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Coupled Detection, Association and Tracking for Traffic Sign
Recognition*

Mohammed Boumediene1, Jean-Philippe Lauffenburger2, Jérémie Daniel2 and Christophe Cudel2

Abstract— This paper tackles the problem of tracking-based
Traffic Sign Recognition (TSR) systems. It presents an in-
tegrated object detection, association and tracking approach
based on a spatio-temporal data fusion. This algorithm tracks
detected sign candidates in order to reduce false positives.
Regions Of Interest (ROIs) potentially containing traffic signs
are determined from the vehicle-mounted camera images. An
original corner detector associated to pixel coding ensures the
detection efficiency. The ROIs are combined using the Transfer-
able Belief Model semantics. The associations maximizing the
pairwise belief between the detected ROIs and ROIs tracked
by multiple Kalman filters are processed. The track evolution
helps to detect false positives. Thanks to this solution and to
a feedback loop between the tracking algorithm and the ROI
detector, a false positive reduction of 45% is assessed.

I. INTRODUCTION
Vision-based TSR systems are usually composed of de-

tection and recognition (or classification) steps [1]. In each
frame, the detection localizes ROIs which may contain signs.
The second task is to classify the detected signs. This consists
in identifying the pictograms included in the sign candidates.

When detection and recognition are independently pro-
cessed, TSR systems have known limitations: (1) Multiple
local detections for the same sign; (2) Misdetections due to
temporary occlusions; (3) Wrong detections, usually called
“false positives”. These drawbacks can be lowered when
tracking is used [2], [3]. Indeed, target tracking helps to take
account of temporal redundant information of the scene, and
thus allows TSR systems to track the signs over time [4],
[5]. In these approaches, a traffic sign is usually confirmed
when it has been tracked over successive frames. Another
advantage of tracking is its ability to cope with temporary
occlusions by predicting the sign position and size over time.
While the interests of tracking for TSR systems are obvious,
it has until now been under-utilized as illustrated in the
complete review from Møgelmose et al. [1].

The present paper focuses on an integrated approach for
traffic sign detection, association and tracking. First, an
original detector from Boumediene et al. [6] based on both
corner and edge orientation detection is implemented. Using
only grey-scale images, the corners are detected to reduce
the search area of signs in images. Secondly, a temporal

*This work was supported by a PROFAS research fellowship granted by
the algerian and french governments.

1Mohammed Boumediene is with Laboratoire LSI, Université des Sci-
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data fusion algorithm is developed for object association and
tracking. Generally, joint association and tracking is treated
in the probabilistic framework. Several books such as [2]
and [3] are dedicated to this topic. One can particularly
mention the Global Nearest Neighbor (GNN), (Joint) Proba-
bilistic Data Association Filters ((J)PDAF) [3] or the Multi-
Hypothesis Tracking (MHT) [7] as main techniques devoted
to the observation-to-track association. These solutions suf-
fer from the limits of the Bayesian theory when dealing
with uncertainty and imperfections. The seminal book from
Blackman [8] argues that, as a generalization of the Bayesian
inference, the evidential reasoning [9], [10] avoids limitations
of the probabilistic framework: inappropriate ignorance, un-
certainty and incompleteness modeling, necessity of mea-
surement error types assumptions, etc. Several applications
of this theory to joint association and tracking have been
performed and comparisons with Bayesian tracking solutions
can be found in [11], [12].

This paper proposes to perform the association with belief
functions [9], [10] using the Transferable Belief Model
(TBM) [13] as in previous studies [14], [15], [16], [17].
The detected traffic sign candidates are considered as in-
formation to be combined in order to reduce the influence
of data imperfections (sensor inaccuracies, false positives,
occlusions, etc.). The authors propose a Multi-ROI Tracking
(MRT) algorithm which implements an object association
method validated on a simple literature static case study
in [16]. For the associated objects, a spatial data fusion
for the prediction of their future positions in the images is
integrated to reduce the detection search region and time.
This prediction of the track state vector is performed using
dynamically managed multiple Kalman Filters (KF) [18]
followed by a feedback of the predicted sign locations to
the detector. The performance of the overall system will
be shown on its ability to deal with imperfections, i.e. the
reduction of false positive detections thanks to the joint
association and tracking. An extended version of this paper
providing additional experimental validations as well as a
comparison with state-of-the-art systems is available in [19].

The paper is organized as follows. Section II presents the
system overview. Section III details the proposed MRT and
its experimental validation is presented in Section IV. Finally,
Section V concludes this paper.

II. SYSTEM OVERVIEW

The system is composed of a ROI detector coupled to a
MRT algorithm (see Fig. 1). The ROI detection generates a
set of traffic sign candidates (i.e. detected ROIs) which can



Fig. 1. Overview of the proposed system.

Fig. 2. Block-diagram of the ROI detector.

contain false positives. To cope with this problem, the MRT
tracks the detected ROIs using a TBM-based association
algorithm. The Filtering (or Tracking) provides the Detector
- through a feedback loop - with the predicted position of
ROIs for the subsequent frames. The filtered ROIs are then
forwarded to the Recognition.

A. ROI Detection

Fig. 2 describes the ROI detector block-diagram intro-
duced in [6] and extended in this paper. The aim is to
select the candidate positions of traffic signs by detecting
the corners related to the geometric shape and the pictograms
of signs. It starts by computing the gradient images Ix and
Iy according to the x and y directions respectively, followed
by a Corner Detection and a Pixel Coding. The well-known
Harris detector [20] is used to detect corners. The candidate
positions help to reduce the search area in which the edge
orientation is used to detect the presence of traffic signs.

The Pixel Coding extracts the gradient information that
will be used to recognize the sign shapes. In the coded image,
each pixel is defined according to its orientation gradient (1).
Intermediate calculations of the Harris detector are used to
define A, B and C such that A = (I2

x > T ), B = (I2
y > T )

and C = (IxIy < 0). T is a threshold which allows to select
a significant gradient. Five classes {0,1,2,3,4} are defined
depending on the pixel orientation: class 0 describes the non-
edge pixels whereas class 1 and 2 correspond to the diagonal
edges and 3 and 4 respectively to the horizontal and vertical
pixels.

Fig. 3. (a) A vertical y-coordinate inversion applied around the top corner.
(b) A vertical y-coordinate inversion applied around the bottom corner.

Fig. 4. Template for circular road signs detection. (a) Circular road sign.
(b) Classes distribution of the template ().

Class = AB(2−C)+3A(1−B)+4B(1−A) (1)

The idea is to use the coded image to recognize the
sign shapes at the candidate positions previously detected.
The authors propose two approaches: the Ransac Symmetric
Lines Detection (RSLD) algorithm for triangular signs [6]
and a template-matching method for circular signs. The
RSLD algorithm consists to straighten the two diagonal sides
of the triangular shapes in order to detect one segment
instead of two diagonal ones (see Fig. 3). A simple vertical
inversion of the y-coordinate applied on coded pixels allows
to transform the two diagonal sides of a triangular shape
into a single segment. This inversion is applied around the
candidate positions related to the top or the bottom of a
triangular shape (cf. Fig. 3(a) and 3(b)).

For the Template Matching, the authors propose a simple
solution based on edge orientation in order to recognize the
circular shape. The coded image is used to define this tem-
plate which is represented by pixel classes distribution. Fig. 4
shows the defined template where subregions are located on
the sign border circle. Each subregion, (4×4 pixels) should
contain specific coded pixels. The matching process consists
to measure the correlation between the proposed template
and image windows at the candidate positions. A subregion is
valid if the number of pixels belonging to the corresponding
class is higher than a threshold Tc = 4. The circular shape
is recognized if 85% of the subregions are valid. Since the
road sign scale in the image frame depends on its distance
from the camera, a set of templates having different size are
used. The detection can generate several ROIs around the
same sign. Therefore, a grouping process is used to select
only a single ROI related to each sign by exploiting the sign
position and scale in the images [21].

B. Region of Interest Tracking

The MRT algorithm (see Fig. 1) is composed of three
functions: the Filtering, the Data Association and the ROI life



analysis. The Filtering performs target tracking by predicting
the future position of the tracked ROIs in the frames. The
Data Association assigns one target provided by the detector
to a track and manages the track appearance, disappearance
and update. The ROI life analysis uses the temporal context
to validate/reject the tracks transmitted to the Recognition.
Traffic sign candidates provided by the Detection define the
targets of the MRT and the tracked ROIs define the tracks
to be filtered to reduce false positives.

For the track State Estimation, the KF [18] is the straight-
forward solution. The filter predicts the track state vector
(considered as an additional search region in the next frame)
from their previous states. These predictions are transmitted
to the detector as a priori information to influence future
searches. Indeed, predicted positions are added to the po-
sition candidates defined by the corner detector in order to
take account of past detection results.

The Data Association consists of three subtasks: Gating,
Association and Track Maintenance. The Gating eliminates
the improbable target-to-track pairings to reduce the com-
putational complexity of the Association. The latter defines,
at a time k, the relations between targets and tracks. Beside
probabilistic methods, the Association is performed through
a data fusion process where the targets and tracks are data
to be combined. The Association selects the target-to-track
relations required to update the existing tracks. However,
traffic signs do not appear and disappear suddenly in frames,
as they are usually visible through several successive frames.
Therefore, the analysis of the track temporal evolution helps
to detect false positives.

III. MULTI-ROI ASSOCIATION AND FILTERING

A. TBM Background

The TBM describes a model of uncertain reasoning and
decision making based on a credal and a pignistic level.

1) Credal level: The credal level provides the tools for
imperfect data modelling and combination. Consider a prob-
lem for which all the discrete solutions H j, j = 1,2, ...,k, with
k the number of possible hypotheses, define the frame of
discernment Θ:

Θ = {{H1} ,{H2} , ...,{Hk}}=
k⋃

j=1

{
H j
}

(2)

Θ is the ignorance, i.e. the union of all hypotheses. Its
corresponding referential subset, a power set denoted 2Θ of
2k disjunctions of H j is such that:

2Θ = { /0,{H1} , ...,{Hk} , ...,{H1,H2,H3} , ...,Θ} , (3)

where /0 represents the impossible hypothesis interpreted
as the conflict. A proposition A = {H1,H2} refers to the
disjunction meaning that either {H1} or {H2} can be the
solution to the problem. Each proposition A ∈ 2Θ from a
source i is characterized by its basic belief mass (bbm) mΘ

i (A)

which represents its veracity:

mΘ
i : 2Θ→ [0,1], ∑

A∈2Θ

mΘ
i (A) = 1 (4)

When the k answers are exclusive and exhaustive, the
solution to the problem is one of the hypotheses of Θ. In
this case, a mass on /0 is not allowed. Practically, in Multi-
Target Tracking (MTT) applications, this assumption is too
restrictive since targets can appear and/or disappear over
time. When it is impossible to explicitly define all solutions,
the non-exhaustivity can be treated by adding to Θ an hypoth-
esis {∗} representing all unknown propositions [22]. This
singleton allows the new discernment frame Θeow (known
as “extended open world” (eow)) to become exhaustive (cf.
(5)). A non zero value of mΘeow( /0) is then only linked to the
sources unreliability or to their discordance.

Θeow = Θ∪{∗} (5)

The combination gathers the different sources bbm mΘ
i .

Beside the numerous operators [23], the conjunctive combi-
nation rule is the most straightforward [22]:

mΘ
∩(A) = ∑

A1∩...∩Ap=A

p
∏
j=1

mΘ
j (A j)

mΘ
∩( /0) = ∑

A1∩...∩Ap= /0

p
∏
j=1

mΘ
j (A j)

(6)

2) Pignistic level: Solving the association problem con-
sists in making a decision in Θ. Nevertheless, after the
combination (see (6)), masses are placed either on singletons
(|A| = 1) or on unions (|A| > 1). A transformation from 2Θ

to Θ is then necessary. Among the available transformations,
the pignistic one [14] is commonly used. It equally shares
the mass of A on its singletons. The pignistic probability
(BetP) is given by (7), with mΘ

∩( /0)< 1:

BetP(H j) = ∑
A∈2Θ

H j∈A

mΘ
∩ (A)

|A|(1−mΘ
∩( /0))

(7)

B. Object Association in the TBM

Consider two extended open worlds Θi,. and Θ., j, where
i = 1, ...,n, with n the number of targets at time k, and j =
1, ...,m, with m the number of tracks at time k. This leads to
an n×m dimension association problem to be solved at each
time step. The frame Θi,. contains the m possible target(i)-to-
track( j) associations denoted {Y(i, j)}, and {Y(i,∗)} represents
the appearance of target(i). The frame Θ., j is composed of the
n possible track( j)-to-target(i) associations denoted {X( j,i)},
and {X( j,∗)} represents a track disappearance:

Θi,. =
{
{Y(i,1)},{Y(i,2)}, ...,{Y(i,m)},{Y(i,∗)}

}
Θ., j =

{
{X( j,1)},{X( j,2)}, ...,{X( j,n)},{X( j,∗)}

} (8)

In order to define if a target Xi is associated with a given
track Yj, three belief masses are used:

• mΘi,.
j ({Y(i, j)}): belief in “Xi is associated with Yj”,



• mΘi,.
j ({Y(i, j)}): belief in “Xi is not associated with Yj”,

• mΘi,.
j (Θi,.): ignorance about the association.

The belief masses m
Θ., j
i ({X( j,i)}), m

Θ., j
i ({X( j,i)}) and

m
Θ., j
i (Θ., j) are generated for the track-to-target associations

in the same way. In this paper, the masses are described
according to [24]:

mΘi,.
j ({Y(i, j)}) = α exp−d2

i j

mΘi,.
j ({Y(i, j)}) = α(1− exp−d2

i j)

mΘi,.
j (Θi,.) = 1−α

(9)

where:
• 0 < α < 1 represents the source a priori reliability,
• di j is a dissimilarity measure between target(i) detected

at time k and track( j) already known at that time.
di j characterizes the level of confidence that target(i)

corresponds to track( j). The choice of a monotone decreasing
function of di j in (9) leads to the belief reduction in the
association of target(i) to track( j) when the distance between
the objects increases and vice versa. For the purpose of
ROI tracking, di j is chosen as the Mahalanobis distance
between track( j) and target(i) [3]. Thus, di j depends on the
tracking filter covariance, so that the belief is determined
with respect to the prediction and tracking performance.
The bbms are finally combined with the conjunctive rule (6)
over each discernment frame and the corresponding pignistic
probability matrices BetPi,.(.) and BetP., j(.) are computed.
More details about the combination and the association
matrices computation can be found in [15] and [16].

In the pignistic level, decision making, i.e. the best target-
to-track and track-to-target association selection must be
found. Considering the pignistic matrices as cost matrices,
the problem can be classically solved using the Hungarian
or Munkres algorithm [27]. This optimization algorithm pro-
vides the solution maximizing the sum of beliefs but with the
risk of non-optimal local associations [15]. Here, the decision
is based on the Local Pignistic Probability (LPP) algorithm
introduced in [16] (cf. Algorithm 1). Instead of looking
for a globally sub-optimal solution leading potentially to
suspicious associations [15], the LPP finds the best set of
local assignments. It performs a successive selection of the
association which maximizes the probability in each row of
a pignistic matrix. An association is retained with respect
to the results of the LPP applied successively on BetPi,.(.)
and BetP., j(.). Compared to state-of-the-art algorithms [16],
the LPP has the advantage of generating decisions directly
from the pignistic matrices with no extra-calculations. A
major consequence of this feature is its ability to be used
in real-time applications. Furthermore, the LPP is shown to
be less conservative than other association solutions reducing
ambiguities and/or association contradictions.

C. Track Filtering

KF is the straightforward solution usually retained for
tracking applications. This section illustrates how it is applied
to ROIs tracking.

Algorithm 1 Local Pignistic Probability
Require: Pignistic matrix BetP
Ensure: Best {Associations} decision vector
{Associations}← {}
for all lines of BetP do
(imax, jmax) = argmax

(i, j)
(BetP(i, j))

{Associations}← (imax, jmax)
Remove imax row and jmax column from BetP

end for

From each frame k, a set of detected ROI which represents
the n targets defined by the measurements Zi(k), i = 1, ...,n
is provided by the detector. Let us consider that the state
evolution and the measurement models are linear with respect
to the track state vector X j(k). For a validated track, a
corresponding KF is created and updated. The state vector
X j(k) of a track( j) is:

X j(k) = [x,y,s,vx,vy,vs]
T , (10)

with [x,y,s] respectively defining the position and size of
track( j), [vx,vy] its relative velocities in the image coordinate
frame between two succesive frames [25] and vs the scale
change. In road scene sequences captured by an in-vehicle
camera, road signs appear in frames as small objects moving
away from their initial position with a growing size s as they
come closer to the vehicle. Considering the high detection
rate of the system (25 Hz), an effective dynamic model
is the nearly constant velocity model [26] in which the
displacement vector [vx,vy] and the scale variation vs of the
traffic sign at time k are such that:

 x(k) = x(k−1)+ vx(k),
y(k) = y(k−1)+ vy(k),
s(k) = s(k−1)+ vs(k),

with :


vx(k)∼N (vx(k−1),σ2

x ),
vy(k)∼N (vy(k−1),σ2

y ),

vs(k)∼N (vs(k−1),σ2
s ).

(11)

where N (µ,σ2) defines a normal process centered on µ

with a standard deviation of σ .
The measurement vector Zi(k) is such that:

Zi(k) = [x,y,s]T . (12)

The observation model linearly relates the state X j(k) to
a target measurement Zi(k) with the measurement matrix H
(13). Finally, the state noise and the measurement noise v
are i.i.d.1 random noises assumed mutually uncorrelated.

Zi(k) = HX j(k)+ v(k) (13)

A track goes through three steps: creation, update,
and deletion [3]. The appearance decision (depending on

1independent and identically distributed



BetPi,.({Y(i,∗)})) initializes a new KF. Its state vector X j(k)
is set to the measurement Zi(k) of the appearing track. The
initial displacement [vx(0),vy(0)] and size change vs(0) are
set to 0. An existing track is updated if it is associated to
a target. In addition, the update step helps to increment a
count cupdate( j) related to track( j) which will be used in
the ROI life analysis step to remove the false positives. The
disappearance decision (related to BetP., j({X( j,∗)})) means
that no target has been associated to the track considered.
Therefore, the predicted state X̂ j(k) of the tracked object is
propagated without correction. Three consecutive disappear-
ances lead to track deletion. The predicted state X̂ j(k) is
computed according to the previous state X j(k−1) by (14).
X̂ j(k) is sent as a priori data to the Detection to define the
position candidates of the signs in the incoming frame.

X̂ j(k) = FX j(k−1) (14)

To deal with false positives, the evolution of the tracks is
analyzed through a confidence score C( j) for each track.
C( j) is defined by the ratio between the update count
cupdate( j) and the length of the track (see (15)). cupdate( j) is
the number of frames where track( j) is associated. The track
length length( j) represents the total number of frames where
track( j) is present. If C( j) is below a predefined threshold
Tcon f idence, track( j) is considered as a false positive. When
track( j) is valid (C( j) > Tcon f idence), it becomes a filtered
ROI forwarded to the Recognition.

C( j) =
cupdate( j)
length( j)

(15)

IV. EXPERIMENTAL RESULTS

In this section, the results obtained during real-time tests
performed with a fully equipped vehicle are presented. First,
the system implementation and configuration are detailed;
then, an analysis presenting the performance rates of the TSR
with and without the use of the MRT are described. These
results highlight the false positive reduction related to the
joint association and tracking algorithm.

The vehicle-mounted camera is a 12-bit grey scale ECK-
100 from Sensata Technologies providing VGA images
(640× 480 pixels, 25fps) of the vehicle front scene. The
MRT system is written in C++ as a standalone application
and uses the OpenCV 2.4 library. It runs on an Intel core
i7 2.20GHz with 8GB RAM under Windows Seven 64 bits.
The ground truth has been determined manually by defining,
in each sequence, the positions of signs having between
20× 20 and 60× 60 pixels. The critical parameters of the
application are: Tcon f idence = 0.85 (confidence threshold of
the track evolution rate C( j)), α = 0.9 (discounting factor for
the bbm), mmax = 10 (maximal number of KF), (σx,σy,σs) =
(2,2,3) (standard deviations of the Kalman motion model).

The performance of the MRT is assessed by the False
Positives Per Frame (FPPF), the Detection Rate Per Frame
(DRPF) and finally the Detection Rate Per Sign (DRPS) (16).
A detection is defined as correct if a sign is forwarded to
recognition step more than N = 3 successive times.

TABLE I
TEST SEQUENCE FEATURES

Number of frames 12 500
Length (km) 10
Motorway (%) 33.6
City (%) 11.6
Number of circular signs 31
Number of triangular signs 11

FPPF =
Number of false positives

Total Frame Number

DRPF =
Number of true positives

Ground Truth
·100

DRPS =
Number of correct detections

Total Sign Number
·100

(16)

The focus is placed on the video sequence depicted in
Table I and composed of various driving scenes (urban
driving, highways, etc.). Fig. 5 (Top) shows a short sequence
of circular sign detection with no feedback between the
tracking and the detection. In frames (a) and (b), the signs
are correctly detected. However, in frames (c) and (d), the
corner detection fails and so the signs are missed twice. This
drawback is solved by the prediction task of the MRT and
the feedback of the tracked objects (see bottom of Fig. 5)
providing the detector with potential search regions in which
signs should be present.

In Table II, the FPPF, DRPF and DRPS with/without the
MRT are analyzed. The circular and triangular sign detector
alone (denoted MRT ) provides respectively 87% and 91%
detection rates per sign with 0.28 and 0.26 of FPPF. Adding
the MRT reduces the false positives per frame by more than
45%. This lowers the amount of useless data to be processed
in the Recognition. One can note that, even if the DRPF
decreases with the MRT for triangular signs, no sign is finally
lost.

The ROI detection requires an average of 40 ms to process
a single frame. The MRT computation time depends on the
number of detected (n) and tracked (m) ROIs but remains
insignificant (less than 2 ms in the worst case). This shows
that the complete system is real-time compliant, ensuring a
high sampling rate.

Finally, even if a direct comparison of TSR performance
rates is unrealistic [1], it can be shown that the MRT-based
TSR provides interesting results with respect to state-of-the-
art solutions [19].

V. CONCLUSIONS

An integrated detection, association and tracking algo-
rithm based on spatio-temporal data fusion for traffic sign
recognition has been presented. The idea is to reduce false
positives by tracking sign candidates (ROIs) and processing
the association with the Transferable Belief Model. An
original detector extracts a set of ROI candidates which
represents data to be combined. Then, the associations are



Fig. 5. Impact of the feedback on a sequence of images. (Top) Without feedback of the state prediction to the detector. (Bottom) With feedback to the
detector.

TABLE II
PERFORMANCE RATES

MRT MRT

Circular signs
DRPS (%) 87 87
DRPF (%) 88 86.6(−2%)
FPPF 0.28 0.15(−46%)
Triangular signs
DRPS (%) 91 91
DRPF (%) 64.2 55.4(−14%)
FPPF 0.26 0.14(−46%)

provided with respect to their pairwise belief maximum. The
tracking of the ROIs is performed using dynamically man-
aged multiple Kalman filters. Finally, the tracks are analyzed
to detect false positives. The proposed solution feeds the
predicted sign locations back into the detector as a priori
knowledge to influence the detection in subsequent frames.
The experimental results show the real-time capability as
well as the effectiveness of this strategy in the reduction
of false positives by 45%.

In the future, pedestrian and dynamic object detection
and tracking applications will be considered. The association
will also be enhanced by adding in the pairwise belief
functions additional assignment primitives like for instance
the correlation coefficients between targets and tracks.
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