im[J ⋆ f ], the model subspace restricts to the linear vector subspace

M ⋆ f = Im[J ⋆ f ].
In the rest of the paper, u ⋆ f is assumed to be differentiable at f 0 and for almost all f . Example 1 The least square estimator constrained to the affine subspace

C = b + Im[A], b ∈ R N and A ∈ R N ×Q , is a particular instance of (1) where E(u, f ) = ||Φu -f || 2 + ι C (u) (3) 
and for any set C, ι C is its indicator function:

ι C (u) = 0 if u ∈ C, +∞ otherwise.
The solution of minimum Euclidean norm is unique and given by

u ⋆ f = b + A(ΦA) + (f -Φb) (4) 
where for a matrix M , M + is its Moore-Penrose pseudo-inverse. The affine constrained least square restricts the solution u ⋆ f to the affine model subspace

M ⋆ f = b + Im[A(ΦA) t ] (as Im[M + ] = Im[M t ]). Taking C = R N with for instance Q = N , A = Id and b = 0, leads to an unconstrained solution u ⋆ f = Φ + f whose model subspace is M ⋆ f = Im[Φ t
] reducing to R N when Φ has full column rank. Example 2 The Tikhonov regularization (or Ridge regression) [START_REF] Tikhonov | On the stability of inverse problems[END_REF][START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF] is another instance of (1) where, for some parameter λ > 0 and matrix

Γ ∈ R L×N , E(u, f ) = 1 2 ||Φu -f || 2 + λ 2 ||Γ u|| 2 . ( 5 
)
Provided Ker Φ∩Ker Γ = {0}, u ⋆ f is uniquely defined as u ⋆ f = (Φ t Φ+λΓ t Γ ) -1 Φ t f which has a linear model subspace given by M ⋆ f = Im[Φ t ]. Example 3
The hard thresholding [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF], used when Φ = Id and f 0 is supposed to be sparse, is a solution of (1) where, for some parameter λ > 0,

E(u, f ) = 1 2 ||u -f || 2 + λ 2 2 ||u|| 0 , (6) 
where ||u|| 0 = # {i ∈ [P ] ; u i = 0} counts the number of non-zero entries of u and [P ] = {1, . . . , P }. The hard thresholding operation writes

(u ⋆ f ) I f = f I f and (u ⋆ f ) I c f = 0 (7) 
where

I f = {i ∈ [P ] ; |f i | > λ} is the support of u ⋆ f , I c f is the complement of I f on [P ],
and for any vector v, v I f is the sub-vector whose elements are indexed by I f . As u ⋆ f is piece-wise differentiable, its model subspace is only defined for almost all f as

M ⋆ f = {u ∈ R N ; u I c f = 0} = Im[Id I f ],
where for any matrix M , M I f is the sub-matrix whose columns are indexed by I f . Note that

Id I f ∈ R N ×#I f .
Example 4 The soft thresholding [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF], used when Φ = Id and f 0 is supposed to be sparse, is another particular solution of (1) where

E(u, f ) = 1 2 ||u -f || 2 + λ||u|| 1 , (8) 
with ||u|| 1 = i |u i | the ℓ 1 norm of u. The soft thresholding operation writes

(u ⋆ f ) I f = f I f -λ sign(f I f ) and (u ⋆ f ) I c f = 0 , (9) 
where I f is defined as above, and, as for the hard thresholding:

M ⋆ f = Im[Id I f ].

Bias of reconstruction algorithms

Due to the ill-posedness of our observation model and without any assumptions on u 0 , one cannot ensure the noise variance to be reduced while keeping the solution u ⋆ f unbiased. Recall that the statistical bias is defined as the difference

Statistical bias = E[u ⋆ f ] -u 0 . ( 10 
)
An estimator is said unbiased when its statistical bias vanishes. Unfortunately the statistical bias is difficult to manipulate when f → u ⋆ f is non linear. We therefore restrict to a definition of bias at f 0 = Φu 0 as the error u ⋆ f0 -u 0 . Note that when f → u ⋆ f is affine, both definitions match (the expectation being linear). Most methods are biased since, without assumptions, u 0 cannot be guaranteed to be in complete accordance with the model subspace, i.e., u 0 / ∈ M ⋆ f0 . It is then important to distinguish techniques that are only biased due to a problem of modeling to the ones that are biased due to the method. We then define the model bias and the method bias as the quantities

u ⋆ f0 -u 0 = u ⋆ f0 -Π M ⋆ f 0 (u 0 ) Method bias -Π (M ⋆ f 0 ) ⊥ (u 0 ) Model bias , (11) 
where for any set S, Π S denotes the orthogonal projection on S and S ⊥ denotes its orthogonal set. We now define a methodically unbiased estimator as follows.

Definition 1 An estimator u ⋆ f is methodically unbiased if

∀u 0 ∈ R N , u ⋆ f0 = Π M ⋆ f 0 (u 0 )
We also define the weaker concept of weakly unbiased estimator as follows.

Definition 2 An estimator u ⋆ f is weakly unbiased if ∀u 0 ∈ M ⋆ f0 , u ⋆ f0 = u 0 . The quantity u ⋆ f0 -u 0 for u 0 ∈ M ⋆ f0 is called the weak bias of u ⋆ f at u 0 .
Remark that a methodically unbiased estimator is also weakly unbiased.

Examples. The unconstrained least-square estimator is methodically unbiased since

u ⋆ f0 = Φ + f 0 = Φ + Φu 0 = Π Im[Φ t ] (u 0 ) = Π M ⋆ f 0
(u 0 ). Moreover, being linear, it becomes statistically unbiased whenever Φ has full column rank since Φ + Φ = Id. However the constrained least-square estimator is only weakly unbiased: its methodical bias only vanishes when u 0 ∈ M ⋆ f0 , i.e., when there exists t 0 ∈ R Q such that u 0 = b+A(ΦA) t t 0 . The hard thresholding is also methodically unbiased remarking that u ⋆ f0 is the orthogonal projection on M ⋆ f0 = Im[Id I f 0 ]. Unlike the unconstrained least-square estimator, Tikhonov regularization has a non zero weak bias. The soft thresholding is also known to be biased [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] and its weak bias is given by -λId I f 0 sign(f 0 ) I f 0 . Often, estimators are said to be unbiased when they are actually only weakly unbiased.

Definitions of debiasing

Given an estimate u ⋆ f of u 0 , we define a debiasing of u ⋆ f as follows. Definition 3 An estimator ũ⋆ f of u 0 is a weak debiasing of u ⋆ f if it is weakly unbiased and M⋆ f = M ⋆ f for almost all f , with M⋆ f the model subspace of ũ⋆ f at f . Moreover, it is a methodical debiasing if it is also methodically unbiased.

Examples. The unconstrained least square estimator is a methodical debiasing of the Tikhonov regularization, since it is a methodically unbiased estimator of u 0 and they share the same model subspace. The hard thresholding is a methodical debiasing of the soft thresholding, for the same reasons.

A good candidate for debiasing u ⋆ f is the constraint least squares on M ⋆ f :

ũ⋆ f = u ⋆ f + U ⋆ f (ΦU ⋆ f ) + (f -Φu ⋆ f ) ∈ argmin u∈M ⋆ f ||Φu -f || 2 (12) 
where

U ⋆ f ∈ R N ×n with n = rank[J ⋆ f ] is a matrix whose columns form a basis of Im[J ⋆ f ]. Let V ⋆ f ∈ R n×P be a matrix such that J ⋆ f = U ⋆ f V ⋆ f .
The following theorem shows that under mild assumptions this choice corresponds to a debiasing of u ⋆ f .

Theorem 1 Assume that f → u ⋆ f is locally affine for almost all f and that Φ is invertible on M ⋆ f . Then ũ⋆ f defined in Eq. ( 12) is a weak debiasing of u ⋆ f .

Proof. Since f → u ⋆ f is locally affine, f → U ⋆ f can be chosen locally constant. Deriving [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF] for almost all f leads to the Jacobian J⋆ f of ũ⋆ f given by

J⋆ f = ∂ ũ⋆ f ∂f = ∂u ⋆ f ∂f + U ⋆ f (ΦU ⋆ f ) + ∂f ∂f -Φ ∂u ⋆ f ∂f = J ⋆ f + U ⋆ f (ΦU ⋆ f ) + (Id -ΦJ ⋆ f ) = U ⋆ f V ⋆ f + U ⋆ f (ΦU ⋆ f ) + (Id -ΦU ⋆ f V ⋆ f ) = U ⋆ f (ΦU ⋆ f ) + , (13) 
since ΦU ⋆ f has full column rank due to the assumption that Φ is invertible on

M ⋆ f . It follows that M⋆ f = ũ⋆ f + Im[ J⋆ f ] = u ⋆ f + U ⋆ f (ΦU ⋆ f ) + (f -Φu ⋆ f ) + Im[U ⋆ f (ΦU ⋆ f ) + ] (14) = u ⋆ f + Im[U ⋆ f (ΦU ⋆ f ) + ] = u ⋆ f + Im[U ⋆ f ] = M ⋆ f , (15) 
since ΦU ⋆ f has full column rank. Moreover, for any u 0 ∈ M ⋆ f0 , the equation Φu = f 0 has a unique solution u = u 0 in M ⋆ f0 since Φ is invertible on M ⋆ f0 . Hence, ũ⋆ f0 = u 0 is the unique solution of [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF], which concludes the proof.

The next proposition shows that the condition "Φ invertible on M ⋆ f " can be dropped when looking at u ⋆ f and ũ⋆ f through Φ. The debiasing becomes furthermore methodical.

Proposition 1 Assume f → u ⋆
f is locally affine for almost all f . Taking ũ⋆ f defined in Eq. ( 12), then the predictor

Φũ ⋆ f of f 0 = Φu 0 is equal to Π ΦM ⋆ f (f ) and is a methodical debiasing of Φu ⋆ f . Proof. Since ΦU ⋆ f (ΦU ⋆ f ) + = Π Im[ΦU ⋆ f ] , we have Φũ ⋆ f = Π ΦM ⋆ f (f ).
As the orthogonal projector on its own model space, it is methodically unbiased. Moreover

Im[Π Im[ΦU ⋆ f ] ] = Im[ΦU ⋆ f ],
hence Φũ ⋆ f and Φu ⋆ f share the same model subspace.

Remark 1 As an immediate consequence, the debiasing of any locally affine denoising algorithm is a methodical debiasing, since Φũ ⋆ f = ũ⋆ f .

We focus in the next sections on the debiasing of estimators without explicit expression for M ⋆ f , meaning that Eq. ( 12) cannot be used directly. We first introduce an algorithm for the case of ℓ 1 analysis relying on the computation of the directional derivative J ⋆ f f . We propose next a general approach, applied to an affine nonlocal estimator, that requires J ⋆ f δ for randomized directions δ.

5 Debiasing the ℓ 1 analysis minimization

From now on, the dependency of all quantities with respect to the observation f will be dropped for the sake of simplicity. Given a linear operator Γ ∈ R L×N , the ℓ 1 analysis minimization reads, for λ > 0, as

E(u, f ) = 1 2 ||Φu -f || 2 + λ||Γ u|| 1 . (16) 
Provided Ker Φ ∩ Ker Γ={0}, there exists a solution given implicitly, see [START_REF] Vaiter | Local behavior of sparse analysis regularization: Applications to risk estimation[END_REF], as

u ⋆ = U (ΦU ) + f -λU (U t Φ t ΦU ) -1 U t (Γ t ) I s I (17) 
for almost all f and where

I = {i ; (Γ u ⋆ ) i = 0} ⊆ [L] = {1, .
. . , L} is called the co-support of the solution, s = sign(Γ u ⋆ ), U = U ⋆ f is a matrix whose columns form a basis of Ker[Id t

I cΓ ] and ΦU has full column rank. Note that s I and U are locally constant almost everywhere since the co-support is stable with respect to small perturbations [START_REF] Vaiter | Local behavior of sparse analysis regularization: Applications to risk estimation[END_REF]. It then follows that the model subspace is implicitly defined as

M ⋆ = Im[U ] = Ker[Id t I cΓ ],
and so, the ℓ 1 analysis minimization suffers from a weak bias equal to -λU

(U t Φ t ΦU ) -1 U t (Γ t ) I s I . Given that u ⋆ ∈ Im[U ]
and it is locally affine, its weak debiased solution is defined for almost all f as ũ⋆ = U (ΦU ) + f .

(

) 18 
The ℓ 1 synthesis [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] consists in taking Γ = Id, hence U = Id I , so [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF] becomes

u ⋆ I = (Φ I ) + f -λ((Φ I ) t Φ I ) -1 s I and u ⋆ (I) c = 0 . ( 19 
)
Its model subspace is implicitly defined as M ⋆ = Im[Id I ], its weak bias is -λId I ((Φ I ) t Φ I ) -1 s I and its weak debiasing is ũ⋆ = Id I (Φ I ) + f . Subsequently, taking Φ = Id leads to the soft-thresholding presented earlier.

The anisotropic Total-Variation (TV) [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] is a particular instance of ( 16) where u 0 ∈ R N can be identified to a d-dimensional discrete signal, for which Γ ∈ R L×N , with L = dN , is the concatenation of the discrete gradient operators in each canonical directions. In this case I is the set of indexes where the solution has discontinuities (non-null gradients) and M ⋆ is the space of piece-wise constant signals sharing the same discontinuities as the solution. Its weak bias reveals a loss of contrast: a shift of intensity on each piece depending on its surrounding and the ratio between its perimeter and its area, as shown, e.g., in [START_REF] Strong | Edge-preserving and scale-dependent properties of total variation regularization[END_REF]. Note that the so-called staircasing effect of TV regularization is encoded in our framework as a model bias, and is therefore not reduced by our debiasing technique. Strategies devoted to the reduction of this effect have been studied in, e.g., [START_REF] Louchet | Total variation as a local filter[END_REF].

Since in general u ⋆ has no explicit solutions, it is usually estimated thanks to an iterative algorithm that can be expressed as a sequence u k converging to u ⋆ . The question we address is how to compute ũ⋆ in practice, i.e., to evaluate Eq. ( 18), or more precisely, how to jointly build a sequence ũk converging to ũ⋆ .

We propose a technique that relies on the observation that, given [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF], for almost all f , the Jacobian J ⋆ of u ⋆ at f applied to f , leads to Eq. ( 18), i.e.,

J ⋆ [f ] = U (ΦU ) + f = ũ⋆ (20) 
since U and s I are locally constant [START_REF] Vaiter | Local behavior of sparse analysis regularization: Applications to risk estimation[END_REF]. We so define a sequence ũk which is, up to a slight modification, the closed-form derivation of the primal-dual sequence u k of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. Most importantly, we provide a proof of its convergence towards ũ⋆ . Note that other debiasing techniques could be employed for the ℓ 1 analysis, e.g., using iterative hard-thresholding [START_REF] Herrity | Sparse approximation via iterative thresholding[END_REF][START_REF] Blumensath | Iterative thresholding for sparse approximations[END_REF], refitting techniques [START_REF] Efron | Least angle regression[END_REF][START_REF] Lederer | Trust, but verify: benefits and pitfalls of least-squares refitting in high dimensions[END_REF], postrefinement techniques based an Bregman divergences and nonlinear inverse scale spaces [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF][START_REF] Burger | Nonlinear inverse scale space methods[END_REF][START_REF] Xu | Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising[END_REF] or with ideal spectral filtering in the analysis sense [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF].

Primal-dual algorithm

Before stating our main result, let us recall some of the properties of primaldual techniques. Dualizing the ℓ 1 analysis norm u → λ||Γ u|| 1 , the primal problem can be reformulated as the following saddle-point problem

z ⋆ = argmax z∈R L min u∈R N 1 2 Φu -f 2 + Γ u, z -ι B λ (z) (21) 
where z ⋆ ∈ R L is the dual variable, and

B λ = {z ; ||z|| ∞ λ} is the ℓ ∞ ball.
First order primal-dual optimization. Taking στ < 1

Γ 2 2
, θ ∈ [0, 1] and initializing (for instance,) u 0 = v 0 = 0 ∈ R N , z 0 = 0 ∈ R L , the primal-dual algorithm of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] applied to problem [START_REF] Tikhonov | On the stability of inverse problems[END_REF] reads

   z k+1 = Π B λ (z k + σΓ v k ), u k+1 = (Id + τ Φ t Φ) -1 u k + τ (Φ t f -Γ t (z k+1 )) , v k+1 = u k+1 + θ(u k+1 -u k ), (22) 
where the projection of z over B λ is done component-wise as

Π B λ (z) i = z i if |z i | λ, λ sign(z i ) otherwise. ( 23 
)
The primal-dual sequence u k converges to a solution u ⋆ of ( 16) [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. We assumed here that u ⋆ verifies ( 17) with ΦU full-column rank. This could be enforced as shown in [START_REF] Vaiter | Local behavior of sparse analysis regularization: Applications to risk estimation[END_REF], but it did not seem to be necessary in our experiments.

Debiasing algorithm

As pointed out earlier, the debiasing of u ⋆ consists in applying the Jacobian matrix J ⋆ at f to f itself. This idea leads to the proposed debiasing algorithm that constructs a sequence of debiased iterates from the original biased primaldual sequence with initialization ũ0 = ṽ0 = 0 ∈ R N , z0 = 0 ∈ R L as follows

   zk+1 = Π z k +σΓ v k (z k + σΓ ṽk ), ũk+1 = (Id + τ Φ t Φ) -1 ũk + τ (Φ t f -Γ t zk+1 ) , ṽk+1 = ũk+1 + θ(ũ k+1 -ũk ), ( 24 
)
where

Π z k +σΓ v k (z i ) = zi if |z k + σΓ v k | i λ + β, 0 otherwise.
with β 0. Note that when β = 0, deriving z k , u k and v k for almost all f at f in the direction f using the chain rule leads to the sequences zk , ũk and ṽk respectively (see also [START_REF] Deledalle | Stein unbiased gradient estimator of the risk (SUGAR) for multiple parameter selection[END_REF]). However, as shown in Theorem 2, it is important to choose β > 0 to guarantee the convergence of the sequence1 .

Theorem 2 Let α > 0 be the minimum non zero value

2 of |Γ u ⋆ | i for all i ∈ [L].
Choose β such that ασ > β > 0. The sequence ũk defined in (24) converges to the debiasing ũ⋆ of u ⋆ .

Before turning to the proof of this theorem, let us introduce a first lemma.

Lemma 1

The debiasing ũ⋆ of u ⋆ is the solution of the saddle-point problem

min ũ∈R N max z∈R L Φũ -f 2 + Γ ũ, z -ι FI (z), (25) 
where ι FI is the indicator function of the convex set

F I = p ∈ R L ; p I = 0 .
Proof. As ΦU has full column rank, the debiased solution is the unique solution of the constrained least square estimation problem ũ⋆ = U (ΦU ) [START_REF] Xu | Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising[END_REF] by the projection onto F I , i.e.,

+ f = argmin ũ∈U ⋆ Φũ -f 2 . ( 26 
) Remark that ũ ∈ U ⋆ = Ker[Id t I cΓ ] ⇔ (Γ ũ) I c = 0 ⇔ ι F I c (Γ ũ) = 0, where F I c = p ∈ R L ; p I c = 0 . Using Fenchel transform, ι F I c (Γ ũ) = max z Γ ũ, z -ι * F I c (z), where ι * F I c is the convex conjugate of ι F I c . Observing that ι FI = ι * F I c concludes the proof. Given Lemma 1, replacing Π z k +σΓ v k in
Π FI (z) I c = zI c and Π FI (z) I = 0 , (27) 
leads to the primal-dual algorithm of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] applied to problem (25) which converges to the debiased estimator ũ⋆ . It remains to prove that the projection Π z k +σΓ v k defined in [START_REF] Xu | Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising[END_REF] converges to Π FI in finite time.

Proof (Theorem 2). First consider i ∈ I, i.e., |Γ u ⋆ | i > 0. By assumption on α, |Γ u ⋆ | i ≥ α > 0. Necessary z ⋆ i = λ sign(Γ u ⋆ ) i in order to maximize (21). Hence, |z ⋆ + σΓ u ⋆ | i ≥ λ + σα. Using the triangle inequality shows that λ + σα |z ⋆ + σΓ u ⋆ | i |z ⋆ -z k | i + σ|Γ u ⋆ -Γ v k | i + |z k + σΓ v k | i . (28)
Choose ε > 0 sufficiently small such that σα -ε(1 + σ) > β. From the convergence of the primal-dual algorithm of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], the sequence (z

k , u k , v k ) converges to (z ⋆ , u ⋆ , u ⋆ ). Therefore, for k large enough, |z ⋆ -z k | i < ε, |Γ u ⋆ -Γ v k | i < ε, and 
|z k + σΓ v k | i λ + σα -ε(1 + σ) > λ + β . (29) 
Next consider i ∈ I c , i.e., |Γ u ⋆ | i = 0, where by definition |z ⋆ | i λ. Using again the triangle inequality shows that

|z k + σΓ v k | i |z k -z ⋆ | i + σ|Γ v k -Γ u ⋆ | i + |z ⋆ | i . (30) 
Choose ε > 0 sufficiently small such that ε(1

+ σ) < β. As (z k , u k , v k ) → (z ⋆ , u ⋆ , u ⋆ ), for k large enough, |z k -z ⋆ | i < ε, |Γ v k -Γ u ⋆ | i < ε, and 
|z k + σΓ v k | i < λ + ε(1 + σ) λ + β . (31) 
It follows that for k sufficiently large |z k +σΓ v k | i λ+β if and only if i ∈ I c , and hence Π z k +σKv k (z) = Π FI (z). As a result, all subsequent iterations of (24) will solve (25), and hence from Lemma 1 this concludes the proof of the theorem.

Debiasing other affine estimators

In most cases, U ⋆ cannot be computed in reasonable memory load and/or time, such that Eq. ( 12) cannot be used directly. However, the directional derivative, i.e., the application of J ⋆ to a direction δ, can in general be obtained with an algorithm of the same complexity as the one providing u ⋆ . If one can compute the directional derivatives for any direction, a general iterative algorithm for the computation of ũ⋆ can be derived as given in Algorithm 1.

The proposed technique relies on the fact that given n = dim(M ⋆ ) uniformly random directions δ 1 , . . . , δ n on the unit sphere of R P , J ⋆ δ 1 , . . . , J ⋆ δ n forms a basis of Im[J ⋆ ] almost surely. Given this basis, the debiased solution can so be retrieved from [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF]. Unfortunately, computing the image of the usually large number n of random directions can be computationally prohibitive.

The idea is to approach the debiased solution by retrieving only a low dimensional subspace of M ⋆ leading to a small approximation error. Our greedy heuristic is to chose random perturbations around the current residual (the strength of the perturbation being controlled by a parameter ε). As soon as ε > 0, the algorithm converges in n iterations as explained above. But, by focusing in directions guided by the current residual, the algorithm refines in priority the directions for which the current debiasing gets significantly away from the data f , i.e., directions that encodes potential remaining bias. Hence, the debiasing can be very effective even though a small number of such directions has been explored. We notice in our experiments that with a small value of ε, this strategy leads indeed to a satisfying debiasing, close to convergence, reached in a few iterations. The nonlocal-means example. The block-wise nonlocal-means proposed in [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF] can be rewritten as an instance of the minimization problem (1) with

E(u, f ) = 1 2 i,j w i,j ||P i u -P j f || 2 with w i,j = ϕ ||P i f -P j f || 2 2σ 2 (32) 
Algorithm 1 General debiasing pseudo-algorithm for the computation of ũ⋆ .

Inputs: f ∈ R P , u ⋆ ∈ R N , δ ∈ R P → J ⋆ δ ∈ R N , ε > 0. Outputs: ũ⋆ ∈ R N and U ∈ R N×n ′ with n ′ n an orthonormal family of Im[J ⋆ ] Initialize U ← [ ] repeat until ũ⋆ reaches convergence Generate δ ← η/||η||, η ∼ NP (0, Id) (perturbation ensuring convergence) Compute u ′ ← J ⋆ (f -Φũ ⋆ + εδ) (perturbed image of the current residual) Compute e ← u ′ -U (U t u ′ ) (projection on the orthogonal of the current M ⋆ ) Update U ← [U e/||e||] Update ũ⋆ ← u ⋆ + U ((ΦU ) + (f -Φu ⋆ )) until where i ∈ [n 1 ] × [n 2 ] spans the whole image domain, j -i ∈ [-s, s] × [-s,
s] spans a limited search window domain and σ 2 is the noise variance. We denote by P i the linear operator extracting the patch at pixel i of size (2p + 1) × (2p + 1). Note that we assume periodical conditions such that all quantities remain inside the image domain. The kernel ϕ : R + → [0, 1] is a decreasing function which is typically a decay exponential function. Taking ϕ piece-wise constant3 , leads to computing u ⋆ and its Jacobian at f applied to δ for almost all f as follow u ⋆ i = j wi,j f j j wi,j and (J ⋆ δ) i = wi,j δ j j wi,j with wi,j =

k w i-k,j-k (33)
where k ∈ [-p, p] × [-p, p] spans the patch domain. Note that the values of w and w can be obtained by discrete convolutions leading to an algorithm with complexity in O(N s 2 ), independent of the half patch size p.

With such a choice of ϕ, the block-wise nonlocal filter becomes a piece-wise affine mapping of f and hence Algorithm 1 applies.

Numerical experiments and results

Figure 1 gives an illustration of TV used for denoising a 1D piece-wise constant signal in [0, 192] and damaged by additive white Gaussian noise (AWGN) with a standard deviation σ = 10. Even though TV has perfectly retrieved the support of ∇u 0 with one more extra jump, the intensities of some regions are biased. Our debiasing is as expected unbiased for every region.

Figure 2 gives an illustration of our debiasing of 2D anisotropic TV used for the restoration of an 8bits approximately piece-wise constant image damaged by AWGN with σ = 20. The observation operator Φ is a Gaussian convolution kernel of bandwidth 2px. TV introduced a significant loss of contrast, typically for the thin contours of the drawing, which are re-enhanced by our debiased result.

Figure 3 gives an illustration of our iterative debiasing for the block-wise nonlocal-means algorithm used in a denoising problem for an 8bits image enjoying many repetitive patterns and damaged by AWGN with σ = 20. Convergence has been considered as reached after 4 iterations only. Our debiasing provides favorable results with many enhanced details compared to the biased result. 

Conclusion

We have introduced in this paper a mathematical definition of debiasing which has led to an effective debiasing technique that can remove the method bias that does not arise from the unavoidable choice of the model. This debiasing technique simply consists in applying a least-square estimation constrained to the model subspace chosen implicitly by the original biased algorithm. Numerical experiments have demonstrated the efficiency of our technique in retrieving the correct intensities while respecting the structure of the original model subspace. Our technique is nevertheless limited to locally affine estimators. Isotropic total variation, structured sparsity or nonlocal-means with smooth kernels are not yet handled by our debiasing technique, and left for future work.
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 1 Fig. 1. Solutions of 1D-TV and our debiasing on a piece-wise constant signal.
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 2 Fig. 2. (left) Blurry image f = Φu0 +w, (center) TV u ⋆ , (right) debiased ũ⋆ .

Fig. 3 .

 3 Fig. 3. (left) Noisy image f = u0 +w, (center) nonlocal-means u ⋆ , (right) debiased ũ⋆ .

In practice, β can be chosen as the smallest positive floating number.

If |Γ u ⋆ |i = 0 for all i ∈ [L], the result remains true for any α > 0.

For instance, by quantification on a subset of predefined values in [0, 1].