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COMPUTATION OF SAFETY REGIONS FOR DRIVER
ASSISTANCE SYSTEMS BY USING A HAMILTON-JACOBI

APPROACH

ILARIA XAUSA, ROBERT BAIER, OLIVIER BOKANOWSKI,
AND MATTHIAS GERDTS

Abstract. We consider the problem of computing safety regions, mod-
elled as backward reachable sets, for a car collision avoidance model with
time-dependant obstacles. The Hamilton-Jacobi-Bellman framework is
used, following the approach of Bokanowski and Zidani (Proceeding
IFAC 2011, Vol. 18, Part 1, pp. 2589–2593). Furthermore several prac-
tical issues for specific obstacle avoidance problems are answered in this
work. Different scenarios are then studied and computed. Comparison
with a more direct optimal control approach is also done in the case
of fixed obstacles. Computations involve solving nonlinear Partial Dif-
ferential Equations up to five space dimensions plus time and for non
smooth data, and an efficient solver is used to this end.

Keywords: safety avoidance, collision avoidance, Hamilton-Jacobi equations,
backward reachable sets, level set approach, Partial Differential Equations, high
dimension

1. Motivation

The paper investigates optimal control approaches for the detection and
indication of potential collisions in car motions. The aim is to identify and
to compute safety regions for the car by means of a reachable set analysis
for its underlying dynamics.

As first step, we need to define the optimal control problem obtained by
modeling the motion of the car (described by ODEs and PDEs) and the
environment where it lies (scenario set by state constraints and boundary
constraints). A precise model (as the one in [12]) includes a pretty large
number of states and highly non-linear differential equations. On the other
hand models with less states and simpler equations (as the 4-dimensional
model presented here) are easier to handle numerically. This is the rea-
son why it is necessary to find a good compromise for the complexity of
the model between affinity to the real behavior of the car and CPU times
to compute a solution. Afterwards, once an obstacle has been detected by
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suitable sensors (e.g. radar, lidar), the following approaches can be used to
decide in the model whether a collision is going to happen or not. Firstly, we
can compute the minimal time optimal trajectory to reach the safety target
area avoiding the obstacles. Secondly, we look for the set of all initial point
from which is possible to have an admissible solution. Both approaches are
implemented for a software solving HJB equations [18], considering several
car models and scenarios. The ROC-HJ Solver for solving Hamilton-Jacobi
Bellman equations can be used for reachable sets computations and opti-
mal trajectory reconstruction. Moreover we compare such simulations with
the results obtained with a software using direct methods [13]. The pack-
age OCPID-DAE1 with a Fortran 90 interface is designed for the numerical
solution of optimal control problems and parameter identification problems.

The plan of the paper is the following. In section 2, we consider the
4-dimensional point mass model for a car and describe the problem of the
backward reachable set computation under different type of state constraints.
In section 3, the HJB approach is briefly recalled in our setting. In section
4, a general (and simple) way to construct explicit level set functions asso-
ciated to state contrains is introduced. Section 5 contains several numerical
examples for collision avoidance scenarios, showing the relevance of our ap-
proach. Finally a conclusion is made in Section 6, where we also outline
some ongoing works using the HJB approach for collision avoidance.

2. Problem Setting and Modelling

2.1. Presentation of the problem. The main tasks in collision avoidance
are to reliably indicate future collisions and – if possible – to provide escape
trajectories if such exist. In particular once an obstacle has been detected
by suitable sensors (e.g. radar, lidar), we want to be able to decide whether
a collision is going to happen or not. The technique presented here is based
on the computation of the backward reachable set, which is the set of initial
points from which the car can avoid an obstacle and reach a safety target Ω
within a given time t ≥ 0.

Let U be a nonempty compact subset of Rm with m ≥ 1. Let n ≥ 1 and
f : Rn × U → Rn be Lipschitz continuous with respect to (z, u). Let

U := {u : [0,∞)→ U, u measurable}

be the set of control policies. Given an initial state z0 ∈ Rn, we denote by
zuz0 the absolutely continuous solution of the following dynamical system

ż(s) = f(z(s), u(s)) for a.e. s ≥ 0, (1)
z(0) = z0. (2)

Let Ω and (Ks)s≥0 be nonempty closed sets of Rn. The backward reachable
set reaching the target Ω within time t associated to the dynamics f is defined



COMPUTATION OF SAFETY REGIONS FOR DRIVER ASSISTANCE SYSTEMS 3

ψ

V

~v

x

y

(x, y)

Figure 1. Vehicle and obstacles

as:

Rft :=

{
z0 ∈ Rn | ∃τ ∈ [0, t], ∃u ∈ L∞([0,∞), U) : zuz0(τ) ∈ Ω

and zuz0(s) ∈ Ks for s ∈ [0, τ ]

}
2.2. The 4-dimensional point mass model. The point mass model is a
simplified four-dimensional state model for the car, where the controls are
the acceleration and the steering angle velocity.

The center of gravity of the car is identified with its coordinates (x(t), y(t)),
v(t) denotes the module of the velocity of the car and ψ(t) is the steering
angle, see Fig. 1. The equations of motion are then given by

x′ = v cos(ψ) (3a)
y′ = v sin(ψ) (3b)
ψ′ = w (3c)
v′ = a (3d)

where a(t) ∈ [amin, amax] is the control for acceleration (if a(t) > 0) and/or
braking (if a(t) < 0), and w(t) is steering angle velocity, such that |w(t)| ≤
wmax. A description and an application of a more complete 7-dimensional
model to two scenarios for collision avoidance on a straight road can be found
in [19].

2.3. Level set functions for target and state constraints. The target
set Ω will represent the safety area. In our examples we will take a region
in the form of

Ω =

{
z = (x, y, ψ, v) ∈ R4 | x ≥ xtarget, y ≥ ytarget, |ψ| ≤ ε

}
(4)

for a small threshold ε > 0.
An important tool that will be used in this paper is the notion of level

set functions associated to a given set. For the target constraint Ω, we will
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associate a Lipschitz continuous function ϕ : Rn → R (here with n = 4),
such that

z ∈ Ω ⇐⇒ ϕ(z) ≤ 0.

Indeed there always exists such a function, since one can use the signed
distance to Ω (ϕ(z) = d(z,Ω) if z /∈ Ω, and ϕ(z) = −d(z,Rn\Ω) if z ∈ Ω).
But it is in general easy to construct simple level set functions. For instance,
in the case of (4), we can consider:

ϕ(z) := max

(
− (x− xtarget), −(y − ytarget), |ψ| − ε

)
.

Now for the case of the state constraints, different road geometries will be
considered, as well as different fixed and/or moving obstacles that the car
must avoid. In all cases, we will manage to model all state constraints by a
simple, explicit, level set function g.

In the particular case of fixed configurations, state constraints are of the
form z(s) ∈ K for all s ∈ [0, t] (for a given closed set K of Rn), and we will
construct a Lipschitz continuous function g : Rn → R such that

z ∈ K ⇐⇒ g(z) ≤ 0.

In the general case of moving obstacles, the state constraints are of the
form

z(s) ∈ Ks, ∀s ∈ [0, t],

where (Ks)s≥0 is a family of closed sets. Then we need to introduce a time-
dependent level set function (still denoted g) g : Rn ×R→ R, such that, for
any s ≥ 0,

z ∈ Ks ⇐⇒ g(z, s) ≤ 0.

The obstacles and corresponding level set functions will be more precisely
described and constructed in Section 4.

3. Hamilton-Jacobi-Bellman approach

The following assumptions (H1)-(H4) will be needed:
(H1) f : Rn×U → Rn is a continuous function and Lipschitz continuous in

z uniformly in u, i.e. ∃L ≥ 0,∀z1, z2, ∀u ∈ U : |f(z1, u)− f(z2, u)| ≤
L|z1 − z2|.

(H2) For all z ∈ Rn the velocity set f(z, U) is convex.
(H3) Ω is a nonempty closed set of Rn. Let ϕ : Rn → R be Lipschitz

continuous and a level set function for the target, i.e.

ϕ(z) ≤ 0 ⇔ z ∈ Ω.

(H4) (Ks)s∈[0,T ] are a family of subsets of Rn such that there exists a
Lipschitz continuous level set function g : Rn × R→ R with

g(z, s) ≤ 0 ⇔ z ∈ Ks for all s ∈ [0, T ], z ∈ Rn.
We now focus on backward reachable sets associated to a dynamics f and

how to compute such reachable sets.
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Definition 3.1. The backward reachable sets reaching the target Ω at times
τ ≤ t for the dynamics f with time-dependent sets (Ks) for the state con-
straints is defined by

Rft :=

{
z0 ∈ Rn | ∃τ ∈ [0, t], ∃u ∈ U : zuz0(τ) ∈ Ω

and zuz0(s) ∈ Ks for all s ∈ [0, τ ]

}
. (5)

Remark 3.1. Let the capture bassin be defined by

CapfΩ,(Ks)(t) :=

{
z0 ∈ Rn | ∃u ∈ U , zuz0(t) ∈ Ω

and zuz0(s) ∈ Ks for all s ∈ [0, t]

}
(6)

(following in particular [1, Subsec. 1.2.1.2]). When there is no time depen-
dancy, (Ks) = K, it is known that the set (5) is a capture basin:

Rft ≡ Cap
f̃
Ω,K(t)

associated with the dynamics f̃(z0, (u, λ)) := λf(z0, u) for (u, λ) ∈ Ũ = U ×
[0, 1] (see for instance [16]). Here, a new virtual control λ(·) with λ(s) ∈ [0, 1]
is introduced.

Now let the value function v be defined by

v(z0, t) := inf
u∈U

max

(
ϕ(zuz0(t)), max

s∈[0,t]
g(zuz0(s))

)
,

where we simply denote g(z, s) ≡ g(z) in the case Ks ≡ K. Such value
function involving a supremum cost have been studied by Barron and Ishii
in [5]. Then the function v is a level set function for Capf̃Ω,K(t) in the sense
that the following holds (see [6])

Capf̃Ω,K(t) = {z0 ∈ Rn | v(z0, t) ≤ 0}. (7)

In particular assumptions (H3) and (H4) are essential for (7) to hold. Fur-
thermore, v is the unique continuous viscosity solution (in the sense of [4])
of the following Hamilton-Jacobi (HJ) equation

min
(
∂tv +H(z,∇zv), v − g(z)

)
= 0, t > 0, z ∈ Rn, (8a)

v(z, 0) = max(ϕ(z), g(z)), z ∈ Rn, (8b)

where
H(z, p) := max

u∈U
(−f(z, u) · p), p ∈ Rm,

is the Hamiltonian.
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For the computation of backward reachable sets with time dependent state
constraints, we will follow the approach of [7]. We consider the new state
variable ξ := (z, s) and the "augmented" dynamics with values in R5:

F (ξ, u) :=

(
f(z, u)

1

)
. (9)

Let also be ξ0 := (z0, t0) and trajectories ξuξ0 associated to F , fulfilling

ξ̇(s) = F (ξ(s), u(s)) and ξ(0) = ξ0.

For a fixed T > 0, let

Ω̃ :=
⋃

s∈[0,T ]

Ω× {s} ≡ Ω× [0, T ] (10)

and

K̃ :=
⋃

s∈[0,T ]

Ks × {s}. (11)

Then it holds:

Proposition 3.2. For all t ≥ 0, we have:

∀s ∈ [0, t], z0 ∈ CapfΩ,(Ks)(t) ⇐⇒ (z0, 0) ∈ CapF
Ω̃,K̃(t).

We extend the definition of ϕ by ϕ(z, s) := ϕ(z) so that for any ξ0 ∈ Rn×R
and τ ≥ 0 we can associate a value w as follows:

w(ξ0, τ) := inf
u∈U

max

(
ϕ(ξuξ0(τ)), max

s∈[0,τ ]
g(ξuξ0(s))

)
Then, one can verify that w is Lipschitz continuous and the following theorem
holds:

Theorem 3.3. Assume (H1)-(H4).
(i) For every τ ≥ 0 we have:

CapfΩ,(Ks)(τ) = {z ∈ Rn, w((z, 0), τ) ≤ 0} .

(ii) w is the unique continuous viscosity solution of

min(∂τw +H((z, t), (∇zw, ∂tw)), w((z, t), τ)− g(z)) = 0,

τ > 0, (z, t) ∈ Rn+1 (12a)
w((z, t), 0) = max(ϕ(z), g(z, t)), (z, t) ∈ Rn+1. (12b)

where for any ξ = (z, t) and (pz, pt) ∈ Rn × R:

H((z, t), (pz, pt)) := max
u∈U

(−f(z, u) · pz − pt).

Once the backward reachable set is characterized by a viscosity solution
of (12), it is possible to use a PDE solver to find the solution on a grid.
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Minimal time function and optimal trajectory reconstruction. In
the case of fixed state constraints (i.e. Ks ≡ K), the minimal time function,
denoted by T , is defined by:

T (z0) := inf{t ∈ [0, T ] | ∃u ∈ U : zuz0(t) ∈ Ω and zuz0(s) ∈ K for all s ∈ [0, t]},
and if no such time t exists then we set T (z0) = ∞. It is easy to see that
the function satisfies

T (z0) = inf{t ∈ [0, T ], v(z0, t) ≤ 0}.
Notice that T can be discontinuous even though v is always Lipschitz con-
tinuous. No controllability assumptions are used in the present approach.

The optimal trajectory reconstruction is then obtained by minimizing
the minimal time function along possible trajectories (see for instance Fal-
cone [9]). More precisely, assume that the starting point is z0 and that we
aim to reach zn := zu(tn) ∈ Ω at some future time tn > 0. This is equivalent
to require T (zn) = 0. For a given small threshold η > 0, for a given control
discretization of the set U , say (uk)k=1,...,Nu ⊂ U , and tn := n∆t for a given
time step ∆t > 0, we consider the following iterative procedure:

while n < N and T (zn) ≥ η do:
Find k∗ := argmink=1,...,Nu

T
(
z̄ukzn (∆t)

)
Set zn+1 := z̄uk∗zn (∆t)

n := n+ 1

where z̄ukzn (h) denote a one-step second-order Runge-Kutta approximation of
the trajectory with fixed control uk on [tn, tn+1]. The Heun scheme with
piecewise constant selections uses the iteration:

z̄ukzn (h) := zn +
h

2
(f(zn, uk) + f(zn + hf(zn, uk), uk)).

It is also possible to do smaller time steps between [tn, tn + ∆t] in order
to improve the precision for a given control uk. Nevertheless, numerical
observations are showing that the approximation is in general more sensitive
to the control discretization (uk)k=1,...,Nu of the set U .

In the time-dependent case this minimal time function can be defined in
a similar way from the value w (we refer to [7] for details), and the opti-
mal trajectory reconstruction follows the same lines with the "augmented"
dynamics (9).

4. Level set functions for different road configurations

4.1. Road configurations. Let us first describe different simple road ge-
ometries depicted in Fig. 2 that will be used in the next numerical section.
The road will be denoted Kr, a subset of R2.
• A straight road with constant width:

Kr =

{
(x, y) ∈ R2 | ydown ≤ y ≤ yup

}
, (13)
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Figure 2. Different road geometries: straight (top-left),
varying width (top-right), curved (bottom-left), crossing
(bottom-right).

with ydown = −3.5 and yup = 3.5 (values are typically in meters). A level
set function associated to Kr can be given by

g(x, y) := max

(
− (y − ydown), −(yup − y)

)
. (14)

• A straight road with varying widths, modeled as:

Kr :=

{
(x, y) ∈ R2 | ydown(x) ≤ y ≤ yup

}
, (15)

where

ydown(x) =

{
ydown1 if x ≤ x̄,
ydown2 if x > x̄.

(16)

yup, ydown1 , ydown2 , x̄ constants. It would be natural to define the level set
function of (15) as in (14) where instead of ydown we use the function ydown(x)
defined in (16). However, (16) leads to a discontinuous function g, which
is not convenient for our purposes. In this particular case, the following
definition is better suited because it is Lipschitz continuous in (x, y):

g(x, y) = max

(
min

(
− (y − ydown1),−(x− x̄)

)
,

−(y − ydown2), (y − yup)
)
. (17)
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• The circular curve shown in Figure 2, defined as

Kr = {(x, y), θmin ≤ Θ(x, y) ≤ θmax,
rdown ≤ ρ(x, y) ≤ rup} (18)

where θmin < θmax are two limiting angles for the road boundaries, (xr, yr)
denotes the center of the road circle, 0 < rup < rdown the radius of the
bigger and smaller circle respectively, ρ(x, y) :=

√
(x− xc)2 + (y − yc)2,

θ = Θ(x, y) ≡ arctan( y−ycx−xc ) + kx,yπ (with kx,y ∈ Z) denotes a continu-
ous representation on Kr such that x − xc = r cos(θ) and y − yc = r sin(θ).
The level set function is defined as

g(x, y) = max

(
ρ(x, y)− rup, −(ρ(x, y)− rdown),

Θ(x, y)− θmax, −(Θ(x, y)− θmin)

)
. (19)

Remark 4.1. A general and simple rule for constructing Lipschitz continuous
level set functions is the following. Assume that g1 (resp. g2) are Lipschitz
continuous level set functions for the set K1 (resp. K2), that is, gi(x) ≤ 0 ⇔
x ∈ Ki, for i = 1, 2. Then

max(g1(x), g2(x)) ≤ 0 ⇔ x ∈ K1 ∩ K2 (20)
min(g1(x), g2(x)) ≤ 0 ⇔ x ∈ K1 ∪ K2. (21)

Hence max(g1, g2) (resp. min(g1, g2)) is Lipschitz continuous and can be
used as a level set function for K1 ∩K2 (resp. K1 ∪K2). Then more complex
structures can be coded by combining (20) and (21). This is related to
well-known techniques in computational geometry (see e.g. [10, 15])

• A crossing with corner points (xi, yi)i=0,...,3: Let the upper right part be
defined as K0 := {x− x0 ≤ 0 or y − y0 ≤ 0}, and similarly, K1 := {y − y1 ≤
0 or −(x−x1) ≤ 0} (upper left part), K2 := {−(x−x2) ≤ 0, or −(y−y2) ≤ 0}
(lower left part), K3 := {−(y − y3) ≤ 0, or x− x3 ≤ 0} (lower right part).

Following remark (4.1), a level set function for K :=
⋂
i=0,...,3Ki can be

obtained by

g(x, y) = max
(

min(x− x0, y − y0), min(y − y1,−(x− x1)),

min(−(x− x2),−(y − y2)), min(−(y − y3), x− x3)
)
,

(22)

More general ways to construct level set functions for roads delimited by
polygonal lines could be obtained following similar ideas. Also let us mention
that the modeling of the road boundaries via piecewise cubic polynomials or
B-splines can be obtained as in [11].

4.2. Obstacles and corresponding level set functions. Next, k ≥ 1
additional obstacles are considered (obstacles which are different from the
road). There are modelled as disks or rectangles that the car has to avoid
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Figure 3. Vehicle and obstacles

(the car beeing itself modelled in the form of a disk or a rectangle), therefore
defining an other type of state constraint.

Let Xi = (xi, yi) denote the center of obstacle i, which may depend of the
time s. Let X = (x, y) denote the center of gravity of the vehicle.

Circular obstacles. We first consider the simpler case of circular obstacles
and vehicle, where the vehicle is approximated by a closed ball B(X, r)
for a given r > 0, and the obstacles also by balls B(Xi(s), ri) centered at
Xi(s) and with given fixed radius ri > 0. Then it holds B(Xi(s), ri) ∩
B(X, r) = ∅ ⇔ ‖X −Xi(s)‖2 > r + ri, hence there is no collision at time s
if B(X, r) ∩

⋃
1≤i≤k B(Xi(s), ri) = ∅, which amounts to saying

g(z, s) := min
1≤i≤k

−(‖X −Xi(s)‖2 − r − ri) < 0, (23)

where z = (x, y, ψ, v).

Rectangular obstacles. We now turn on the more realistic case of rectan-
gular obstacles and vehicle. We assume the vehicle V is a rectangle centered
at X and with half lengths ` = (`x, `y)

T . We assume that each obstacle Oi
is also a rectangle with center Xi = Xi(s) and half lengths `i = (`ix, `

i
y)
T .

Then the four corners (Xj)1≤j≤4 of the vehicle with state z = (x, y, ψ, v) can
be determined by

Xj = X +R−ψTj`, Tj =

(
(−1)j−1 0

0 (−1)b
j−1
2
c

)
, 1 ≤ j ≤ 4,

where bxc denotes the integer part of a real x, and Rψ denotes the rotation

matrix Rψ :=

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)
.

In the same way the four corners (Xi
j)1≤j≤4 of obstacle Oi (determined

by its center Xi(s) and orientation ψi(s)) are given by

Xi
j := Xi +R−ψi

Tj`
i, 1 ≤ j ≤ 4.

Furthermore, for a given X = (x, y)T , let

d`(X) := max(`x − |x|, `y − |y|).
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The function d` is a level set function for the avoidance of [−`x, `x] ×
[−`y, `y], since d`(X) < 0⇔ X /∈ [−`x, `x]× [−`y, `y]. For an arbitrary point
Y ∈ R2, the following function

dV (Y ) := d`(R−ψ(Y −X))

is a level set function for the avoidance of the vehicle, in the sense that
dV (Y ) < 0 ⇔ Y /∈ V .

In the same way,

dOi(Y ) := d`i(R−ψi
(Y −Xi))

satisfies dOi(Y ) < 0 ⇔ Y /∈ Oi.
Now we consider for z = (x, y, ψ, v) ∈ R4 and s ∈ R the following function:

g(z, s) := max
1≤i≤k

(
max
j=1,...,4

dV (z)(X
i
j(s)), max

j=1,...,4
dOi(s)(Xj(z))

)
. (24)

(if the obstacles positions do not depend of time we can define g(z) in the
same way without time dependancy). Here we have denoted V (z) and Xj(z)
for the vehicle position and corners to make clear the dependance in terms
of the state variable z, and Xi

j(s) to make clear the time dependancy of the
obstacle corners.

The function g will serve as a level set function for obstacle avoidance.
Presently, from the definition of the g function, it holds:

Lemma 4.1. The function g is Lipschitz continuous and

g(z, s) < 0 ⇔ ∀i, j : Xj(z) /∈ Oi(s) and ∀i, j : Xi
j(s) /∈ V (z) (25)

However, we aim to characterise the fact that the obstacle and vehicle are
disjoint, i.e.,

V (z(s))
⋂ ( ⋃

1≤i≤k
Oi(s)

)
= ∅. (26)

In general, the condition g(z(s), s) < 0 (that is, condition (25)) is not suffi-
cient to ensure that (26) holds, as shown by the counter-example illustrated
in Fig. 4.

In order to show that we will still be able to use condition (25) as a
sufficient condition, we need furthermore the following result.

Lemma 4.2. Assume at time s = t0 condition (26) holds. Assume at time
s = t1 > t0 condition (25) is fulfilled, but that (26) does not hold. Then

t1 − t0 > ∆t0 := d/v

where d is the minimal car and obstacle lengths

d := min(`x, `y, min
1≤i≤k

(min(`ix, `
i
y)))
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Figure 4. Example where vehicle and obstacle are not dis-
joint and g(z(s), s) < 0.

and v is an upper bound for all corner velocities (car and obstacles corners)
involved in the computations:

v := max( max
1≤j≤4

max
s∈[0,T ]

‖Ẋj(s)‖, max
1≤i≤k

max
1≤j≤4

max
s∈[0,T ]

‖Ẋi
j(s)‖). (27)

Proof. This can be proved by using simple geometrical arguments. In the
case a mixing occurs between the vehicle and one obstacle rectangle, then
either one corner point of the vehicle will have run through the obstacle
(therefore will have at least run a distance d with maximum speed v), or,
conversely, one corner point of the obstacle will have run through the vehicle.

�

Notice that an upper bound of the quantity (27) can be obtained on a
given computational bounded domain Ω and for given obstacle parameters.

From Lemma 4.1 and Lemma 4.2 we deduce

Proposition 4.3. Assume that ∆t ∈]0,∆t0[ where ∆t0 := d/v is defined
in Lemma 4.2. Let t1 = t0 + ∆t. If condition (26) holds at time t0, and if
g(z(t1), t1) < 0, then (26) also holds at time t1.

In particular, when using the HJ PDE solver with time steps tn = n∆t,
if an initial time t0 = 0 the vehicle and obstacle are disjoint (i.e, condition
(26) holds) and if 0 < ∆t < ∆t0, then it suffices to verify

g(z(tn), tn) < 0, n = 1, . . . , N,

(i.e., condition (25) at each successive time step) in order to guarantee that
there is no collision, i.e.:

V (z(tn))
⋂ ( ⋃

1≤i≤k
Oi(tn)

)
= ∅ ∀ n = 1, . . . , N .
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Figure 5. Car traffic scenario.

Moving obstacles. The possible motion for the obstacles that will be con-
sidered can either be a linear motion along a straight path:

xi(s) = xi0 + vix s (28a)
yi(s) = yi0 + viy s (28b)

ψi0 = arctan
viy
vix

(28c)

where (vix, viy) is the constant velocity of the obstacle i and θi0 is the initial
angle which is constant during the motion. Or it can be a motion along a
curved road,

xi(s) = a cos(θi0 + wis) + cx, (29a)
yi(s) = a sin(θi0 + wis) + cy, (29b)

ψi0(s) = (θi0 + wis)−
π

2
, (29c)

where ωi as a constant angular velocity.

5. Numerical Simulations

Here we plot some numerical simulations for different scenarios. Through-
out the paper, we use the 4-dimensional point mass model (3). In the present
work and for solving the HJ equation (12), we have used a second order ENO
finite difference scheme for partial differential equations of Hamilton-Jacobi
type. (More precisely an ENO2 spatial discretization method as described
in [17] is used, coupled with an Euler forward RK1 scheme in time). The
computations have been performed by using the ROC-HJ parallel solver [18].

5.1. Scenario 1: straight road with a fixed rectangular obstacle.
We first consider a straight road configuration with only one fixed obstacle,
as in Figure 5. The aim for the vehicle (represented by the red box) is to
minimize the time to reach the safety region (the target, delimited by a blue
line) and to avoid the obstacle (blue box). More precisely the parameters of
the problem are:

• Vehicle parameters and initial position:
`x = `y = 1 and z0 = (x0, y0, θ0, v0) = {−40.0, −1.5, 0.0, 35.0}
• Target: Ω = {(x, y), x ≥ 0, |y| ≤ 3.5}.
• Obstacle parameters: one fixed obstacle with lengths `1x = `1y = 1.0
centered at (x, y) = (−10.0, −1.5)
• Road parameters: as described in (13) (straight road)
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In Fig. 6 the reachable set is represented in blue and for different times. At
time t = 0 only the points which are in the safety region (and away from the
road boundary) are thus represented. Then the evolution of the (backward)
reachable set is represented for different times. At time ti, the region Rti
represent the set of starting points that can reach the target avoiding the
obstacle within less than ti seconds.

Next, in Fig. 7, we have represented the initial position of the vehicle as
well as the optimal trajectory reconstruction : the car (red rectangle) drives
from left to right in Fig. 7 and overtakes the fixed obstacle.

The white part in Fig. 7 corresponds to the area of starting points from
which the blue car cannot reach the target, whatever maneuver is undertaken
(mainly, its velocity is too high to avoid a collision with the blue car). Hence
the trajectories from these points are infeasible, and such starting points do
not belong to the backward reachable set.

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5

−5

0

5
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Figure 6. (Scenario 1) Reachable sets Rti for different
times (t1 = 0s, t2 = 0.5s, t3 = 1s, t4 = 1.5s)

Convergence test (scenario 1). For testing the stability of the HJ ap-
proach we first perform a convergence analysis with respect to mesh grid
refinement. We define a grid on the state space

(x, y, ψ, v) ∈ [−50, 10]× [−4, 4]× [−1, 1]× [5, 65],

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5

−5

0

5

Figure 7. (Scenario 1) Reachable set Rf2 , and optimal tra-
jectory represented with a black line.
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using a variable number of grid points in the (x, y) variables given by Nx =
35 · 2m and Ny = 4 · 2m, depending on an integer parameter m ∈ {1, . . . , 5}.
The number of grid points in the ψ and v variables are fixed and given by

Nψ = 20 and Nv = 6.

The errors are computed by using a reference value function vex obtained for
m = 5 (i.e., Nx = 1020, Ny = 128). Furthermore a CFL restriction of the
type ∆t/∆x ≤ const is used for the stability of the scheme. The results are
given in Table 1. For a given grid mesh (zi) and corresponding (constant)
step space ∆z, the local error at grid point zi is ei := v(zi)− vex(zi) and the
L∞, L1 and L2 errors are defined as follows:

eL∞ := max
i
|ei|, eL1 := ∆z

∑
i

|ei|, eL2 :=

(
∆z

∑
i

e2
i

)1/2

.

In Table 1, in order to evaluate numerically the order of convergence for a
given Lp norm, the estimate αm := log(e(m−1)/e(m))

log(2) is used for corresponding
values Nx = 35 · 2m and Ny = 4 · 2m. (i.e. the mesh steps Nx and Ny are
refined by 2 between two successive computations).

We observe a convergence of order roughly 2 even for the ENO2-RK1
scheme which in principle is only first order in time. This is due to the fact
that the dynamics is close to a linear one in this case (we have also tested a
similar RK2 scheme, second order in time, which gives similar convergence
results on this example).

Nx Ny eL∞ order eL1 order eL2 order CPU time (s.)

70 8 0.489 – 1.126 – 6.769 – 0.34
140 16 0.078 2.64 0.337 1.73 2.255 1.58 1.50
280 32 0.026 1.60 0.118 1.52 0.795 1.50 9.20
560 64 0.006 2.07 0.030 1.98 0.207 1.94 69.40
Table 1. (Scenario 1) Error table for varying (Nx, Ny) parameters.

Comparison with a direct method (scenario 1). In order to validate
the HJB approach for this scenario, we have also compared the results with
numerical simulations obtained by using a direct optimal control approach
for calculating the reachable set. The simulations are obtained by using the
OCPID-DAE1 Software [13], and following the approach described in [2, 3]
and [14, 19]. The resulting backward reachable set within time T = 2 is
plotted in Fig. 8 (upper graph) and is in good correspondence with the set
obtained by the HJ approach (Fig. 8, lower graph). Notice that we can only
expect that both computed reachable sets be equal up to some accuracy of
the order O(∆x) (with ∆x = 1 in this figure).

Remark 5.1. The advantage of using a direct optimal control approach (like
the OCPID-DAE1 Software) is that is able to deal with a greater number of
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states variables, which is necessary whenever we need a precise car-model,
close to the behavior of a real car. However the handling of state constraints
(in particular obstacles with non-smooth boundaries) sometimes leads to nu-
merical difficulties in order to get feasible trajectories.

On the other hand the PDE solver (like ROC-HJ for solving Hamilton-
Jacobi equations) is limited, in practice, by the number of state variables,
because it requires to solve a PDE with as many dimensions as the number
of state variables. However if the dimension can be processed on a given
architecture, then the HJ approach requests only the Lipschitz property of the
functions describing the dynamics and the state constraints. In particular,
there is no problem for dealing with non smooth obstacles such as rectangular
obstacles, crossing roads scenarios (more generally it could handle polygonal
roads or more complex polytopial obstacles).
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Figure 8. (Scenario 1) Comparison of reachable sets ob-
tained with a direct method (up) and the HJ approach (down)

Next, we consider more complex scenarios and different road geometries.

5.2. Scenario 2: straight road with varying width. We shall consider
a highway road with varying width : yup = 3.5 m

ydown = −3.5 m, if z1 ≤ −15.0
ydown = −7.0 m, if z1 > −15.0.

This is illustrated in Figs. (15) and (16) (the road is represented with green
lines). This can be interpreted as an additional exit lane appearing only for
a short part of the considered road.

Two obstacles (blue rectangles) are moving with linear motion (see (28))
in the same direction as the reference vehicle (red rectangle). All object
widths and lengths are here equal to 1 m. The set of blue points depicted in
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Figure 9 and Figure 10 is the projection on the (x, y) plane of the backward
reachable set with tf = 2 s, with steering angle ψ(t0) = 0 rad and velocity
v(t0) = 35 ms−1.

Scenario 2a: (see Fig. 9.) In this example an overtaking maneuver is
considered with one first (obstacle) car in front of the vehicle, moving forward
with velocity 10ms−1 and to be overtaken, and a second (obstacle) car next
to the vehicle also moving forward at velocity 20ms−1 and blocking the
maneuver. In Fig. 9, it is the position of the vehicle and of the obstacle cars
that is shown at initial time t0 = 0. (More precisely the parameters used
for this Figure are (Nx, Ny) = (70, 12) grid points; the trajectory (black
line) is starting from (x(0), y(0)) = (−40.0, −1.5), ψ(0) = 0 and v(0) =
35ms−1, a first obstacle car takes initial values (x(0), y(0)) = (−10, −1.5),
with ψ(0) = 0 and a constant velocity v(0) = 10ms−1; a second obstacle car
takes initial values (x(0), y(0)) = (−40, 1.5), with ψ(0) = 0 and a constant
velocity v(0) = 20ms−1.)

Figure 9. (Scenario 2a) Reachable set R2.

Scenario 2b: (see Fig. 10.) This example is similar to the previous one
excepted for the fact that the second (obstacle) car is next to the first one at
initial time. (More precisely, the second obstacle car now takes initial values
(x(0), y(0)) = (−10, 1.5), and other parameters are otherwise unchanged).

The backward reachable set is the set of initial points of R4 (according to
the model (3)) for which the collision can be avoided avoidable, and target
can be reached, within tf seconds (therefore so that is satisfied the final
conditions x(tf ) ≥ 0 and ψ(tf ) = 0). The set of blue points depicted in
Figure 10 and Figure 9 is the projection on the (x, y) plane of the backward
reachable set where the steering angle and the velocity are fixed to the values
ψ(t0) = 0 rad and v(t0) = 35 m/s (which correspond to the initial values of
the car when maneuver starts).

By starting in the blue region, the vehicle (in red) can avoid a collision.
On the other hand, starting from a point in the white area then the vehicle
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Figure 10. (Scenario 2b) The reachable set R2 is non con-
nected to the contrary to scenario 2a.

will either go outside the road or will collide with the obstacle, before beeing
able to reach the safety region.

In both figures we notice an extra part of the backward reachable set that
lay below second obstacle. This is due to the varying road width, and means
that the vehicle is forced to stay on the road.

In Figure (10) the backward reachable set is not connected, which means
that the red rectangle can avoid a collision by starting the maneuver either
leaving the obstacles behind (since it is faster no crash will occur) or from a
sufficiently high distance behind the two obstacles depending on its y position
(about 24m if the reference vehicle starts in the first lane and 14m if it starts
in the second lane).

The optimal trajectories (black line) seem to overlap the obstacles and
their trajectories before reaching the target set. This is because the blue
rectangles only show the initial position of the obstacles at time t0, and not
the evolution of their linear motion in the time interval [t0, tf ].

5.3. Scenario 3: curved road with fix or moving obstacles. The road
shape is now described by the set of equations (18), with a 7 m width and a
road radius of 50 m; the boundaries of the road as shown by green lines in
Figure 11.

Scenario 3a: Two fixed obstacles (blue rectangles with different width
and lenght parameters) have to be avoided by the vehicle (red square), see
Fig. 11, and the target x ≥ 0, ψ = 0 has to be reached, if possible, in the
time interval [0, 5] seconds. The first obstacle has dimensions 0.5 m and is
positioned in (−5, 48.25). The second obstacle has width 0.5 m and length
1 m, its position is (−25, 45).
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Figure 11. (Scenario 3a) Reachable setR5 for a curved road
with two fixed obstacles.

Scenario 3b: In this scenario depicted in Figure 12, the road parameters
are similar, there is now only one obstacle but that is furthermore moving
with a circular motion at speed of 5ms−1.
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Figure 12. (Scenario 3b) Reachable set Rf for a curved
road with one moving obstacle.

5.4. Scenario 4: crossing road and moving obstacles. The following
scenario involves a crossing. As in (22) the width of the four streets involving
a crossing can be different one from each other.

Here, the horizontal lower and upper road bounds and the vertical limits
are different, as illustrated in Fig.13. An object (blue rectangle) of dimen-
sions 1 m is traveling from left to right from position (−10.0,−2.0) meters
with speed 5ms−1 and deceleration 5ms−2. A second obstacle (length 1.0 m
and width 2.0 m) starting from position (−18, 4) is traveling from top to bot-
tom with speed 5ms−1 and deceleration 5ms−2. Within time tf = 2.5 s the
red square of dimensions 1.0m has to reach one of the three targets at the
end of each road: top (with steering angle π

2 rad), bottom (with steering
angle −π

2 rad) or right (with steering angle 0 rad). At this speed and for an
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initial position close to the center of the crossing, the red vehicle is able to
leave the crossing before the second obstacle enters the center of the cross-
ing. In this example the optimal trajectory (black line) will steer to avoid
the obstacle in the front and will also decelerate to avoid the second obstacle.

25 20 15 10 5 0

10
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0

5

10

Figure 13. (Scenario 4) Reachable set R2.5 for a crossing
with one fixed and one moving obstacle.

6. Conclusion

We have shown the feasibility of the HJB approach for computing safety
regions for some vehicle collision avoidance problems. A 4-dimensional "point
mass" model was used to describe the vehicle. The HJB approach turns out
to be very powerful especially for complicated road geometries and multiple
obstacles. A next and challenging step would be to analyze the present ap-
proach using more precise models, such as the so-called 7-dimensional "single
track" model. Ongoing works also concern the sensitivity of the secure region
with respect to small disturbances of the data.
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