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ABSTRACT

Astronomical optical interferometers (OI) sample the Fourier trans-
form of the intensity distribution of a source at the observation
wavelength. Because of rapid atmospheric perturbations, the phases
of the complex Fourier samples (visibilities) cannot be directly ex-
ploited, and instead linear relationships between the phases are used
(phase closures and differential phases). Consequently, specific
image reconstruction methods have been devised in the last few
decades. Modern polychromatic OI instruments are now paving the
way to multiwavelength imaging. This paper presents the derivation
of a spatio-spectral (“3D”) image reconstruction algorithm called
PAINTER (Polychromatic opticAl INTErferometric Reconstruction
software). The algorithm is able to solve large scale problems.
It relies on an iterative process, which alternates estimation of
polychromatic images and of complex visibilities. The complex
visibilities are not only estimated from squared moduli and closure
phases, but also from differential phases, which help to better con-
strain the polychromatic reconstruction. Simulations on synthetic
data illustrate the efficiency of the algorithm.

Index Terms— ADMM, irregular sampling, phases estimation,
proximal operator, optical interferometry

1. INTRODUCTION

The long-standing observation technique called Astronomical Inter-
ferometry (AI) has lead to major discoveries during the last century.
In optical wavelengths, the Very Large Telescope Interferometer in
Chile will host in Summer 2015 two next generation instruments. In
the radio domain, international efforts are being devoted to design
and build a million-receptor array to be operational in 2020’s, the
SKA (see https://www.skatelescope.org).

In AI, the spatial position of each pair of receivers (telescopes or
antennas) defines one of the Nb baselines of the telescope/antenna
array. In absence of any perturbation and at a given observation
wavelength, a pair of receivers with baseline b provides a complex
visibility defined by yλ = Î( b

λn
), which corresponds to a sample of

the Fourier spectrum of the intensity distribution of interest [1].
The sampling function is fully defined by the positions of the

interfering receivers and by the observation wavelength. Despite the
Earth rotation, which changes the geometric configuration of the ar-
ray w.r.t. the line of sight and thus provides additional samples for
observations acquired at different times, the sampling of the Fourier
space remains extremely sparse in practice. AI is thus a typical in-
stance of Compressed Sensing (CS), where the underdetermination
of the reconstruction problem (restore an intensity distribution from
few projections in the Fourier space) can be alleviated by exploiting
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the intrinsic sparsity of astronomical scenes. This fact was early rec-
ognized by Astronomers through the CLEAN algorithm [2], which
is a kind of Matching Pursuit assuming point sources (stars).

In the last ten years, research in the field of interferometric
image reconstruction (especially in radio) has been mainly driven
by advances in sparse representation models and in optimization
methods. Sparse representations using various redundant dictionar-
ies have been used, including synthesis [3] and analysis [4] priors,
and combination of both [5].

This paper focuses in Optical Interferometry (OI), for which the
problem is more difficult than in radio. First, OI does not allow ac-
curate measurements of the phases (ϕ) of the visibilities because of
rapid atmospheric perturbations. This excess of missing information
(w.r.t. the radio case, where phases are available) can be partially
recovered by means of linear relationships between the phases, the
phase closures. This technique combines triplets of phases measured
by different telescopes and produces a phase information which is
theoretically independent of the atmospheric turbulence. Second,
the number of telescopes in OI arrays is much less than the number
of antennas in radio arrays, whence a much sparser Fourier sampling
in optical.

In this framework, a classical and well-understood strategy for
image reconstruction is to adopt an inverse problem approach, where
missing information is mitigated, and hopefully compensated for, by
a priori knowledge [1]. In this case, the image reconstruction algo-
rithm aims at finding an intensity distribution that minimizes a cost
function composed of a data fidelity term, which is related to the
noise distribution, plus a regularization term and possibly other con-
straints, which are related to prior knowledge. Following this path,
various algorithms have blossomed in the last twenty years. Most
of the proposed algorithms rely on gradient descent methods (WIS-
ARD [6], BSMEM [7], MiRA [8], BBM [9], IRBis [10]). A different
approach is used in MACIM [11] and in its evolution SQUEEZE [12],
which rely on Markov Chain Monte Carlo (MCMC) method.

The case of polychromatic observations, which is under focus
here, has recently been made possible through the advent of mul-
tiwavelength interferometers. In this case, an astrophysical source
is described by an intensity distribution which is a function of the
wavelength, and the inverse problem aims at recovering the spatio–
spectral (3D) distribution of the source. This objective adds to the
intrinsic underdetermination of the OI image reconstruction problem
the computational complexity of solving a large scale inverse prob-
lem.

Polychromatic OI image reconstruction has recently become a
very active domain of research. A spatio-spectral image reconstruc-
tion algorithm named PAINTER (for Polychromatic opticAl INTEr-
ferometric Reconstruction software) with a publicly available source
code has been proposed in [13]. This algorithm relies on the visibili-
ties (γ2) as measures of the source power spectrum and on two types
of turbulence independent phases differences: the phase closures (ψ)
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at each wavelength and the differential phases [14], which are de-
fined as the phases relatively to a reference channel. Those consti-
tute additional turbulence-independent observables of the phases in
multiwavelength observation modes.

The objective of this communication is to present a number of
improvements brought to the prototype version of PAINTER algo-
rithm. These improvements i) regard the accuracy of the represen-
tation model, which involves sparsity in analysis through union of
bases and ii) make the algorithm highly scalable. The resulting
changes represent an in-depth modification of the original version.
A totally new version of the source code is also publicly available.

The paper is organized as follows: section 2 introduces the no-
tations and data model. In section 3 we present an detailed model of
phase relationships. Section 4 tackles the inverse problem approach.
Section 5 derives the resulting 3D reconstruction algorithm. Perfor-
mances of the algorithm are presented and analyzed in section 6.

2. DATA MODEL AND NOTATIONS

Let yλn be the complex visibility at the spatial frequency b/λn ,
and let yλn be the column vector collecting the set of complex vis-
ibilities corresponding to all available baselines at wavelength λn.
The complex visibilities can then be related in matrix form to the
parameters by the direct model [1, 15]

yλn = F λn xλn (1)

where F λn is obtained from a Non Uniform Discrete Fourier Trans-
form (NuDFT) [15] at the spatial frequencies imposed by the geom-
etry of the telescope array and by the observation wavelength λn.
Note that F λn is not an orthogonal matrix. The previous expres-
sion describes the complex visibilities by wavelength. A compact
notation including all wavelengths and baselines is

y = F x, F = ⊕Nλn=1 F
λn (2)

x =
[
xλ1

>
, . . . ,xλNλ

>]>
where F is a block diagonal matrix with each block referring to
the NuDFT at a particular wavelength. Vector y concatenates the
complex visibility vectors (yλn of Eq. 1) for all wavelengths into a
NbNλ × 1 visibility vector, with associated moduli γ and phases ϕ
given by

y =
[
yλ1
>
, . . . ,yλNλ

>]>
, γ = |y|, ϕ = ∠ y (3)

In order to analyze the chromatic variation of the visibilities yλn and
of the images xλn over the Nλ wavelengths, we also introduce the
Nb ×Nλ matrix Y and the N2

x ×Nλ matrixX defined as:

X = vec−1 x, Y = vec−1 y (4)

To clarify the use of a matrix notation note that the nth column of
X , denoted asXn, corresponds to the vectorization of the image at
the wavelength λn while the pth line describes the variation of pixel
p along the wavelengths (i.e., a spectrum).

3. MODEL FOR PHASE RELATIONSHIPS

In the presence of atmospheric turbulence, the beams received at
each telescope are affected by random and different optical paths,
which corrupt the phases measurements of the complex visibilities.

The “atmospheric corrupted” visibilities at a given wavelength λn
for the base ba,b involving telescopes a and b can be modeled as:

yλna,b = γλna,b exp
(

i [ϕλna,b + ηλna − ηλnb ]
)

(5)

where ϕλn· is the uncorrupted phases and ηλn· are perturbation terms
related to telescopes a and b. To overcome the difficulty of phase es-
timation, turbulence independent quantities need to be constructed.

3.0.1. Phase closures

The closure phase allows to get rid of atmospheric effects for triplets
of complex visibilities. In presence of turbulent measurements, the
closure phase (ψ) is defined as the phase of the bispectrum [7], i.e.,
the Fourier transform of the triple correlation. For three baselines
ba,b, bb,c and ba,c corresponding to a triplet (a, b, c) of telescopes,
the closure phase is defined as:

ψλna,b,c = ∠ yλna,by
λn
b,cyλna,c

∗
= ϕλna,b + ϕλnb,c − ϕ

λn
a,c = hλna,b,cϕ

λn (6)

whereϕλn is the vector containing all unperturbed phases for wave-
length λn, andhλna,b,c is a sparse row vector with only three non zeros
entries that take values {1, 1,−1}. IfNt denotes the number of tele-
scopes, it is possible to show that (Nt − 1)(Nt − 2)/2 independent
closure phases per wavelength are available [16].

3.0.2. Differential phases

For one baseline ba,b, differential phases (∆ϕ) measure the phase
evolution in wavelength with respect to a reference phase channel.
Because the phase turbulence terms on each telescope ηλk· and ηλref

·
are, to a first approximation, independent of the wavelength [17] and
the differential phases defined by

∆ϕ
λk,λref
a,b = ∠ yλka,b − ∠ yλref

a,b = ϕ
λk
a,b − ϕ

λref
a,b = h

λk,λref
a,b ϕ (7)

are essentially not affected by the atmospheric perturbation. The
reference channel can be chosen as one of the available channels. In
this case, Nλ − 1 independent differential phases are available per
baseline. Without loss of generality, we chose λ1 as the reference
channel and ∆ϕ

λk,λ1
a,b = h

λk,λ1
a,b ϕ, where hλk,λ1

a,b is a sparse row
vector with only two non zeros entries that take values {1,−1}.

3.0.3. Model for all phase relationships

The combination of the differential phases and phase closures into a
global model will improve the phase estimation: indeed, the phase
closures constrain the phases of a triplet of bases at a fixed wave-
length, while the differential phases constrain the phases dependence
in wavelength for a given base. To derive this model, we denote by

H∆ϕ =
(
−1(Nλ−1) ⊗ INb | I(Nλ−1)×Nb

)
the matrix concatenating all vectorshλk,λ1

a,b of Eq. 7 in its rows. Sim-
ilarly, Hψ = INλ ⊗H

λ1 is a block diagonal matrix that replicates
the matrixHλ1 concatenating the vectors hλna,b,c of Eq. 6 in its rows.
The information from the phase closures and differential phases can
then be collected in a global vector ξ:

ξ = H ϕ, H =

[
Hψ

H∆ϕ

]
, ξ =

[
ψ

∆ϕ

]
(8)

where ψ is the vector of all phase closures and ∆ϕ the vector of all
differential phases.



4. INVERSE PROBLEM APPROACH

According to Eq. 8 and notations defined in Eq. 3, a data model for
phases relationships and squared moduli can be written as:

ξ = H ϕ+ ηξ, ζ = γ2 + ηζ (9)

where ηξ and ηζ account for noise and modeling errors. Classical
assumptions on their distributions are considered here. The noise ηζ
is assumed to be jointly independent and Gaussian [6] and the noise
ηξ is assumed to be jointly independent and marginally Von Mises
distributed [8]. Writing the opposite logarithm of the joint likelihood
of ξ and ζ leads to

gdata(x) = αgζ(yγ) + β gξ(yφ) (10)

where α and β are relative weighting terms and

gζ(yγ) =
∑
n

1

ωn

(
ζn − γ

2
n

)2
, γ = |Fx| (11)

gξ(yφ) = −
∑
m

κm cos (hmϕ− ξm), ϕ = ∠ Fx (12)

Notations yγ and yφ are used above to underline that the first term
depends only on the modulus and the second only on the phase of
y, with y = Fx. The constant ωn is the variances of ζn. The
constant κm is related to the variance of ξm by var(ξm) = 1 −
I1(κm)/I0(κm) where Ij is the modified Bessel function of order
j. For a given var(ξm), κm is computed solving numerically this
equation.

As explained in the introduction, the problem is severely ill-
conditionned owing to the poor coverage of the Fourier space. This
requires tackling the image reconstruction as a regularized optimiza-
tion problem [15]. We will adopt here an objective function of the
form:

x← minimize
x∈Π

(
gdata(x) + f reg(x)

)
(13)

where the 3D image x can be constrained to have a spatially limited
support Π. Further constraints such as non negativity can be added
in f reg(x), which contains all the regularization terms. The support
constraint is not included in f reg(x) for technical reasons related to
the ADMM methodology described below.

4.1. Regularizations and constraints

OI images are by nature non negative and sometimes contain sources
that are spatially localized. However, specifying the properties of the
object parameters x only in terms of non negativity and spatial sup-
port is usually not a sufficient prior. It follows that the use of regular-
ization terms to emphasize some inherent a priori knowledge about
the image structure is necessary. Following the matrix notation for
the 3D object as defined in Eq. 4, PAINTER in its current form in-
cludes the ridge regularization, motivated by the poor conditioning
of the NuDFT operator and spatio/spectral regularizations. The sup-
port constraint is defined by the parameters space Π in Eq. 13 and
the non-negativity constraint by the regularization term 1R+(X).
Consequently the regularization function in Eq. 13 writes:

f reg(x) = 1R+(X) +
µε
2
‖X‖2F + µs‖H sX‖1 + µλ‖HλX>‖1

(14)
H s andHλ are the matrices associated respectively with the spatial
and spectral analysis regularizations [15]. H sX acts on the columns

of X , which are the images at each wavelength processed indepen-
dently. H s is a dictionary composed by the concatenation of the
first eight orthonormal Daubechies wavelet bases (Db1-Db8) and a
Haar wavelet basis. This type of regularization was recently used
in radioastronomy [4]. HλX> operates on the rows of X to con-
nect the pixels between wavelengths. In the present work Hλ im-
plements a Discrete Cosine Transform (DCT) but this can be easily
replaced by any union of orthogonal bases. Note that the related ma-
trix Hλ is also an orthogonal matrix. Finally, µε, µs and µλ are
hyper-parameters, which control the weights of the associated reg-
ularization terms. Note that the previous version of PAINTER [13]
was based on total variation regularizations. Besides the fact that this
edge preserving prior does not perfectly match the smooth nature of
the astrophysical sources, a major drawback of this choice comes
from the heavy computational cost related to the non-orthogonality
of the underlying image transform.

5. 3D RECONSTRUCTION ALGORITHM

Owing to the unavoidable non convexity of the problem as defined
by Eq. 13 (see e.g. in [6]), the vast majority of image reconstruc-
tion algorithms rely on a descent optimization principle. So does
PAINTER by using the flexibility of the Alternate Direction Meth-
ods of Multipliers (ADMM) algorithm, which was already used in
[15] to reconstruct stellar spectra of point sources from complex vis-
ibilities.

The optimization problem of Eq. 13 where gdata(x) is given by
Eqs. 10–12 and the regularization term f reg(x) is given by Eq. 14 is
equivalent to:

minimize
yγ ,yφ,y,x,P∈Π,T ,S,V

α gζ(yγ) + β gξ(yφ) +
µε
2
‖X‖2F+

· · ·1R+(P ) + µs‖T ‖1 + µλ‖V ‖1
s.t.: yγ = y, yφ = y, y = Fx, T = H sX, V = SHλ, S = X

Auxiliary variables related to the complex visibilities: y, yγ ,
yφ have proper Lagrange multipliers υy , υγ , υφ and share the same
augmented Lagrangian parameter ρy . The auxiliary variables intro-
duced by the regularization, P , T , V , S, have Lagrange multipliers
ΥP , ΥT , ΥV , ΥS and augmented Lagrangian parameters ρP , ρT
and ρS forV andS. The nth column of Υ· is denoted as υλn· . Min-
imisation of the augmented Lagrangian leads to solve alternatively
and iteratively the following steps:

I. Minimization w.r.t. yγ . Denoting ỹγ = y + ρ−1
y υγ

yγ+ = arg min
yγ

α gζ(yγ) +
1

2
ρy‖yγ − ỹγ‖22

This minimization is analytical. It comes down to find the real
root of a cubic function using Cardano’s method. See [13].

II. Minimization w.r.t. yφ. Denoting ỹφ = y + ρ−1
y υφ

yφ+ = arg min
yφ

β gξ(yφ) +
1

2
ρy‖yφ − ỹφ‖22

This minimization is numerically solved using the limited mem-
ory BFGS algorithm [18].

III. Minimization w.r.t. y.

y+ =
1

3
(ỹγ+ + ỹφ+ + Fx− ρ−1

y υy)

This consensus step leads to complex visibilities reconstruction.



IV. Minimization w.r.t. x. This step operates separately on each
wavelength:

CλnX+
n =F λn

H
(
ρyY

+
n − υλny

)
+H s>

(
ρTT n − υλnt

)
+

· · ·
(
ρP P n − υλnp

)
+
(
ρS Sn − υλns

)
WithCλn = ρyF

λnHF λn +η I, where η = µε+LρT +ρP +
ρS . The Identity matrix in Cλn comes from the orthogonality
of the L wavelet bases (L = 9 here) used for the spatial regular-
ization. Computation of the right side term is realised using an
inverse NuDFT and a inverse discrete wavelet transform. Cλn

can be inverted using the matrix inversion lemma:

Cλn−1
= η−1(I− F λn

H
[F λnF λn

H
+ ρ−1

y ηI]−1F λn )

The number of rows in F λn being small in OI (small number of
optical bases), the inner inverse matrix on the right side of the
equality can be precomputed. Final computation of X+

n is then
realized using a NuDFT and an inverse NuDFT.

V. Minimization w.r.t. P . Denoting P̃ n = X+
n + ρ−1

P υp
λn :

P+ = PR+ ◦ PΠ(P̃ )

where PC is the projection on the set C.

VI. Minimization w.r.t. T . Denoting T̃ n = H sX+
n + ρ−1

T υt
λn :

T+
n = Softµs(T̃ n)

where Softα(·) is the soft threshold operator. This step operates
separately on each wavelength.

VII. Minimization w.r.t. S.

2S+ = (V − ρ−1
S ΥV )Hλ +X+ + ρ−1

S ΥS

This step operates separately on each voxel. Note that in [13]
the right term of previous equality was multiplied by the inverse
of HλHλ> + I. The use of an orthogonal DCT reduces this
term to 2I.

VIII. Minimization w.r.t. V . Denoting Ṽ n = S+
nH

λ + ρ−1
V υv

λn :

V + = Softµλ(Ṽ )

This step operates separately on each voxel.
IX. The Lagrange multipliers are updated in the standard way, [13].

A first acceleration of the proposed algorithm w.r.t. [13] relies on the
use of orthogonal analysis dictionaries as detailed in the steps IV.
and VII. The bottleneck of [13] was step IV. The computational time
(matrix–vector multiplication in step IV.) is reduced from O

(
N4
x

)
to O

(
4N2

x log(Nx) +Nb(2 +Nb)
)

in the current version.
Non-equidistant Fast Fourier Transform (NFFT, http://www.

nfft.org) are used to efficiently compute the NuDFT and inverse
NuDFT. Moreover, to take advantage of the possibility to parallelize
the steps IV., VI. and VIII. w.r.t. the wavelengths or the voxels, the
PAINTER algorithm has been totally reimplemented in Julia1. This
implementation relies on OptimPack2 for the limited memory BFGS
algorithm of step II., on the NFFT package3 and on the discrete
wavelet transform package4. Optimisation in step II. is currently the
bottleneck of the algorithm. The sources are publicly available at
http://www-n.oca.eu/aferrari/painter/.

1http://julialang.org
2https://github.com/emmt/OptimPack.jl
3https://github.com/tknopp/NFFT.jl
4https://github.com/JuliaDSP/Wavelets.jl

6. SIMULATIONS

This section presents simulation results obtained with realistic noisy
synthetic data. The standard deviation (s.d.) of the noise for the
phases is σϕ = 1 rd/SNR (in radians) and the s.d. of the noise for
the amplitudes is σγ = γ/SNR. SNR is set to 30 dB in both cases.
The considered instrumental configuration is that of the 2004 Inter-
national Beauty Contest in Optical Interferometry [19]. The data are
acquired in 13 acquisition epochs and in 8 equispaced wavelength
channels in the range 1.47 µm − 1.56 µm. The resulting Fourier
coverage, including the Earth rotation effect, is shown in Fig. 1.
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Fig. 1. Spatial frequencies coverage
The considered sources consist in two resolved stars for which

the diameter and the brightness distribution vary in wavelength (see
the left column of Fig. 2). To initialize PAINTER we used for the
Nλ images the same image composed of a centered Dirac delta func-
tion. The size of the reconstructed image at each wavelength is
128× 128 pixels.The algorithm was stopped after 1000 iterations.

The estimated objects are shown in the right column of Fig 2,
which shows that the shape and the diameter evolution of the sources
are clearly well reconstructed. The relative mean square error of
the reconstructed image is 7dB with [13] and 3.4dB with the pro-
posed algorithm. The variation of a source’s integrated brightness
as a function of wavelength is an interesting information per se and
was thus also investigated (Fig. 3). The integrated brightness inside
two disks (of diameters independent of the wavelength and equal
to the maximum diameter of each estimated source) are shown as a
function of the wavelength, both for the originals and reconstructed
sources. Again we find a good match, despite the sparse Fourier
coverage.

These results prove the efficiency of the adopted strategy, which
allies redundant dictionaries, algorithmic acceleration and parallel
implementation. This opens the possibility of providing accurate 3D
restoration for large scale problems, involving both high spatial and
spectral resolutions.

The authors thank M. Vannier, R. Petrov and F. Millour for fruit-
ful discussion about the use of the differential phase and R. Flamary
for the ADMM implementation.
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