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This paper presents an object tracking algorithm using belief functions applied to vision-based traffic sign recognition systems. This algorithm tracks detected sign candidates over time in order to reduce false positives thanks to data fusion formalization. In the first stage, Regions Of Interest (ROIs) are detected and combined using the Transferable Belief Model semantics. In the second stage, the Local Pignistic Probability algorithm generates the associations maximizing the belief of each pairing between detected ROIs and ROIs tracked by multiple Kalman filters. Finally, the tracks are analyzed to detect false positives. Thanks to a feedback loop between the Multi-ROI Tracker and the ROI detector, the solution proposed reduces false positives by up to 45% while computation time remains very low.

I. INTRODUCTION

Although traffic signs are designed to be clearly visible, they can be missed due to driver distraction or sign masking. This can be avoided by using Traffic Sign Recognition (TSR) systems. Indeed, they can inform the driver of a possibly missed traffic sign. Usually, visionbased TSR consists of a detection and a recognition (or classification) step [START_REF] Møgelmose | Visionbased traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[END_REF]. In each frame, the detection localizes Regions Of Interest (ROIs) which may contain signs for instance based on shape detection [START_REF] Barnes | Real-time speed sign detection using the radial symmetry detector[END_REF] using the Hough transform [START_REF] García-Garrido | Fast traffic sign detection and recognition under changing lighting conditions[END_REF] or Histograms of Oriented Gradients (HOG) [START_REF] Zaklouta | Warning traffic sign recognition using a HOG-based K-d tree[END_REF]. The purpose of recognition is to identify the pictograms present in the ROIs, with the help of support vector machines, K-d trees [START_REF] Zaklouta | Warning traffic sign recognition using a HOG-based K-d tree[END_REF],

neural networks [START_REF] Greenhalgh | Real-time detection and recognition of road traffic signs[END_REF], etc. When detection and recognition are independently processed, TSR systems show known limitations -multiple detections for the same sign, misdetections due to temporal occlusions, wrong detections usually called "false positives" -which can be reduced by adding target tracking [START_REF] Bar-Shalom | Multitarget-multisensor tracking: principles and techniques[END_REF], [START_REF] Blackman | Design and analysis of modern tracking system[END_REF]. Tracking helps to take account of temporal redundant information of the road scene, and thus allows TSR systems to track the signs over time [START_REF] García-Garrido | Fast traffic sign detection and recognition under changing lighting conditions[END_REF], [START_REF] Ruta | Real-time traffic sign recognition from video by class-specific discriminative features[END_REF]. However, although tracking provides obviously substantial benefits, its application to TSR is still unusual as shown in Møgelmose et al. review paper [START_REF] Møgelmose | Visionbased traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[END_REF].

One of the main tasks of target tracking concerns data association. It defines, at a time k, the relations between the set of perceived objects (targets) and the set of already known ones (tracks). Association methods are usually based on the Bayesian theory. They are either track-oriented such as (G)NN 1 , (J)PDAF 2 [START_REF] Blackman | Design and analysis of modern tracking system[END_REF] or targetoriented like MHT 3 [START_REF] Reid | An algorithm for tracking multiple targets[END_REF]. Track-oriented methods perform single frame associations and are mainly based on the a priori known track number. As a consequence, track appearances are not directly managed but can be possible through the computation of some specific measurements (likelihood ratio, observability measurement, etc.) for (J)PDA filters, for instance. MHT tracks objects over time and defers the assignment decision if ambiguities occur. At each time step, a decision tree containing all the hypotheses is updated and each hypothesis leads iteratively to a new decision tree, requiring important computation time.

Recently, the use of belief functions [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF], [START_REF] Shafer | A mathematical theory of evidence[END_REF] and the Transferable Belief Model (TBM) [START_REF] Smets | The transferable belief model[END_REF] for data association emerged [START_REF] Mourllion | Multihypotheses tracking algorithm based on the belief theory[END_REF]- [START_REF] Royère | Data association with belief theory[END_REF]. One can particularly cite [START_REF] Smets | Kalman filter and joint tracking and classification based on belief functions in the TBM framework[END_REF], [START_REF] Ristic | The TBM global distance measure for the association of uncertain combat ID declarations[END_REF] in which a comparison with Bayesian tracking solutions is presented and [START_REF] Ayoun | Data association in multi-target detection using the transferable belief model[END_REF], [START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: application to an intelligent speed limit assistant[END_REF] highlighting the fact that belief functions constitute a suitable and intuitive framework for data and imperfections modelling. They easily deal with the source ignorance and conflict without any assumptions on the sensor error models. This is the formal context of this article.

The present paper focuses on traffic sign detection 1 (G)NN: (Global) Nearest Neighbor. 2 (J)PDAF: (Joint) Probability Data Association Filter. 3 Multi-Hypothesis Tracking. and tracking. The detection process, recently presented in [START_REF] Boumediene | Triangular traffic signs detection based on RSLD algorithm[END_REF], is based on corner and edge orientation detection in grey-scale images. The corners help to define the candidate positions (i.e. the ROIs) where the presence of signs is to be confirmed while the edge orientation informs about the sign candidate type (triangular, circular, etc.).

The detected ROIs are then spatio-temporally tracked using a TBM-based Multi-ROI Tracking (MRT) algorithm. The MRT considers the ROIs provided by the detector as information to be combined with the known tracks and thus allows their appearance, disappearance or evolution along time. The aim is to reduce the influence of sensor inaccuracies and false positives while maintaining a good detection rate. For the associated objects, a spatial data fusion using dynamically managed multiple Kalman Filters (KF) [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF] both for their tracking and position prediction in the future frames is integrated to enhance detection performance. This MRT provides a global approach managing all targets and tracks whatever the association type (track-to-track, target-to-target, etc.) with a generalized combination rule allowing complexity reduction. In addition, it provides native mechanisms for track initialization, temporary occlusion and conflicting association management. The system has been implemented in a test vehicle. The results obtained show the benefits in terms of detection rate, false positive reduction and computation time, satisfactory real-time constraints.

The paper is organized as follows. Section II presents the system overview. The theoretical background of data association in the TBM is presented in Section III. Section IV details the proposed MRT and its experimental validation is presented in Section V. Finally, Section VI concludes this paper. 1) so that only the recognized signs are tracked in the future frames. Tracking consequently provides a memory [START_REF] García-Garrido | Fast traffic sign detection and recognition under changing lighting conditions[END_REF] which makes the recognition of the tracked sign in subsequent frames unnecessary [START_REF] García-Garrido | Robust traffic signs detection by means of vision and V2I communications[END_REF]. Several approaches have been adopted in the literature for the second architecture which performs the Tracking after the Detection. For instance, Fang et al. [START_REF] Fang | Road-sign detection and tracking[END_REF] track all detected ROIs until their respective size is sufficiently large for easy recognition while in [START_REF] Šegvić | Exploiting temporal and spatial constraints in traffic sign detection from a moving vehicle[END_REF], a classifier separates valid and invalid tracks by using spatio-temporal constraints. 

This study adopts a

A. ROI Detection

Fig. 3 describes the ROI detector. A traffic sign shape detector initially described and evaluated in [START_REF] Boumediene | Triangular traffic signs detection based on RSLD algorithm[END_REF] is implemented here. Singularities or angular edges of traffic signs are detected by the Corner Detection step and represent the position candidates of signs. Fig. 4 shows an example of the position candidates which are defined by the standard Harris corner detector [START_REF] Harris | A combined corner and edge detector[END_REF]. For each corner, a candidate ROI is selected according to the shapes in the corner neighbourhood. Shape recognition is performed using a coded image where each pixel is defined according to edge orientations as depicted in Fig. 5.

To recognize triangular shapes, the RANSAC Symmetric Line Detection (RSLD) algorithm from Boumediene et al. [START_REF] Boumediene | Triangular traffic signs detection based on RSLD algorithm[END_REF] is implemented. Its principle is extended with a Template-Matching process to circular shape detection.

B. Multi-ROI Tracking

The MRT algorithm is composed of three functions:

Filtering, Data Association and ROI life analysis (see Fig. 6). For the track State Estimation, the well-known KF [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF] has been adopted as it is one of the most The association is done through an evidential data fusion process to consider and propagate these uncertainties as well as sensor imperfections and reduce false detections. Track Maintenance analyzes the selected targetto-track pairs to detect appearances and disappearances.

A track appearance/disappearance leads respectively to adding/deleting a KF. However, traffic signs do not suddenly appear and disappear in frames. Therefore, the analysis of the track temporal evolution helps to detect false positives. Indeed, based on the track properties such as its length (number of frames where the track considered is present), a confidence score is defined. A tracked ROI with a low confidence value is considered as a false positive and thus ignored. Otherwise, it is forwarded to the Recognition step. On the other hand, disappearance is confirmed if no target is assigned to the track several times at a stretch.

The next sections will show that credal association and tracking is able to reduce the false positive rate while keeping a high detection rate. This result is reproducible, whichever traffic sign detector is used.

III. DATA ASSOCIATION IN THE TBM

A. Transferable Belief Model: Basic Concepts

The TBM is a subjective and non-probabilistic interpretation of the evidence theory [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF], [START_REF] Shafer | A mathematical theory of evidence[END_REF]. This framework describes a model of uncertain reasoning and decision making based on a credal and a pignistic level. At the credal level, belief masses are used to represent and combine the pieces of information while at the pignistic level, these masses are transformed into probability measurements for decision making.

1) Credal level: Consider a problem for which all the discrete solutions (also called hypotheses) H j , j = 1, 2, ..., k, with k the number of possible hypotheses, define the frame of discernment Θ:

Θ = {{H 1 } , {H 2 } , ..., {H k }} = k j=1 {H j } . (1) 
Θ is the ignorance, i.e. the union of all hypotheses.

Its corresponding referential subset, a power set denoted 2 Θ of 2 k disjunctions of H j is such that:

2 Θ = {∅, {H 1 } , ..., {H k } , ..., {H 1 , H 2 , H 3 } , ..., Θ} , (2) 
where ∅ represents the impossible hypothesis commonly interpreted as the conflict between sources. A proposition 

A = {H 1 , H 2 }
m Θ i : 2 Θ → [0, 1], A∈2 Θ m Θ i (A) = 1. (3) 
When the k answers are exclusive and exhaustive, the solution to the problem is one of the hypotheses of Θ and a mass on ∅ is not allowed. Practically, in applications such as target tracking, this assumption is often too restrictive. Indeed, all possible associations cannot be identified a priori since targets can appear/disappear over time. Hence the suggestion of two other frameworks: the "open world" [START_REF] Smets | The transferable belief model[END_REF] and the "extended open world" [START_REF] Royère | Data association with belief theory[END_REF].

In the open world, Θ is exclusive but not exhaustive so that a mass m Θ i (∅) > 0 is possible. In this case, ∅ represents a reject class which describes the unknown hypotheses not taken into account during the problem formalization. The non-exhaustivity of the discernment frame can be managed by adding to Θ an alternative hypothesis { * } representing all unknown propositions not explicitly defined in Θ [START_REF] Royère | Data association with belief theory[END_REF]. This singleton allows the new discernment frame Θ eow to become exhaustive (cf.

(4)). A non zero value of m Θeow i (∅) is then only linked to the sources unreliability or to their discordance.

Θ eow = Θ ∪ { * } (4) 
The combination gathers the different sources bbm.

Beside all the existing operators [START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: application to an intelligent speed limit assistant[END_REF], the conjunctive combination rule is the most straightforward [START_REF] Smets | Analyzing the combination of conflicting belief functions[END_REF]. For p sources to be combined, it is expressed as:

       m Θ ∩ (A) = A1∩...∩Ap=A p j=1 m Θ j (A j ), m Θ ∩ (∅) = A1∩...∩Ap=∅ p j=1 m Θ j (A j ). (5) 
2) Pignistic level: Finding the association relations consists in making a decision among all the possible hypotheses of the problem given. Usually, the decision is made in Θ, i.e. on simple hypotheses H j . Nevertheless, after the combination (see ( 5)), masses are placed either on singleton hypotheses (|A| = 1) or on unions (|A| > 1). It appears that a transformation from 2 Θ to Θ is necessary. Among all the transformations available, the pignistic one [START_REF] Smets | Constructing the pignistic probability function in a context of uncertainty[END_REF] is commonly used. It is built as a probabilistic rule and shares the mass of A on its singletons. The pignistic probability (BetP) is given by [START_REF] Bar-Shalom | Multitarget-multisensor tracking: principles and techniques[END_REF], with m Θ ∩ (∅) < 1:

BetP (H j ) = A∈2 Θ Hj ∈A m Θ ∩ (A) |A| (1 -m Θ ∩ (∅)) . (6) 

B. Object Association: Problem Formalization

In tracking algorithms using TBM, the association task is observed from two different points of view [START_REF] Rombaut | Decision in multi-obstacle matching process using the theory of belief[END_REF]: target-to-track and track-to-target associations. This leads to the definition of two extended open worlds Θ i,. and Θ .,j4 , i = 1, ..., n, with n the number of targets, and j = 1, ..., m, with m the number of tracks at time k. The frame Θ i,. contains the m possible target(i)-to-track(j) associations denoted {Y (i,j) }, and {Y (i, * ) } represents the appearance of target(i) 5 . The frame Θ .,j is composed of the n possible track(j)to-target(i) assignments denoted {X (j,i) }, and {X (j, * ) } represents a track deletion:

Θ i,. = {Y (i,1) }, {Y (i,2) }, ..., {Y (i,m) }, {Y (i, * ) } , Θ .,j = {X (j,1) }, {X (j,2) }, ..., {X (j,n) }, {X (j, * ) } . (7) 
The question which is then raised is: "Is target X i associated with track Y j ?". To this question, three answers are possible: either they are associated or not, or the assignment is unclear. Within the TBM, these solutions will be described by three belief masses over {Y (i,j) }, over its contrary {Y (i,j) } and over the ignorance Θ i,. so that:

• m Θi,. j

({Y (i,j) }): belief in "X i is associated with

Y j ", • m Θi,. j ({Y (i,j) }): belief in "X i is not associated with Y j ", • m Θi,. j (Θ i,.
): ignorance about the association.

The belief masses m Θ.,j i

({X (j,i) }), m Θ.,j i ({X (j,i) })
and m

Θ.,j i (Θ .,j ) are generated for the track-to-target associations in the same way. It is worth noting that no information is initially considered on {Y (i, * ) } and on {X (j, * ) }. These masses appear during combination. This finally leads to an n × m dimension assignment problem to be solved at each time step in order to define the association relations. The bbms are then combined with the conjunctive rule (5) over each discernment frame Θ i,.

and Θ .,j , generating masses m Θi,. (and m Θ.,j ) over 2 Θi,.

and 2 Θ.,j [START_REF] Royère | Data association with belief theory[END_REF]:

m Θi,. {Y (i,j) } = m Θi,. j {Y (i,j) } m a=1 a =j α (i,a) m Θi,. {Y (i,j) , Y (i,l) } = m Θi,. j (Θ i,. ) m Θi,. l (Θ i,. ) m a=1 a =j a =l β (i,a)
and for union combinations of 2 to m -1 hypotheses: with:

m Θi,. ({Y (i,j) , . . . , Y (i,l) }) = γ (i,(j,...,l)) m a=1 a =j ...... a =l β (i,a) m Θi,. ({ * }) = m a=1 β (i,a) m Θi,. {Y (i,j) } = m Θi,. j {Y (i,j) } m a=1 a =j m Θi,. a (Θ i,. ) m Θi,. (Θ i,. ) = m a=1 m Θi,. a (Θ i,. ) (8 
               α (i,a) = 1 -m Θi,. a {Y (i,a) } , β (i,a) = m Θi,. a {Y (i,a) } , γ (i,(j,...,l)) = m Θi,. j (Θ i,. ) . . . m Θi,. l (Θ i,. ) , δ (i,b) = 1 -m Θi,. b {Y (i,b) } .
In order to make a decision, the pignistic transformation ( 6) is performed over the masses from [START_REF] Ruta | Real-time traffic sign recognition from video by class-specific discriminative features[END_REF]. This leads to two pignistic matrices BetP i,. {Y (i,j) } and is redistributed through the normalization of the pignistic probability (see [START_REF] Bar-Shalom | Multitarget-multisensor tracking: principles and techniques[END_REF]). Nevertheless, as in other studies [START_REF] Mourllion | Multihypotheses tracking algorithm based on the belief theory[END_REF], [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF], [START_REF] Lauffenburger | Multi-object association with belief functions: the dual decision algorithm[END_REF], the authors use a non-normalized form [START_REF] Reid | An algorithm for tracking multiple targets[END_REF]. Because of its informative aspect for decisionmaking [START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: application to an intelligent speed limit assistant[END_REF], the conflict is conserved especially for the detection of association ambiguities or contradictions.

         BetP i,. {Y (i,j) } A∈2 Θ i,. Y (i,j) ∈A m Θi,. (A) |A| BetP i,. (∅) m Θi,. (∅) (9) 
The formalization of (9) to the multi-object association problem can be found in [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF]. Decision making is based on these pignistic matrices. In the literature, several algorithms are proposed for selecting the "best" associations regarding global decision cost functions [START_REF] Mourllion | Multihypotheses tracking algorithm based on the belief theory[END_REF]. Generally, and it will be the case in this work, they consider the following constraints [START_REF] Rombaut | Decision in multi-obstacle matching process using the theory of belief[END_REF]:

• a target can only be associated with one track and vice versa,

• multiple existing tracks can disappear,

• multiple new tracks can appear.

IV. MULTI-ROI ASSOCIATION AND FILTERING

A. Track Filtering

Tracking a moving target can be viewed as the observation of a dynamic system. That is why the straightforward solution employed in computer-vision tracking applications is the KF [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]. Usually, a tracking filter is derived in terms of a recursive (linear) estimator.

It recursively computes the estimates of the object ldimensional state vector X j (k) ∈ R l by a combination of the previous estimates and new object observations

Z i (k) ∈ R p .
For this purpose, a dynamic (motion) model and a measurement model are employed:

X j (k) = F X j (k -1) + w(k), Z i (k) = H X j (k) + v(k). (10) 
F is the l × l state transition matrix based on the chosen track motion model. It is assumed that the model and measurement noises w and v are independent and identically distributed random noises. The state noise w is a white Gaussian l-dimensional process with zero mean and covariance Q denoted w ∼ N l (0, Q) and v ∼ N p (0, R). The measurement model relates the state X j (k) to the observation Z i (k) with the measurement matrix H ∈ R p×l . For a given frame k, the detector provides a set Z of ROI candidates which represents the n targets defined by the measurements Z i (k) ∈ Z.

Assume that the state evolution model behaves linearly with respect to the track motion and that the observations Z i (k) and states X j (k) are linearly dependent, leading to [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF]. According to the data association results at time k, KFs corresponding to existing tracks are updated and new filters are created for appearing tracks. The number m of KFs depends on the number of tracked ROIs.

The 2D motion of objects in a video sequence is strongly related to the camera motion and to their own displacement. In TSR applications, only the camera motion has to be considered since the objects are static. A steady-state vehicle movement is assumed, characterized by low velocity variations with respect to the sampling rate of the system (> 15 fps). Moreover, the angle between the line of sight of the camera and the vehicle direction is sufficiently small so that the sign size s in the image can be considered as constantly increasing.

In this context, the nearly constant velocity model [START_REF] Smets | The transferable belief model[END_REF] represents a globally satisfactory motion model and a classic choice for tracking applications [START_REF] García-Garrido | Fast traffic sign detection and recognition under changing lighting conditions[END_REF], [START_REF] Ruta | Real-time traffic sign recognition from video by class-specific discriminative features[END_REF], [START_REF] Cifuentes | Motion models that only work sometimes[END_REF]. The state vector X j (k) of a track(j) is such that:

X j (k) = [x, y, s, v x , v y , v s ] T , (11) 
where 

         x(k) = x(k -1) + v x (k), y(k) = y(k -1) + v y (k), s(k) = s(k -1) + v s (k). ( 12 
)
with :

         v x (k) ∼ N (v x (k -1), σ 2 x ), v y (k) ∼ N (v y (k -1), σ 2 y ), v s (k) ∼ N (v s (k -1), σ 2 s ). (13) 
Z i (k) is a p × 1 vector defined by:

Z i (k) = [x, y, s] T . ( 14 
)
Three processing steps are possible for a given track: creation, update, and deletion. The appearance decision (depending on BetP i,. ({Y (i, * ) })) creates a new filter j.

Its state vector X j (k) is initialized by the observation 

Xj (k) = F X j (k -1) Pj (k) = F P j (k -1)F T + Q (15)
Pj (k) defines the predicted error covariance matrix of filter j and P j (k-1) its error covariance matrix in frame

k -1.
The false positive reduction is performed through a track-related confidence score C(j) defined by the ratio between the update count c update (j) and the length of the track:

C(j) = c update (j) length(j) , (16) 
with c update (j) the number of frames where ROI j is confirmed and length(j) the total frame number where object j is present. A false positive occurs when C(j) is lower than a predefined threshold T conf idence , otherwise the object j is valid and becomes a ROI forwarded to the Recognition.

B. Data Modelling in the TBM

There are several solutions to describe the bbms m ({Y (i,j) }) cannot simultaneously be non-zero in order to avoid intrinsic conflict [START_REF] Mourllion | Multihypotheses tracking algorithm based on the belief theory[END_REF], [START_REF] Rombaut | Decision in multi-obstacle matching process using the theory of belief[END_REF], [START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: application to an intelligent speed limit assistant[END_REF]. In this paper, the masses defined respectively on Θ i,. and Θ .,j are described according to [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempster-shafer theory[END_REF]:

         m Θi,. j ({Y (i,j) }) = α j exp -d 2 ij , m Θi,. j ({Y (i,j) }) = α j (1 -exp -d 2 ij ), m Θi,. j (Θ i,. ) = 1 -α j , (17) where: 
• 0 < α j < 1 represents the reliability of source j,

• d ij is the dissimilarity measurement between target(i) detected at time k and track(j) already known at time k.

d ij characterizes the level of confidence that target(i) corresponds to track(j). For the purpose of ROI tracking, d ij is chosen as the Mahalanobis distance [START_REF] Blackman | Design and analysis of modern tracking system[END_REF] between track(j) and target(i):

d 2 ij = ZT ij S -1 Zij , (18) 
with S the residual covariance matrix and Zij the innovation of filter j. In [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF], the choice of a monotone decreasing function of d ij leads to the belief reduction in the association of target(i) to track(j) when the distance between the objects is large. On the contrary, if the dissimilarity measurement is low, their association is more probable. It can be noted that d ij depends on the tracking filter covariance, so that the belief depends on the prediction and tracking performance. 

(i max , j max ) = arg max (i,j) (BetP (i, j))
{Associations} ← (i max , j max )

Remove i max row and j max column from BetP end for

C. Pignistic Association Algorithm

In [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF], a review of the state-of-the-art credal association algorithms is proposed. It shows that with a global (sub-optimal) cost optimization, suspicious associations could be selected. To cope with this problem, local optimization solutions have been proposed. In the MRT, decision making is based on the Local Pignistic Probability algorithm (cf. Algorithm 1) [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF]. This algorithm is applied to each pignistic matrix BetP i,. (BetP .,j ) and performs a successive line-wise selection of the n (or m) local maximum in the pignistic matrix. Compared to other algorithms, the LPP has the advantage of generating decisions directly from the pignistic matrices with no extra-calculations. A major consequence is its ability to be used in real-time applications. Furthermore, the LPP is shown to be less conservative than other association solutions. A complete description and evaluation of this algorithm can be found in [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF].

An overview of the MRT algorithm is shown in 

d 2 ij ← getDistance(Z i (k), Xj (k)) (18) 
Compute m

Θi,. j and m

Θ.,j i

end for end for

// 2. Mass combination and BetP computation

Compute m Θi,. , m Θ.,j , BetP i,. , BetP .,j (8) and ( 9) To deal with false positives, the evolution of the tracked ROIs is analyzed (step 6).

// 3.

V. EXPERIMENTAL RESULTS

This section presents the results obtained during realtime experiments performed with a fully equipped test vehicle. First, the configuration of the system and im-plementation details are presented; then, a quantitative analysis presents the performance rates of the MRT. In order to give a realistic idea of the system performance in real conditions and help to understand the quantitative results, a video (video IEEE.wmv) is also provided.

A. System Configuration

The 

B. Quantitative Results

The MRT performance is evaluated with respect to the ground truth of the two video sequences described in Table II. These sequences have been annotated empirically so that, in each frame, the positions of signs having between 20 × 20 pixels and 60 × 60 pixels are defined. At first, a comparison of the proposed MRT with Detection-Tracking-Recognition approaches from [START_REF] Gu | Traffic sign detection in dual-focal active camera system[END_REF]- [START_REF] Meuter | A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System[END_REF] and evaluated in [START_REF] Møgelmose | Visionbased traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[END_REF] is proposed in table III. Some properties of these systems are given in table IV as they are presented in [START_REF] Møgelmose | Visionbased traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[END_REF]. One may note that a direct metric comparison is unappropriate since each method is evaluated considering specific data sets and sometimes different metrics. For instance in [START_REF] Deguchi | Intelligent Traffic Sign Detector : Adaptive Learning Based on Online Gathering of Training Samples[END_REF] and [START_REF] Meuter | A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System[END_REF] where signs are present. Consequently, it is difficult to compare the proposed method with [START_REF] Meuter | A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System[END_REF] as the authors do not give any information about the 34 sequences used.

Moreover, the FPR is rarely used as the negative number does not make sense [START_REF] Møgelmose | Visionbased traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[END_REF]. This paper has focused on tracking traffic signs leading to a limited number of ROIs in frames. One extension of this study will be to consider more dynamic situations in a dense traffic environment, such as pedestrian and dynamic object tracking.

Fig. 1 .

 1 Fig. 1. Basic tracking-based TSR system architecture [1].

  Detection-Tracking-Recognition architecture. The system proposed combines Detection and Tracking in order to deal with temporary occlusions and false positive detections. It is composed of a ROI detector and a MRT algorithm (see Fig. 2). The ROI detection uses corner and edge orientation which helps to detect signs at the position candidates. This results in the generation of a set of traffic sign candidates (detected ROIs) which can contain false positives. To cope with this problem, the algorithm tracks the detected ROIs to provide filtered ROIs to Recognition. Tracking also feeds back to the detector the predicted position of ROIs (tracked ROIs in Fig. 2) in the subsequent frames. This feedback enhances the detection performance in variable

Fig. 2 .

 2 Fig. 2. Overview of the proposed system.

Fig. 3 .

 3 Fig.6). Filtering performs target tracking by predicting

Fig. 4 .Fig. 5 .

 45 Fig. 4. Examples of detected corners related to traffic signs.

  efficient methods. The filter predicts the states of the tracked ROIs from the previous states. These predictions are transmitted to the detector as a priori information to influence future searches. Indeed, predicted positions are added to the position candidates which are defined by the corner detector. In addition, the filter updates the states of the tracked ROIs based on the association results. Data Association consists of three subtasks: Gating, Association and Track Maintenance. First, Gating eliminates the improbable target-to-track pairings to reduce the computational complexity of Association. This can be done considering, for instance, a distance criterion between the targets and the tracks. Association defines, at a time k, the relations between targets and tracks.Noisy environments with uncertain measurements make joint association and tracking a challenging task, especially in multiple target scenarios, when their number is unknown and temporally variable. Uncertainty also occurs when targets are close to each other, and so can fall simultaneously into multiple gates. These conditions involve ambiguities and contradictions in the association since targets could be associated with multiple tracks and vice versa.

Fig. 6 .

 6 Fig. 6. Block-diagram of the MRT algorithm.
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  BetP .,j {X (j,i) } , as shown in TableIfor the targetto-track association. Each line defines the association probabilities of X i with Y 1 , . . . , Y m , * . The association of a target X i or a track Y j with * defines respectively the appearance/disappearance of a track. The column of the empty set ∅ defines the conflict in the target or track association considered. Usually, the conflict m Θi,. (∅)

  [x, y] define the position and s the size of the tracked ROI j in the image coordinate frame, [v x , v y ] the track(j) relative velocities between two successive frames and v s the scale change. Thanks to the high sampling time of the MRT, the scale variation v s (k) and the position variations [v x (k), v y (k)] of the traffic signs are considered similar to the previous ones and only due to Gaussian noises:

Z

  i (k) of the newly detected ROIs. The initial displacement and scale change are set to 0. An association between an existing track and a target leads to the track update. In addition, the update step helps to increment a count c update (j) related to track(j) which will be used to remove the false positives. The disappearance decision (related to BetP .,j ({X (j, * ) })) follows a non association between the targets and the track considered. The track predicted state Xj (k) is propagated into filter j with no correction[START_REF] Ristic | The TBM global distance measure for the association of uncertain combat ID declarations[END_REF]. A track deletion occurs following three consecutive disappearances. Xj (k) is fed back to Detection as a priori search positions of the given signs in the coming images in order to reduce the ROI search space and time.

  to {Y (i,j) } and {X (j,i) }. One model considers for instance non-antagonistic propositions in which m Θi,. j ({Y (i,j) }) and m Θi,. j

Algorithm 1

 1 Local Pignistic Probability (LPP(BetP)) Require: Pignistic matrix BetP Ensure: Decision vector containing the "best" associations {Associations} ← {} for all lines of BetP do

Algorithm 2 .Algorithm 2

 22 After the basic belief assignment and the bbms combination (steps 1 and 2), the best target-totrack and track-to-target associations are generated by the LPP (step 3). Track maintenance (step 4) manages track appearance and disappearance. The update step of Multi-ROIs Tracking (MRT(Z i )) Require: Detected ROIs Z i (k), i = 1, ..., n Ensure: Predicted position Xj (k + 1), j = 1, ..., m of the tracked and filtered ROIs // 1. Basic Belief Assignment for all measurements Z i (k) do for all predicted ROIs Xj (k) do

F

  vehicle-mounted camera is a 12-bit grey scale ECK-100 from Sensata Technologies providing VGA images (640 × 480 pixels, 25 fps) of the vehicle front scene. The MRT system is written in C++ with the OpenCV 2.4 library. It runs on an Intel core i7 2.20 GHz with 8 GB RAM under Windows Seven 64 bits. The critical parameters of the application are: T conf idence = 0.85 (confidence threshold of the track evolution rate C(j)), α j = 0.9 (discounting factor of the bbm), m max = 10 (maximal number of KFs), (σ x , σ y , σ s ) = (2, 2, 3) (standard deviations of the Kalman motion model), the minimum size of a ROI to be detected is 20 × 20 pixels. The performance of the MRT refers to its capacity to reduce the false positives while maintaining a high detection rate. Consequently, this section focuses on the Detection Rate Per Frame (DRPF), the False Positive Per Frame (FPPF), and the Detection Rate Per Sign (DRPS) for system evaluation. A system output is defined as a true positive if it can be matched with the ground truth, and as a false positive otherwise. A tracked target is correct if a sign candidate is forwarded to the recognition step more than N = 3 successive times. The DRPF, DRPS and FPPF are defined as: P P F = Number of false positives Total Frame Number .

Fig. 7 .

 7 Fig. 7. Detection results without MRT in successive frames. (a) and (d) Correct sign detection. (b) and (c) Presence of false positives.

Fig. 7

 7 Fig. 7 gives a qualitative view of detection results without MRT on consecutive frames. In frames (b) and (c), two false positives can be observed. As they occur suddenly and do not remain visible over time, these are typical examples of wrong detections which can be removed by the MRT. Fig. 8 (Top) shows a short sequence of circular sign detection with no feedback

betweenFig. 8 (

 8 Fig. 8 (Bottom)) providing the detector with potential search positions.

  , two measurements are used to evaluate the FP: the Positive Predictive Value (P P V = T P/(T P + F P )) and the False Positive Rate (F P R = F P/N where N is the number of negative examples in dataset). Unlike the FPPF, the PPV is influenced by the number of frames

Fig. 9 .

 9 Fig. 9. Receiver Operating Characteristic (ROC) curves without and with MRT for circular (a) and triangular (b) signs.

Fig. 8 .

 8 Fig. 8. Impact of the candidate position prediction feedback in 4 successive frames. (Top) Without feedback. (Bottom) With feedback.

For the circular sign

  Fig. 9 (b)). In this second case, the test highlights the sensitivity of the triangular detector to the minimum ROI size. Improved results can be obtained by considering ROIs larger than 30 square pixels. Table VI shows the average computation time per frame in milliseconds, without code optimization, for the detector and the MRT in both sequences. The detection of triangular and circular signs requires an average of 40 ms to process a single frame. The MRT computation time depends on the number of detected (n) and tracked (m) ROIs but remains insignificant (less than 2 ms in the worst case). With n = m = 4, the computation time of the MRT is close to 0.70 ms, representing less than 2% of the computation time of the detection. Therefore, the proposed MRT provides good performance by reducing false positives while run time remains low.

  ROI association and tracking algorithm based on spatio-temporal data fusion for vision-based traffic sign recognition has been presented. The idea is to reduce false positive detections by tracking sign candidates over time and processing the association task with the Transferable Belief Model. First, a detector extracts a set of ROI candidates which represents data to be combined in the fusion process. Then, the correlation task provides the associations with respect to the maximum of belief of each target-to-track and track-to-target pairing. Tracking is performed using multiple Kalman filters. Finally, the generated tracks are analyzed to detect false positives. The algorithm provides a set of ROIs, and on the other hand, it feeds the predicted sign locations back into the detector as a priori knowledge to influence Detection in subsequent frames. The experimental results show the effectiveness of this strategy in the reduction of the false positives by up to 45% with real-time performance. It can be noted that the Multi-ROI tracker does not only apply to the ROI detector used in this paper. It can be applied to any traffic sign detector to reduce false positives.

TABLE III COMPARISON

 III 

BETWEEN MRT AND STATE-OF-THE-ART DETECTION-TRACKING-RECOGNITION ALGORITHMS

March 5, 2015 DRAFT

The exact denotation should be Θeow i,. and Θeow .,j but for clarity reasons the reference to the "extended open world" (eow) has been removed.

The association of a target with the hypothesis { * } corresponds to the fact that no track is assigned to the target considered. March 5, 2015 DRAFT
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