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Abstract—Location is a growing problem due, for instance, to
the expansion of civil drones or intelligent vehicles. This expan-
sion was made possible through the development of microelec-
tromecanical systems (MEMS), cheap and miniaturized inertial
sensors. In this context, this article is devoted to the development
of a simulator which generates the sensor measurements, giving
a specific trajectory, in order to validate and compare pose
estimation algorithms. After validation of the simulator with real
movements and measurements, four pose estimation algorithms
from the literature are compared on different trajectories. All
these algorithms use magnetic field sensors in addition of the
classical inertial sensors. This comparison is led to select an
algorithm for a future application with multiple IMUs.

Index Terms—IMU; Modelling; Magnetometers; Pose Estima-
tion

I. INTRODUCTION

Dynamic location of objects is a predominant research topic
in many fields (robotics [1], intelligent vehicles [2], UAVs
[3], bio-logging [4], etc). A well-known method is the use of
satellite positioning systems (or Global Navigation Satellite
System (GNSS)), which directly provides the position of a
mobile using satellite transmitted signals. On the opposite, the
inertial method exploits proprioceptive sensors (accelerome-
ters and gyroscopes) and measures the position changes of the
considered mobile. This latter allows other applications where
satellite signals are not always available. The association of
proprioceptive sensors is called an Inertial Measurement Unit
(IMU). When levels of integrity and high availability are
required, an IMU and a GNSS device can be coupled, usually
using observer-based algorithms.

For the French-German Research Institute of Saint-Louis
(ISL), which conducts research in the field of science and
technology of weaponry, location is a key point in mobile
guidance [5]. For sensitive applications, the use of GNSS is
not possible because of blurring. In addition, some applications
are subject to high dynamics (a few thousand of g and several
hundreds of Hertz), making use of gyros impossible until now.
With the rapid development of the MEMS (Micro -Electro -
Mechanical Systems) technology, low cost sensors that can
withstand high dynamic loads are now common. To get rid of
the mobile model used in observers, MEMS rate gyroscopes
are now added to obtain a classical IMU augmented with
magnetometers. The idea is to develop estimation algorithms

which update the absolute magnetic measurements in the body
frame with the absolute knowledge of the Earth magnetic field.

This paper presents, in a first step, the modeling of a
magnetometer-augmented IMU. A Matlab simulator based on
the kinematic models of the sensors is proposed. To achieve
this modeling, different characteristics are taken into account:
the multiple reference frames (inertial frame, body frame, etc);
the placement of the IMU which can be different from the
center of the object; the modeling of the accelerometers, rate
gyroscopes and magnetometers which also takes into account
several sensor imperfections (bias, noise). Finally, this tool
is designed to provide sensor measurements, from an input
trajectory defined by the object orientation quaternion and its
spatial position (see figure 1). Afterwards, the validation of the
sensor model equations is presented. It consists in placing an
IMU in a 3-axes table which has been developed at ISL. The
absolute encoders of the electric engines are used to measure
the 3D motion of the table.

In a second step, the paper presents the performance eval-
uation of 4 GPS-free orientation observers. The compared
algorithms are all based on a magnetic sensor-augmented IMU.
The most common method for orientation estimation is the
well known Kalman Filter (KF) in its linear (LKF) or Extended
(EKF) form [6]. A Complementary Observer (CO) [7] and
a Gradient Descent Algorithm (GDA) [8] are also evaluated.
These observers are tested on different trajectories. To evaluate
these algorithms, the following points are observed: the preci-
sion, the execution time and the sensibility to accelerometric
perturbation.

The outline of the paper is as follows: section II de-
scribes the magnetometer-augmented IMU modelling, section
III shows the evaluation of the algorithms and section IV
concludes the paper.

II. MAGNETOMETER-AUGMENTED IMU MODELLING

A. Principle

The simulator’s aim is to analytically determine all the
sensor measurements from the IMU according to a measured
or an a priori known object trajectory. The principle of the
simulator is shown in figure 1. From a trajectory describing
the evolution of the spatial position [sBL]

L and the angular po-
sition (using the quaternion {qBL}L), the simulator determines
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Fig. 1. Simulator principle.

equations of the accelerations, the rotational speeds and the
magnetic measurements of the IMU sensors. Thus, the simu-
lator performs an inverse modeling of the object dynamics. Its
main purpose is the validation of motion estimation algorithms
by comparing the input trajectory to the estimated one. This
trajectory may correspond to a real or simulated movement to
test the estimation algorithms in the desired conditions.

B. Coordinate systems

There are numerous reference frames which are employed
in navigation ([9] and [10]). For the development of the
simulator, a quick description of each used reference frame
is given hereafter:
• The Earth frame (E) which is centered on the Earth, has

the same axes than the Inertial frame (I) at t = 0. Unlike
(I) which is fixed, (E) is following the Earth rotation
(constant speed ωEI). The Earth, Inertial and Local frames
are illustrated in figure 2.

• The Local frame (L) is fixed in (E). Its location is on
the surface of the Earth and its position is described by
2 angles: the latitude (λ ) and the longitude (l).

• The Body frame (B) is linked to the object orientation.
Its orientation with respect to (L) is given by the classical
Euler angles.

• The IMU frame (W) can be misaligned with the body
frame. However, (W) is fixed with respect to (B) and is
dependent of its location on the object.

Any axis of a frame is named by the lowercase of the frame
name and a subscipt giving its number such that the 3 vectors
of the frame (E) are then e1, e2 and e3 (see figure 2).

C. Sensor models

This section describes the models of the sensors considered
in the magnetometer-augmented IMU simulator. The sensor
modeling considers no measurement imperfections. Bias and
white noise are then added to these errorless variables. The
final objective of this research is to provide pose observers
taking into account the absolute magnetic reference data.
That is why, in this section, a particular interest will be put
on the magnetic field modeling and magnetometer measures
estimation. The other equations were already detailed in [11].

1) Magnetometers modeling: A 3 axes magnetometer mea-
sures the direction and the intensity of the magnetic field
around the sensor. If this magnetic field is not perturbed, it
corresponds to the Earth magnetic field. The magnetometer
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Fig. 2. Illustration of the different frames: the inertial frame (I), the earth
frame (E) and the local frame (L).

measurements are the projection of this magnetic field in the
frame (W):

[h]W = [T]WL [h]L , (1)

with [T]WL the transformation matrix from frame (L) to frame
(W). The Earth magnetic field is (in the Northern Hemisphere)
directed to the North magnetic Pole and the inside of the Earth.
The difference of position between the North magnetic and
geographic poles leads to a non-zero component on the l2 axis.
The knowledge of the reference value of the magnetic field is
then primordial for the heading correction of the different pose
estimators. An Earth magnetic field model, called the World
Magnetic Model [12], has been implemented in the simulator
to provide the reference unperturbed magnetic value at the
position of the object. This model allows also simulating any
movement between the 2 polar circles. The value of [h]L is
given by this model.

This model was obtained by the interpolation of multiples
measurement centers all on the Globe and is an empirical
model. This is why it is only valid for 5 years and is constantly
evolving. The implementation of this model also provides
the value of the reference everywhere on the surface of the
Earth. This allows simulations of trajectory everywhere but
also simulations of long drive.

2) Rate gyroscopes modeling: A rate gyroscope gives the
angular rate of the sensor with respect to the inertial frame
[13] expressed in the sensors frame (W). These measurements
can be determined from the quaternion and its derivative [14]:

{
q̇WI}I

=
1
2
{

qWI}I⊗
{

ω
WI}W

, (2)
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Fig. 3. Simulator test sketch with a real IMU.

with
{

qWI
}I the quaternion expressing the orientation of (W)

in (I),
{

q̇WI
}I its derivative with respect to time and

{
ωWI

}W

the pure quaternion formed from the rotational speed vector
of (W) with respect to (I). From (2), it is straightforward to
obtain

{
ωWI

}W.
3) Accelerometers modeling: An accelerometer measures

the specific force applied along its principle axis (in frame
W). Specific force is defined by the sum of all ungravitational
forces applied on the object divided by the object mass. It is
then the absolute acceleration of the object (aI

W) minus the
gravitational field, such that:

[ f ]W = [aI
W]W− [gf]

W. (3)

As a reminder, the gravitational field is expressed as [10]:

gf = g+ γe =−GM
sWE

‖sWE‖3 −ω
EI∧

(
ω

EI∧ sWE
)
, (4)

where sWE is the position of the sensors with respect to (E),
G is the gravitational constant and M is the mass of the Earth.

The objective is then to determine the expression of [ f ]W

from the evolution of the object position [sBL]
L which is an

input of the simulator. However, the sensors are not positioned
at the center of the object. Consequently, deriving the position
of the object will not lead to the acceleration of the IMU but
to the object one. After transforming the input position [sBL]

L

in frame (E), the equation of the total acceleration applied on
the IMU is given by1 [10]:

aI
W = aE

B +
dωBE

dt

∣∣∣∣
B
∧ sWB +ω

BE∧
(
ω

BE∧ sWB
)

+ω
EI∧

(
2
(
vE

B +ω
BE∧ sWB

)
+ω

EI∧ sWI

)
. (5)

Finally, the specific force can be obtained by subtracting (4)
and (5).

D. Validation

After implementing the latter equations in Matlab, a vali-
dation process is performed. For that, the sketch of figure 3 is
followed. A comparison between the simulated measurements
and the real ones is done. To achieve this, a 3D rotation table
from ISL was used (see figure 4). The IMU is fixed at a known
position and rotations are performed. The table encoders are
used to measure the Euler angles of the performed movement.
These encoders are known to provide the orientation with a
very good precision (< 0.1◦). Here, the mobile part of the table
is considered as the body, so only the orientation of the body
is evolving, the position of the center of the body is static.

b1

l3

B

IMU
W

y2

Fig. 4. Test bench: 3-axes table.
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Fig. 5. Measured angles during the validation test.

The performed movement is characterized by the Euler
angles illustrated in figure 5. This movement is divided in
2 parts. The first part, up to t = 100s, is composed of 3
pure rotations around each axis separately, the second part
of the movement is an arbitrary rotation around the 3 axes
simultaneously. The measurement comparisons of each type
of sensors are shown in figure 6, 7 and 8. It can be seen that
the simulated measurements are very close to the real ones.

The overall performance of the simulator is shown in
table I. The errors of the accelerometer measurements are
2.5% at maximum and the standard deviation is quite low,
characteristic of a little bias mistrimmed on the w3 axis. The
rate gyroscopes display a mean error below 0.2%, it represents
around 1◦/s. The magnetometers also show errors less than
3%.

1For the sake of clarity, it’s assumed that all variables are expressed in the
same coordinate system, the brackets [ ]X are then forsaken.
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Fig. 6. Comparison of the accelerometer measurements.
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Fig. 7. Comparison of the rate gyroscope measurements.
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Fig. 8. Comparison of the magnetometer measurements.

Sensors Component Error Std
f 1 0.91 0.95

Accelerometers f 2 1.03 0.15
f 3 2.22 0.11
ω1 0.15 0.82

Rate gyroscopes ω2 0.15 1.50
ω3 0.11 1.05
h1 2.67 2.54

Magnetometers h2 0.13 2.03
h3 1.18 2.10

TABLE I
ERRORS AND STANDARD DEVIATIONS OF THE ERRORS FROM THE

SIMULATION VALIDATION. ALL DATA ARE GIVEN IN PERCENTAGE OF THE
FULL SCALE MEASURED.

III. ALGORITHM EVALUATION

Now that the simulator is validated, it is possible to use it
to evaluate and compare different pose estimation algorithms.

A. Algorithm description

To estimate the position of an object thanks to inertial
sensors, multiples algorithms exist. Usually, these observers
are validated on private data using specific metrics as well as
test conditions. In this context, four algorithms will be quickly
described2 and tested in iso-conditions using the measurement
simulator.

A Complementary Observer (CO) [7], a Gradient Descent
Algorithm (GDA) [8], a classic Extended Kalman Filter (EKF)
[6] and a Linear Kalman Filter (LKF) [6] have been imple-
mented. All of them are using the measurements from the
3 types of sensors. Also, all are based on the quaternion
evolution equation (2). This equation can be rewritten in terms
of matrices and vectors instead of quaternions:

[
q̇WI]I = 1

2
[
ω

WI]W
×
[
qWI]I , (6)

where a matrix noted [r]× is extracted from a quaternion {r}
such that:

[r]× =


r0 −r1 −r2 −r3
r1 r0 r3 −r2
r2 −r3 r0 r1
r3 r2 −r1 r0

 . (7)

Another common point is the use of the accelerometer
and magnetometer measurements to correct the errors of the
gyroscopes like the biases or the random walk coming from
the integration of the gyroscopes noises.

In the following, ω will refer to the rotational speed
vector or quaternion, d to a known reference vector, s to
its measurement and q will be the quaternion expressing the
orientation of (W) with respect to (L) expressed in (L).

2For more information about each algorithm, please refer to the cited
papers.



1) Complementary Observer: Fourati et al. introduced the
Complementary Observer (CO) [7] in order to estimate the
motion of animals. It uses the motion kinematic model de-
scribed by equation (2). It is a two-layer filter architec-
ture: a Levenberg Marquardt algorithm (LMA) processes the
magnetometer and accelerometer measurements to produce
a quaternion. The LMA is employed to solve the Wahba
problem [15]. The quaternion from the LMA, noted qm, and
the one from the rate gyroscopes measurements, noted qω are
combined, through complementary filters, respectively a low
pass and a high pass filter, in the CO to obtain the output of
the filter (q):

q = F1qm +F2qω , (8)

with
F1 =

K
s+K

and F2 =
s

s+K
, (9)

with K the tunable matrix. Note also that F1 + F2 = 1. F1
filters the noise and reduces the effect of accelerations on
the attitude estimation process where F2 uses the precision
of the rate gyros in high frequency and removes the bias of
the sensors which is in the low frequency domain. The gain
K is computed through these algorithm. This approach is well
adapted to separate the high and low dynamics using this two
filters. However, its implementation needs the tuning of the
gain matrix K for which the authors do not give a specific
procedure.

2) Gradient Descent Algorithm: The second pose estimator
uses the Gradient Descent Algorithm (GDA). Madgwick et al.
introduced the GDA [8] in order to replace the traditional
EKF in every low cost IMU by a computationally more
efficient algorithm. It uses the acceleration and magnetic data
in an analytically derived and optimized GDA to compute the
direction of the gyroscope measurement error.

This optimization solution minimizes the function (10)
using the GDA of (11).

f (q,d,s) = q̃dq− s, (10)

q∇,t = qest,t −µ
∇ f
‖∇ f‖

, (11)

with
∇ f = J(q,d) f (q,d,s), (12)

with J the jacobian matrix of f with resprect to q and d.
After using the gravity and magnetic measurement to com-

pute q∇,t , the next step is the fusion between q∇,t and qω,t
coming from the integration of the rate gyroscope measure-
ments. To achieve this, the following equation is used:

qest,t = γtq∇,t +(1− γt)qω,t . (13)

In fine, after some simplifications, the equations of fusion
are:

qest,t = qest,t−1 + q̇est,t∆t, (14)

q̇est,t = q̇ω,t −β
∇ f
‖∇ f‖

, (15)

with β the divergence rate of qω,t . To select its value, the

paper suggests to use β =
√

3
4 ωmax, where ωmax defines the

maximum rotational speed of the device. As it is the only
parameter to tune, the algorithm is easy to use but the tuning
phase is not straightforward: if β is too important, some
oscillations are seen during static movements, if β is too low,
the algorithm is not able to follow the reference during high
rotational speed movement.

3) Extended Kalman Filter: A very common algorithm is
the Extended Kalman Filter as in [6]. The general EKF method
is derived from equation (2). The state vector contains the
quaternion elements q and in general is augmented with the
rate gyroscope bias b. The evolution equation of the EKF (in
continuous time) is then:[

q̇
ḃ

]
=

[
[ω−b]× 0

0 0

][
q
b

]
, (16)

where b is the vector of the rate gyroscope bias and ω is the
vector of the rate gyroscope measurement.

Usually, the measurements are the magnetic field and the
gravity projection in the body frame. The measurement equa-
tion for one reference vector s is:

s = q̃dq, (17)

which is nonlinear with respect to the state q. After lineariza-
tion, the measurement part of the evolution model is:

Y = J(X)X , (18)

with X the state vector, Y the measurement vector and J(X)
the Jacobian matrix obtained by linearizing (17) for the gravity
and the Earth magnetic fields.

4) Linear Kalman Filter: Chouckroun et al. introduced
the Linear Kalman Filter (LKF) [6] in order to get rid of
the linearization part in the EKF. The LKF is using the
same evolution model than the previously described EKF.
The difference lays in the measurement equation, where the
non-linearity appeared. The idea is to keep the linearity by
transforming (17):

qs = dq, (19)

in
qs−dq = 0, (20)

which can be expressed in terms of matrices and vectors.

Hq = 0, (21)

with H the new measurement matrix.

B. Evaluation conditions

To evaluate the algorithms, three trajectories are designed.
They are planed with a growing difficulty: the first one is a
slow rotation motion with no displacement, to verify that all
estimation algorithms work in ideal conditions. The orientation
evolution is illustrated in figure 9. The second trajectory
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is also an only rotational movement but with much higher
speed and bandwidth, allowing putting the algorithms under
more constraints (see figure 10). The third trajectory is a
translation-only motion to evaluate the effect of acceleration
on the orientation estimation. The evolution of the position is
illustrated in figure 11.

To simulate a real IMU, noises are added to the measure-
ments. The power of the noise is taken considering an IMU
datasheet [16]. Biases are supposed to be compensated through
the calibration process.

C. Results

After the use of the first trajectory to tune each parameters
of the different algorithms, all of them show errors lower than
0.03 on each quaternion component which represent less than
3◦ on each angles (see figure 12). The GDA displays a constant
bias of 1.4◦ on ψ . This is due to the fact that this algorithm
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is considering the magnetic and geographic North poles to be
at the same position.

The second trajectory allows testing the pose algorithms in
higher dynamics. Table II helps to synthesize the results. Even
if the mean errors are very low for each algorithm, the standard
deviations are not equivalent. The LKF is the most accurate,
closely followed by the EKF. The GDA is relatively close to
the reference but the CO is very far from the others.

The third trajectory shows the influence of acceleration on
the orientation estimation. The impacts of the acceleration on
the Euler angles are plotted in figure 13. It can be seen that
an acceleration, between 10s and 20s, on the first axis (l1)
leads to an error on θ , but an acceleration on the second axis

CO GDA EKF LKF

eq0
Mean -0.023 0.004 0.001 0.000
Std 0.351 0.183 0.061 0.048

eq1
Mean -0.002 0.004 0.002 0.001
Std 0.141 0.128 0.027 0.021

eq2
Mean 0.005 0.003 0.003 0.000
Std 0.213 0.143 0.024 0.012

eq3
Mean -0.006 0.001 -0.002 0.001
Std 0.341 0.180 0.062 0.048

TABLE II
ERRORS AND STANDARD DEVIATIONS OF THE ERRORS FROM THE SECOND

TRAJECTORY (FIGURE 10) (ABSOLUTE VALUES).
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(l2), between 20s and 30s, leads to an error on both ψ and
φ . Except the CO approach, all the algorithms are affected by
the perturbation.

Concerning the execution time, the results are approxi-
mately the same for each trajectory. For 5 000 iterations (one
trajectory), the excution times are respectively of 1s, 0.5s, 0.7s
and 1.6s for the CO, GDA, EKF and LKF. This represents
respectively 0.2ms, 0.1ms, 0.14ms and 0.32ms per iteration.

These execution times are given for a comparison between
each algorithm, not an exact value when embedded. Indeed,
these results depend on the implementation and the computer
executing the simulations. All of the algorithms are coded on
Matlab and tested on a standard i7 quad core computer.

The LKF seems then to be the slowest algorithm but also
the most accurate when there is no perturbation. As the CO
is developed for animal motion estimation, it can be seen that
there are some problems in very high dynamics but is robust
to acceleration perturbation. The GDA replaces the EKF in
classical low cost IMU is a bit less accurate than the EKF but
more computationally efficient.

IV. CONCLUSION

This article has presented the development of a simulator
which provides the measurement of an IMU augmented with
magnetometers from a known trajectory. The used sensors
are 3D rate gyroscopes, accelerometers and magnetometers.
The modeling is based on the quaternion representation of the
orientations avoiding singularities from the Euler angles.

The results obtained with the simulator are compared to the
calibrated measurements of a real IMU. The validation is made
thanks to a precise 3D rotational table. The different results
show the precision of the simulator, validating the equations.

This simulator is then used to evaluate 4 pose estimation
algorithms: a Complementary Observer, a Gradient Descent
Algorithm, an Extended Kalman Filter and a Linear Kalman

Filter. These algorithms are tested on different trajectories
and are evaluated according to 3 parameters: the precision of
output quaternion, the execution time and the accelerometric
perturbation. The LKF is the most accurate but also the
slowest. The GDA and the EKF have a low execution time and
are relatively accurat. The only algorithm unperturbed from
lateral acceleration is the CO, unlikely, it is the less accurate.

Some investigations can be made in the future to understand
why the execution time of the LKF is higher than for the EKF.
An EKF seems to be a good compromise between accuracy
and execution time but each algorithm has its drawbacks. An
investigation may be made on why the CO is not perturbed
by the lateral accelerations.

The simulator can be upgraded taking account of the sen-
sors’ bandwith or non stationnary biases.
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