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CONTINUOUS FIELDS OF PROPERLY INFINITE C∗-ALGEBRAS

ETIENNE BLANCHARD

Abstract. Any unital separable continuous C(X)-algebra with properly infinite fi-
bres is properly infinite as soon as the compact Hausdorff space X has finite topolog-
ical dimension. We study conditions under which this is still the case in the infinite
dimensional case.

1. Introduction

One of the basic C∗-algebras studied in the classification programme launched by G.
Elliott ([Ell94]) of nuclear C∗-algebras through K-theoretical invariants is the Cuntz
C∗-algebra O∞ generated by infinitely many isometries with pairwise orthogonal ranges
([Cun77]). This C∗-algebra is pretty rigid in so far as it is a strongly self-absorbing
C∗-algebra ([TW07]): Any separable unital continuous C(X)-algebra A the fibres of
which are isomorphic to the same strongly self-absorbing C∗-algebra D is a trivial
C(X)-algebra provided the compact Hausdorff base space X has finite topological
dimension. Indeed, the strongly self-absorbing C∗-algebra D tensorially absorbs the
Jiang-Su algebra Z ([Win09]). Hence, this C∗-algebra D is K1-injective ([Rør04]) and
the C(X)-algebra A satisfies A ∼= D ⊗ C(X) ([DW08]).
But I. Hirshberg, M. Rørdam and W. Winter have built a non-trivial unital con-

tinuous C∗-bundle over the infinite dimensional compact product Π∞
n=0 S

2 such that
all its fibres are isomorphic to the strongly self-absorbing UHF algebra of type 2∞

([HRW07, Example 4.7]). More recently, M. Dădărlat has constructed in [Dăd09, §3]
for all pair (Γ0,Γ1) of countable abelian torsion groups a unital separable continuous
C(X)-algebra A such that

– the base space X is the compact Hilbert cube X = B∞ of infinite dimension,
– all the fibres Ax (x ∈ B∞) are isomorphic to the strongly self-absorbing Cuntz
C∗-algebra O2 generated by two isometries s1, s2 satisfying 1O2 = s1s

∗
1 + s2s

∗
2 ,

– Ki(A) ∼= C(Y0,Γi) for i = 0, 1 , where Y0 ⊂ [0, 1] is the canonical Cantor set.

These K-theoretical conditions imply that the C(B∞)-algebra A is not a trivial one.
But these arguments do not work anymore when the strongly self-absorbing algebra D
is the Cuntz algebra O∞ ([Cun77]), in so far as K0(O∞) = Z is a torsion free group.

We describe in this article the link between several notions of proper infiniteness
for C(X)-algebras which appeared during the recent years ([KR00],[BRR08], [CEI08],
[RR11]). We then study whether certain unital continuous C(X)-algebras with fibres
O∞, especially the Pimsner-Toeplitz algebra ([Pim95]) of Hilbert C(X)-modules with

2010 Mathematics Subject Classification. Primary: 46L80; Secondary: 46L06, 46L35.
Key words and phrases. C∗-algebra, Classification, Proper Infiniteness.

1



fibres of dimension greater than 2 and with compact base space X of infinite topological
dimension, are properly infinite C∗-algebras.

I especially thank E. Kirchberg and a referee for a few inspiring remarks.

2. A few notations

We present in this section the main notations which are used in this article. We
denote by N = {0, 1, 2, . . .} the set of positive integers and we denote by [S] the closed
linear span of a subset S in a Banach space.

Definition 2.1. ([Dix69], [Kas88], [Blan97]) Let X be a compact Hausdorff space and
let C(X) be the C∗-algebra of continuous function on X .

– A unital C(X)-algebra is a unital C∗-algebra A endowed with a unital morphism
of C∗-algebra from C(X) to the centre of A.

– For all closed subset F ⊂ X and all element a ∈ A, one denotes by a|F the
image of a in the quotient A|F := A/C0(X \ F ) · A. If x ∈ X is a point in X,
one calls fibre at x the quotient Ax := A|{x} and one write ax for a|{x}.

– The C(X)-algebra A is said to be continuous if the upper semicontinuous map
x ∈ X 7→ ‖ax‖ ∈ R+ is continuous for all a ∈ A.

Remarks 2.2. a) ([Cun81], [BRR08]) For all integer n ≥ 2, the C∗-algebra Tn := T (Cn)
is the universal unital C∗-algebra generated by n isometries s1, . . . , sn satisfying the
relation

s1s
∗
1 + . . .+ sns

∗
n ≤ 1 . (2.1)

b) A unital C∗-algebra A is said to be properly infinite if and only if one the following
equivalent conditions holds true ([Cun77], [Rør03, Proposition 2.1]):

– the C∗-algebra A contains two isometries with mutually orthogonal range pro-
jections, i.e. A unitally contains a copy of T2 ,

– the C∗-algebra A contains a unital copy of the simple Cuntz C∗-algebra O∞

generated by infinitely many isometries with pairwise orthogonal ranges.

c) If A is a C∗-algebra and E is a Hilbert A-module, one denotes by L(E) the set of
adjointable A-linear operators acting on E ([Kas88]).

3. Global proper infiniteness

Proposition 2.5 of [BRR08] and section 6 of [Blan13] entail the following stable proper
infiniteness for continuous C(X)-algebras with properly infinite fibres.

Proposition 3.1. Let X be a second countable perfect compact Hausdorff space,
i.e. without any isolated point, and let A be a separable unital continuous C(X)-
algebra with properly infinite fibres.

1) There exist:

(a) a finite integer n ≥ 1 ,

(b) a covering X =
o

F1 ∪ . . . ∪
o

Fn by the interiors of closed balls F1, . . . , Fn ,
2



(c) unital embeddings of C∗-algebra σk : O∞ →֒ A|Fk
(1 ≤ k ≤ n ).

2) The tensor product Mp(C)⊗ A is properly infinite for all large enough integer p.

Proof. 1) For all point x ∈ X , the semiprojectivity of the C∗-subalgebra O∞ →֒ Ax

([Blac04, Theorem 3.2]) entails that there are a closed neighbourhood F ⊂ X of the
point x and a unital embedding O∞⊗C(F ) →֒ A|F of C(F )-algebra. The compactness
of the topological space X enables to conclude.

2) Proposition 2.7 of [BRR08] entails that the C∗-algebra M2n−1(A) is properly infinite.
Proposition 2.1 of [Rør97] implies that Mp(A) for all integer p ≥ 2n−1. �

Remark 3.2. If X is a second countable compact Hausdorff space and A is a separable

unital continuous C(X)-algebra, then X̃ := X × [0, 1] is a perfect compact space,

Ã := A ⊗ C([0, 1]) is a unital continuous C(X̃)-algebra and every morphism of unital

C∗-algebra O∞ → Ã induces a unital ∗-homomorphism O∞ → A by composition with

the projection map Ã → A coming from the injection x ∈ X 7→ (x, 0) ∈ X̃ .

The proper infiniteness of the tensor product Mp(C) ⊗ A does not always imply
that the C∗-algebra A is properly infinite ([HR98]). Indeed, there exists a unital C∗-
algebra A which is not properly infinite, but such that the tensor product M2(C)⊗ A
is a properly infinite C∗-algebra ([Rør03, Proposition 4.5]). The following corollary
nevertheless holds true.

Corollary 3.3. Let 0, 1 denote the two canonical unital embeddings of the Cuntz
extension T2 in the full unital free product T2 ∗C T2 and let ũ ∈ U(T2 ∗C T2) be a K1-
trivial unitary satisfying 1(s1) = ũ · 0(s1) ([BRR08, Lemma 2.4]).

The following assertions are equivalent:

(a) The full unital free product T2 ∗C T2 is K1-injective.
(b) The unitary ũ belongs to the connected component U0(T2 ∗C T2) of 1T2∗CT2.
(c) Every separable unital continuous C(X)-algebra A with properly infinite fibres

is a properly infinite C∗-algebra.

Proof. (a)⇒(b) A unital C∗-algebra A is called K1-injective if and only if all K1-trivial
unitaries v ∈ U(A) are homotopic to the unit 1A in U(A) (see e.g. [Roh09]). Thus, (b)
is a special case of (a) since K1(T2 ∗C T2) = {1} (see e.g. [Blan10, Lemma 4.4]).

(b)⇒(c) Let A be a separable unital continuous C(X)-algebra with properly infinite

fibres. Take a finite covering X =
o

F1 ∪ . . .∪
o

Fn such that there exist unital embeddings
σk : T2 → A|Fk

for all 1 ≤ k ≤ n. Set Gk := F1 ∪ . . . ∪ Fk ⊂ X and let us construct by
induction isometries wk ∈ A|Gk

such that the two projections wkw
∗
k and 1|Gk

− wkw
∗
k

are properly infinite and full in the restriction A|Gk
:

– If k = 1, the isometry w1 := σ1(s1) has the requested properties.

– If k ∈ {1, . . . , n − 1} and the isometry wk ∈ A|Gk
is already constructed, then

Lemma 2.4 of [BRR08] implies that there exists a morphism of unital C∗-algebra πk :
3



T2 ∗C T2 → A|Gk∩Fk+1
satisfying

− πk(0(s1)) = wk |Gk∩Fk+1
,

− πk(1(s1)) = σk+1(s1)|Gk∩Fk+1
= πk(ũ) · wk|Gk∩Fk+1

.
(3.1)

If the unitary ũ belongs to the connected component U0(T2 ∗C T2), then πk(ũ) is homo-
topic to 1A|Gk∩Fk+1

= πk(1T2∗CT2) in U(A|Gk∩Fk+1
), so that πk(ũ) admits a unitary lifting

zk+1 in U0(A|Fk+1
) (see e.g. [LLR00, Lemma 2.1.7]). The only isometry wk+1 ∈ A|Gk+1

satisfying the two constraints

− wk+1|Gk
= wk ,

− wk+1|Fk+1
= (zk+1)

∗ · σk+1(s1)
(3.2)

verifies that the two projections wk+1w
∗
k+1 and 1|Gk+1

− wk+1w
∗
k+1 are properly infinite

and full in A|Gk+1
.

The proper infiniteness of the projection wnw
∗
n in A|Gn

= A implies that the unit
1A = w∗

nwn = w∗
n·wnw

∗
n·wn is also a properly infinite projection in A, i.e. the C∗-algebra

A is properly infinite.

(c)⇒(a) The C∗-algebra D :={f ∈ C([0, 1], T2∗CT2) ; f(0) ∈ 0(T2) and f(1)∈1(T2) } is
a unital continuous C([0, 1])-algebra the fibres of which are all properly infinite. Thus,
condition (c) implies that the C∗-algebra D is properly infinite, a statement which is
equivalent to the K1-injectivity of T2 ∗C T2 ([Blan10, Proposition 4.2]). �

4. A question of proper infiniteness

We describe in this section the link between the different notions of proper infiniteness
which have been introduced during the last decades.

Recall first the link between properly infinite C∗-algebras and properly infinite
Hilbert C∗-modules studied by K. T. Coward, G. Elliott and C. Ivanescu.

Proposition 4.1. ([CEI08]) Let A be a stable C∗-algebra and let a ∈ A+ be a positive
element. The following assertions are equivalent:

(a) a is properly infinite in A, i.e. a⊕ a - a in K ⊗ A ([KR00, definition 3.2]).
(b) There is an embedding of Hilbert A-module ℓ2(N)⊗ A →֒ [aA] ([CEI08]).

Proof. (a) ⇒ (b) If there exists an infinite sequence {di} in A such that a = d∗idi ≥∑
j∈N djd

∗
j for all i ∈ N, then [aA] ⊃

∑
j[djA]

∼= ℓ2(N)⊗A.

(b)⇒(a) One has embeddings of Hilbert A-modules [aA]⊕[aA] ⊂ ℓ2(N)⊗A ⊂ [aA]. �

The following holds for continuous deformations of properly infinite C∗-algebras.

Proposition 4.2. Let X be a second countable compact Hausdorff space, let H be
a separable Hilbert C(X)-module with non-zero fibres and let a ∈ K(H) be a strictly
positive compact contraction. Consider the following assertions:

(a) All the Hilbert spaces Hx are properly infinite, i.e. the operator ax is properly
infinite in the C∗-algebra K(H)x ∼= K(Hx) for all x ∈ X.

(b) H is a properly infinite Hilbert C(X)-module, i.e. a is properly infinite in K(H).
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(c) The multiplier C∗-algebra L(H) = M(K(H)) is properly infinite.

Then (c) ⇒ (b) ⇒ (a). But (a) 6⇒ (b) and (b) 6⇒ (c).

Proof. (c)⇒(b) If σ : T2 = C∗ < s1, s2 >→ L(H) is a unital ∗-homomorphism, then
the two elements d1 = σ(s1) · a

1/2 and d2 = σ(s2) · a
1/2 satisfy d∗idj = δi=j · a in K(H).

(b)⇒(a) The relations c∗i cj = δi=j · a between 3 operators c1, c2, a in a C(X)-algebra D
entails that (ci)

∗
x(cj)x = δi=j · ax in the quotient Dx = D/C0(X \ {x}) ·D for all x ∈ X .

(a) 6⇒(b) Let B3 = {(x1, x2, x3) ∈ R
3 ; x2

1+x2
2+x2

3 ≤ 1} be the unit ball of dimension 3,
let B+

3 , B
−
3 be the two open semi-disks B+

3 = {(x1, x2, x3) ∈ B3 ; x3 > −1
2
}, B−

3 =

{(x1, x2, x3) ∈ B3 ; x3 < 1
2
} and let S2 = {(x1, x2, x3) ∈ B3 ; x2

1 + x2
2 + x2

3 = 1} ⊂ B3

be the unit sphere of dimension 2.
The self-adjoint operator f ∈ C(B3)⊗M2(C) ∼= C(B3,M2(C)) given by

f(x1, x2, x3) =
1

2
·

(
1 + x3 x1 − ı x2

x1 + ı x2 1− x3

)
(4.1)

is a positive contraction since each self-adjoint matrix f(x1, x2, x3) ∈ M2(C) satisfies

f(x1, x2, x3)
2 = f(x1, x2, x3) +

1

4
(x2

1 + x2
2 + x2

3 − 1) · 1M2(C) , (4.2)

i.e. (f(x1, x2, x3)−
1
2
· 1M2(C))

2 =
x2
1+x2

2+x2
3

4
· 1M2(C) ≤ (1

2
· 1M2(C))

2 .

The nontrivial Hilbert C(B3)-module F := [f ·
(

C(B3)
C(B3)

)
] satisfies the two isomor-

phisms of Hilbert C(B3)-module:

− F · C0(B
+
3 )

∼= C0(B
+
3 )⊕ C0(B

+
3 \ S2 ∩B+

3 )
− F · C0(B

−
3 )

∼= C0(B
−
3 )⊕ C0(B

−
3 \ S2 ∩B−

3 ) .
(4.3)

The set B∞ := {x ∈ ℓ2(N) ;
∑

p |xp|
2 ≤ 1} is a metric compact space called the com-

plex Hilbert cube when equipped with the distance d((xp), (yp)) =
∑

p 2−p−2 |xp − yp|.

Denote by EDD the non-trivial Hilbert C(B∞)-module with fibres ℓ2(N) constructed
by J. Dixmier and A. Douady ([DD63, §17], [BK04a, Proposition 3.6]).

Finally, consider the product X := B∞ × B3 and the Hilbert C(X)-module

H := EDD ⊗ C(B3) ⊕ C(B∞)⊗ F . (4.4)

The two Hilbert C(X)-submodules H ·C0(B∞×B+
3 ) and H ·C0(B∞×B−

3 ) are properly
infinite, i.e. there exist embeddings of Hilbert C(X)-module ℓ2(N)⊗C0(B∞ ×B+

3 ) →֒
H ·C0(B∞×B+

3 ) and ℓ2(N)⊗C0(B∞×B−
3 ) →֒ H ·C0(B∞×B−

3 ). Hence, all the fibres of
the Hilbert C(X)-moduleH are properly infinite Hilbert spaces, i.e. ℓ2(N) →֒ Hx for all
point x in the compact spaceX = B∞×B+

3 ∪B∞×B−
3 ([CEI08]). But the Hilbert C(X)-

module H is not properly infinite i.e. ℓ2(N)⊗C(X) 6 →֒ H ([RR11, Example 9.11]). The
equality C(B3) = C0(B

+
3 ) + C0(B

−
3 ) only implies that ℓ2(N)⊗ C(X) →֒ H ⊕H .

(b) 6⇒(c) There exists a continuous field H̃ of Hilbert spaces over the compact space

Y:=B∞× (B3)
∞ such that H̃ = [a · H̃] for some properly infinite contraction a ∈ K(H̃)

and the C∗-algebra L(H̃) is not properly infinite. Indeed, let η ∈ ℓ∞(B∞, ℓ2(N) ⊕ C)
5



be the section x 7→ x ⊕
√

1− ‖x‖2, let F̈ be the closed Hilbert C(B∞)-module F̈ :=

[C(B∞, ℓ2(N)⊕ 0) + C(B∞) · η], let θη,η ∈ L(F̈ ) be the projection ζ 7→ η〈η, ζ〉 and let

EDD = (1− θη,η) · F̈ be the Hilbert C(B∞)-submodule built in [DD63]. Define also the

sequence of contractions f̃ = (f̃n) in ℓ∞
(
N,M2

(
C((B3)

∞)
))

by

xn = (xn,k) ∈ (B3)
∞ 7−→ f̃n(xn) := f(xn,n) ∈ M2(C) . (4.5)

The Hilbert C(Y )-module

H̃ := C(Y ) ⊕ EDD ⊗ C((B3)
∞) ⊕ C(B∞)⊗ [f̃ · ℓ2

(
N,

(
C((B3)∞)
C((B3)∞)

))
] (4.6)

has the desired properties ([RR11, Example 9.13]). �

Question 4.3. – What can be written when the operator a in Proposition 4.2 is a
projection in a unital continuous C(X)-algebra?
– Is the full unital free product T2 ∗C T2 a properly infinite C∗-algebra which is not
K1-injective? (see the equivalence (a)⇔(c) in Corollary 3.3)

5. The Pimsner-Toeplitz algebra of a Hilbert C(X)-module

We look in this section at the proper infiniteness of the unital continuous C(X)-
algebras with fibres O∞ corresponding to the Pimsner-Toeplitz C(X)-algebras of
Hilbert C(X)-modules with infinite dimension fibres.

Definition 5.1. ([Pim95]) Let X be a compact Hausdorff space and let E be a full
Hilbert C(X)-module, i.e. without any zero fibre.
a) The full Fock Hilbert C(X)-module F(E) of E is the direct sum

F(E) :=
⊕

m∈N

E(⊗C(X))m , (5.1)

where E(⊗C(X))m :=

{
C(X) if m = 0 ,
E ⊗C(X) . . .⊗C(X) E (m terms) if m ≥ 1 .

b) The Pimsner-Toeplitz C(X)-algebra T (E) of E is the unital subalgebra of the C(X)-
algebra L(F(E) ) of adjointable C(X)-linear operators acting on F(E) generated by the
creation operators ℓ(ζ) (ζ ∈ E), where

− ℓ(ζ) (f · 1̂C(X)) := f · ζ = ζ · f for f ∈ C(X) and
− ℓ(ζ) (ζ1 ⊗ . . .⊗ ζk) := ζ ⊗ ζ1 ⊗ . . .⊗ ζk for ζ1, . . . , ζk ∈ E if k ≥ 1 .

(5.2)

c) Let (C∗(Z),∆) be the abelian compact quantum group generated by a unitary u with
spectrum the unit circle and with coproduct ∆(u) = u ⊗ u. Then, there is a unique
coaction α of the Hopf C∗-algebra (C∗(Z),∆) on the Pimsner-Toeplitz C(X)-algebra
T (E) such that α

(
ℓ(ζ)

)
= ℓ(ζ)⊗ u for all ζ ∈ E, i.e.

α : T (E) → T (E)⊗ C∗(Z) = C(T, T (E))
ℓ(ζ) 7→ ℓ(ζ)⊗ u = (z 7→ ℓ(zζ) )

(5.3)
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The fixed point C(X)-subalgebra T (E)α = {a ∈ T (E) ; α(a) = a ⊗ 1} under this
coaction is the closed linear span

T (E)α =
[
C(X).1T (E) +

∑

k≥1

ℓ(E)k ·
(
ℓ(E)k

)∗]
. (5.4)

Besides, the projection P ∈ L(F(E)) onto the submodule E induces a quotient
morphism of C(X)-algebra a ∈ T (E)α 7→ q(a) := P ·a·P ∈ K(E)+C(X)·1L(E) ⊂ L(E).

Proposition 5.2. Let X be a second countable compact Hausdorff perfect space and
let E be a separable Hilbert C(X)-module with infinite dimensional fibres.

1) There exist a covering X =
o

F1 ∪ . . .∪
o

Fm by the interiors of closed subsets F1, . . . , Fm

andm norm 1 sections ζ1, . . . , ζm in E such that T (E) = C∗<T (E)α, ℓ(ζ1), . . . , ℓ(ζm)>,
(ℓ(ζk)ℓ(ζk)

∗)|Fk
and (1− ℓ(ζk)ℓ(ζk)

∗)|Fk
are properly infinite projections in T (E)|Fk

for

all index k ∈ {1, . . . , m} .

2) Set Gk := F1 ∪ . . . ∪ Fk for all integer k ∈ {1, . . . , m} and Ḡl := Gl ∩ Fl+1 for all
integer l ∈ {1, . . . , m − 1}. If ξ(l) ∈ E|Gl

is a section such that ‖ξ(l)y‖ = 1 for all
y ∈ Ḡl, then there is a unitary wl ∈ T (E)|Ḡl

such that

(a) wl · ℓ(ξ(l))|Ḡl
= ℓ(ζl+1)|Ḡl

,
(b) wl ⊕ 1|Ḡl

is homotopic to 1|Ḡl
⊕ 1|Ḡl

among the unitaries in M2(T (E)|Ḡl
) .

3) If for all K1-trivial unitary wk ∈ T (E)|Ḡk
there is a unitary zk+1 ∈ T (E)α|Fk+1

such
that (zk+1)|Ḡk

= wk (1 ≤ k ≤ m− 1), then there is a section ξ ∈ E satisfying

∀ x ∈ X , ‖ξx‖ = 1 , (5.5)

so that Lemma 6.1 of [Blan13] implies that the C∗-algebra T (E) is properly infinite.

Proof. 1) Given a point x ∈ X and a unit vector ζ ∈ Ex, let ξ1, ξ2, ξ3 be three norm 1
sections in E such that (ξ1)x = ζ and the matrix a = [〈ξi, ξj〉] ∈ M3(C(X)) satisfies
ax = 13 ∈ M3(C). Let F ⊂ X be a closed neighbourhood of x such that ‖ay−13‖ ≤ 1/2
for all y ∈ F . Define the sections ξ′1, ξ

′
2, ξ

′
3 in E|F by

(
(ξ′1)y
(ξ′2)y
(ξ′3)y

)
=

(
(ξ1)y
(ξ2)y
(ξ3)y

)
· (a∗y ay)

−1/2 for all y ∈ F . (5.6)

One has
[
〈ξ′i, ξ

′
j〉
]
= (a∗|F a|F )

−1/2 · (a∗|F a|F ) · (a
∗
|F a|F )

−1/2 = 1 in M3(C(F )). Hence,

ℓ(ξ′1)ℓ(ξ
′
1)

∗ and q := 1|F − ℓ(ξ′1)ℓ(ξ
′
1)

∗ are properly infinite projections in T (E)|F since

− 1|F − q = ℓ(ξ′1)ℓ(ξ
′
1)

∗ ≥ ℓ(ξ′1)ℓ(ξ
′
2)ℓ(ξ

′
2)

∗ℓ(ξ′1)
∗ + ℓ(ξ′1)ℓ(ξ

′
3)ℓ(ξ

′
3)

∗ℓ(ξ′1)
∗

− q ≥ ℓ(ξ′2)ℓ(ξ
′
2)

∗ + ℓ(ξ′3)ℓ(ξ
′
3)

∗ ≥ ℓ(ξ′2) q
2 ℓ(ξ′2)

∗ + ℓ(ξ′3) q
2 ℓ(ξ′3)

∗ ,
(5.7)

so that there exist unital ∗-homomorphisms from T2 to (1 − q) · T (E)|F · (1 − q) and
q · T (E)|F · q given by si 7→ ℓ(ξ′1)ℓ(ξ

′
1+i) ℓ(ξ

′
1)

∗ and si 7→ ℓ(ξ′1+i) q for i = 1, 2 .
The compactness of the space X enables to end the proof of this first assertion.

2) Let vl ∈ T (E)|Ḡl
be the partial isometry vl := ℓ(ζl+1)|Ḡl

· ℓ(ξ(l))∗
|Ḡl

. There exists by

Lemma 2.4 of [BRR08] a K1-trivial unitary wl in the properly infinite unital C∗-algebra
T (E)|Ḡl

which has the two requested properties (a) and (b).
7



3) One constructs inductively the restrictions ξ|Gk
in E|Gk

. Set ξ|G1 := ζ1 and assume
ξ|Gk

already constructed. As ℓ(ξ|Gk
)|Ḡk

= z∗k+1 · ℓ(ζk+1)|Ḡk
, the only extension ξ|Gk+1

∈
E|Gk+1

such that (ξ|Gk+1
)|Gk

= ξ|Gk
and (ξ|Gk+1

)|Fk+1
= q(zk+1)

∗ · (ζk+1)|Fk+1
satisfies

‖(ξ|Gk+1
)x‖ = 1 for all point x ∈ Gk+1. �

Remarks 5.3. a) The nontrivial separable Hilbert C(B∞)-module EDD constructed by
J. Dixmier and A. Douady ([DD63]) has infinite dimensional fibres and every section
ζ ∈ EDD satisfies ζx = 0 for at least one point x ∈ B∞. Thus, it cannot satisfy the
assumptions for the assertion 3) of Proposition 5.2. There are some k ∈ {1, . . . , m−1}
and a unitary ak+1 ∈ U0

(
M2(T (EDD)|Fk+1

)
)
such that

(ak+1)|Ḡk
= wk ⊕ 1|Ḡk

(5.8)

and either ak+1 6∈ T (EDD)|Fk+1
⊕ C(Fk+1) or α(ak+1) 6= ak+1 ⊗ 1.

b) If each of the K1-trivial unitaries wl introduced in assertion 2) of Proposition 5.2
satisfies α(wl) = wl ⊗ 1 and wl ∼h 1|Ḡl

in U(T E)α|Ḡl
), then there exist by [LLR00,

Lemma 2.1.7] m− 1 unitaries zl+1 ∈ T (E)α|Fl+1
such that (zl+1)|Ḡl

= wl, so that there
exists a section ξ ∈ E with ξx 6= 0 for all x ∈ X .

c) Let A be a separable unital continuous C(B∞)-algebra with fibres isomorphic to O2

such that Ki(A) ∼= C(Y0,Γi) for i = 0, 1, where (Γ0,Γ1) is a pair of countable abelian
torsion groups ([Dăd09, §3]). Let ϕ be a continuous field of faithful states on A. Then
the C(B∞)-algebra A′ ⊂ L(L2(A,ϕ)) generated by πϕ(A) and the algebra of compact
operators K(L2(A,ϕ)) is a continuous C(B∞)-algebra since both the ideal K(L2(A,ϕ))
and the quotient A ∼= A′/K(L2(A,ϕ)) are continuous (see e.g. [Blan09, Lemma 4.2]).
All the fibres of A′ are isomorphic to the Cuntz extension T2. But A′ is not a trivial
C(B∞)-algebra since K0(A

′) = C(Y0,Γ0)⊕ Z and K1(A
′) = C(Y0,Γ1) .

Question 5.4. The Pimsner-Toeplitz algebra T (EDD) is locally purely infinite ([BK04b,
Definition 1.3]) since all its simple quotients are isomorphic to the Cuntz algebra O∞

([BK04b, Proposition 5.1]). But is T (EDD) properly infinite?
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