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Belief Functions: Application to Traffic Sign

Recognition
Mohammed Boumediene, Jean-Philippe Lauffenburger, Jéŕemie Daniel, Christophe Cudel,

and Abdelaziz Ouamri

Abstract—This paper presents an object tracking algo-

rithm using belief functions applied to vision-based traffic

sign recognition systems. This algorithm tracks detected

sign candidates over time in order to reduce false positives

thanks to data fusion formalization. In the first stage,

Regions Of Interest (ROIs) are detected and combined

using the Transferable Belief Model semantics. In the

second stage, the Local Pignistic Probability algorithm

generates the associations maximizing the belief of each

pairing between detected ROIs and ROIs tracked by

multiple Kalman filters. Finally, the tracks are analyzed to

detect false positives. Thanks to a feedback loop between

the Multi-ROI Tracker and the ROI detector, the solution

proposed reduces false positives by up to45% while

computation time remains very low.

Index Terms—Data fusion, multi-target tracking, credal

association, TSR.
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I. I NTRODUCTION

Although traffic signs are designed to be clearly

visible, they can be missed due to driver distraction or

sign masking. This can be avoided by using Traffic Sign

Recognition (TSR) systems. Indeed, they can inform the

driver of a possibly missed traffic sign. Usually, vision-

based TSR consists of a detection and a recognition

(or classification) step [1]. In each frame, the detection

localizes Regions Of Interest (ROIs) which may contain

signs for instance based on shape detection [2] using

the Hough transform [3] or Histograms of Oriented

Gradients (HOG) [4]. The purpose of recognition is

to identify the pictograms present in the ROIs, with

the help of support vector machines, K-d trees [4],

neural networks [5], etc. When detection and recogni-

tion are independently processed, TSR systems show

known limitations - multiple detections for the same

sign, misdetections due to temporal occlusions, wrong

detections usually called “false positives” - which can

be reduced by adding target tracking [6], [7]. Tracking

helps to take account of temporal redundant information

of the road scene, and thus allows TSR systems to track

the signs over time [3], [8]. However, although tracking
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provides obviously substantial benefits, its application to

TSR is still unusual as shown in Møgelmose et al. review

paper [1].

One of the main tasks of target tracking concerns

data association. It defines, at a timek, the relations

between the set of perceived objects (targets) and the

set of already known ones (tracks). Association methods

are usually based on the Bayesian theory. They are either

track-oriented such as (G)NN1, (J)PDAF2 [7] or target-

oriented like MHT3 [9]. Track-oriented methods perform

single frame associations and are mainly based on the

a priori known track number. As a consequence, track

appearances are not directly managed but can be possible

through the computation of some specific measurements

(likelihood ratio, observability measurement, etc.) for

(J)PDA filters, for instance. MHT tracks objects over

time and defers the assignment decision if ambiguities

occur. At each time step, a decision tree containing all

the hypotheses is updated and each hypothesis leads

iteratively to a new decision tree, requiring important

computation time.

Recently, the use of belief functions [10], [11] and the

Transferable Belief Model (TBM) [12] for data associ-

ation emerged [13]–[19]. One can particularly cite [14],

[15] in which a comparison with Bayesian tracking

solutions is presented and [16], [20] highlighting the fact

that belief functions constitute a suitable and intuitive

framework for data and imperfections modelling. They

easily deal with the source ignorance and conflict with-

out any assumptions on the sensor error models. This is

the formal context of this article.

The present paper focuses on traffic sign detection

1(G)NN: (Global) Nearest Neighbor.

2(J)PDAF: (Joint) Probability Data Association Filter.

3Multi-Hypothesis Tracking.

and tracking. The detection process, recently presented

in [21], is based on corner and edge orientation detection

in grey-scale images. The corners help to define the

candidate positions (i.e. the ROIs) where the presence

of signs is to be confirmed while the edge orientation

informs about the sign candidate type (triangular, circu-

lar, etc.).

The detected ROIs are then spatio-temporally tracked

using a TBM-based Multi-ROI Tracking (MRT) algo-

rithm. The MRT considers the ROIs provided by the

detector as information to be combined with the known

tracks and thus allows their appearance, disappearance

or evolution along time. The aim is to reduce the

influence of sensor inaccuracies and false positives while

maintaining a good detection rate. For the associated

objects, a spatial data fusion using dynamically managed

multiple Kalman Filters (KF) [22] both for their tracking

and position prediction in the future frames is integrated

to enhance detection performance. This MRT provides a

global approach managing all targets and tracks whatever

the association type (track-to-track, target-to-target,etc.)

with a generalized combination rule allowing complexity

reduction. In addition, it provides native mechanisms for

track initialization, temporary occlusion and conflicting

association management. The system has been imple-

mented in a test vehicle. The results obtained show

the benefits in terms of detection rate, false positive

reduction and computation time, satisfactory real-time

constraints.

The paper is organized as follows. Section II presents

the system overview. The theoretical background of data

association in the TBM is presented in Section III. Sec-

tion IV details the proposed MRT and its experimental

validation is presented in Section V. Finally, Section VI

concludes this paper.
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Fig. 1. Basic tracking-based TSR system architecture [1].

II. SYSTEM OVERVIEW

Tracking-based TSR systems are characterized by

two architectures:Detection-Recognition-Trackingand

Detection-Tracking-Recognition. In the first one, the

temporal information is used after theRecognition(see

Fig. 1) so that only the recognized signs are tracked

in the future frames.Tracking consequently provides a

memory [3] which makes the recognition of the tracked

sign in subsequent frames unnecessary [23]. Several

approaches have been adopted in the literature for the

second architecture which performs theTracking after

the Detection. For instance, Fanget al. [24] track all

detected ROIs until their respective size is sufficiently

large for easy recognition while in [25], a classifier sep-

arates valid and invalid tracks by using spatio-temporal

constraints.

This study adopts aDetection-Tracking-Recognition

architecture. The system proposed combinesDetection

andTracking in order to deal with temporary occlusions

and false positive detections. It is composed of a ROI

detector and a MRT algorithm (see Fig. 2). The ROI

detection uses corner and edge orientation which helps

to detect signs at the position candidates. This results in

the generation of a set of traffic sign candidates (detected

ROIs) which can contain false positives. To cope with

this problem, the algorithm tracks the detected ROIs

to provide filtered ROIs toRecognition. Tracking also

feeds back to the detector the predicted position of ROIs

(tracked ROIs in Fig. 2) in the subsequent frames. This

feedback enhances the detection performance in variable

Fig. 2. Overview of the proposed system.

illumination conditions where corner detection can fail.

The filtered ROIs represent tracked ROIs with a high

confidence score.

This paper focuses on the association and tracking

capabilities of the proposed MRT. It will be shown how

belief functions provide an interesting framework for

the problem description, good association and tracking

performance while reducing the level of false positives.

A. ROI Detection

Fig. 3 describes the ROI detector. A traffic sign

shape detector initially described and evaluated in [21]

is implemented here. Singularities or angular edges of

traffic signs are detected by theCorner Detectionstep

and represent the position candidates of signs. Fig. 4

shows an example of the position candidates which are

defined by the standard Harris corner detector [26]. For

each corner, a candidate ROI is selected according to the

shapes in the corner neighbourhood. Shape recognition is

performed using a coded image where each pixel is de-

fined according to edge orientations as depicted in Fig. 5.

To recognize triangular shapes, the RANSAC Symmetric

Line Detection (RSLD) algorithm from Boumedieneet

al. [21] is implemented. Its principle is extended with a

Template-Matchingprocess to circular shape detection.

B. Multi-ROI Tracking

The MRT algorithm is composed of three functions:

Filtering, Data Associationand ROI life analysis(see

Fig. 6). Filtering performs target tracking by predicting
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Fig. 3. Block-diagram of the ROI detector.

Fig. 4. Examples of detected corners related to traffic signs.

Fig. 5. Segmentation of the orientation space (from [21]). Classes 3

and 4 represent horizontal and vertical pixel edges respectively. Classes

1 and 2 describe diagonal pixel edges. The non-edge pixel is considered

as class 0.

the future position of the tracked ROIs in the frames.

Data Associationassigns one target provided by the de-

tector to a track and manages the track creation/deletion.

ROI life analysis uses the temporal context to vali-

date/reject the tracks transmitted toRecognition. Traffic

sign candidates provided by theDetection define the

targets of the MRT. The tracked ROIs define the tracks

to be filtered so as to reduce false positives.

For the track State Estimation, the well-known

KF [22] has been adopted as it is one of the most

efficient methods. The filter predicts the states of the

tracked ROIs from the previous states. These predictions

are transmitted to the detector asa priori information to

influence future searches. Indeed, predicted positions are

added to the position candidates which are defined by the

corner detector. In addition, the filter updates the states

of the tracked ROIs based on the association results.

Data Associationconsists of three subtasks:Gating,

AssociationandTrack Maintenance. First, Gating elim-

inates the improbable target-to-track pairings to reduce

the computational complexity ofAssociation. This can

be done considering, for instance, a distance criterion

between the targets and the tracks.Associationdefines,

at a timek, the relations between targets and tracks.

Noisy environments with uncertain measurements make

joint association and tracking a challenging task, espe-

cially in multiple target scenarios, when their number

is unknown and temporally variable. Uncertainty also

occurs when targets are close to each other, and so can

fall simultaneously into multiple gates. These conditions

involve ambiguities and contradictions in the association

since targets could be associated with multiple tracks and

vice versa.

The association is done through an evidential data

fusion process to consider and propagate these uncertain-

ties as well as sensor imperfections and reduce false de-

tections.Track Maintenanceanalyzes the selected target-

to-track pairs to detect appearances and disappearances.

A track appearance/disappearance leads respectively to
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Fig. 6. Block-diagram of the MRT algorithm.

adding/deleting a KF. However, traffic signs do not

suddenly appear and disappear in frames. Therefore, the

analysis of the track temporal evolution helps to detect

false positives. Indeed, based on the track properties

such as its length (number of frames where the track

considered is present), a confidence score is defined. A

tracked ROI with a low confidence value is considered

as a false positive and thus ignored. Otherwise, it is

forwarded to theRecognitionstep. On the other hand,

disappearance is confirmed if no target is assigned to

the track several times at a stretch.

The next sections will show that credal association

and tracking is able to reduce the false positive rate while

keeping a high detection rate. This result is reproducible,

whichever traffic sign detector is used.

III. D ATA ASSOCIATION IN THETBM

A. Transferable Belief Model: Basic Concepts

The TBM is a subjective and non-probabilistic in-

terpretation of the evidence theory [10], [11]. This

framework describes a model of uncertain reasoning

and decision making based on a credal and a pignistic

level. At the credal level, belief masses are used to

represent and combine the pieces of information while

at the pignistic level, these masses are transformed into

probability measurements for decision making.

1) Credal level: Consider a problem for which all

the discrete solutions (also called hypotheses)Hj , j =

1, 2, ..., k, with k the number of possible hypotheses,

define theframe of discernmentΘ:

Θ = {{H1} , {H2} , ..., {Hk}} =
k
⋃

j=1

{Hj} . (1)

Θ is the ignorance, i.e. the union of all hypotheses.

Its correspondingreferential subset, a power set denoted

2Θ of 2k disjunctions ofHj is such that:

2Θ = {∅, {H1} , ..., {Hk} , ..., {H1, H2, H3} , ...,Θ} ,

(2)

where∅ represents the impossible hypothesis commonly

interpreted as the conflict between sources. A proposition

A = {H1, H2} refers to the disjunction “H1 or H2” and

means that either{H1} or {H2} can be the solution to

the problem. Each propositionA of 2Θ provided by a

sourcei is characterized by itsbasic belief mass(bbm)

mΘ
i (A) which represents its veracity:

mΘ
i : 2Θ → [0, 1],

∑

A∈2Θ

mΘ
i (A) = 1. (3)

When thek answers are exclusive and exhaustive, the

solution to the problem is one of the hypotheses ofΘ and

a mass on∅ is not allowed. Practically, in applications

such as target tracking, this assumption is often too

restrictive. Indeed, all possible associations cannot be
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identifieda priori since targets can appear/disappear over

time. Hence the suggestion of two other frameworks: the

“open world” [12] and the “extended open world” [19].

In the open world,Θ is exclusive but not exhaustive

so that a massmΘ
i (∅) > 0 is possible. In this case,∅

represents a reject class which describes the unknown

hypotheses not taken into account during the problem

formalization. The non-exhaustivity of the discernment

frame can be managed by adding toΘ an alternative

hypothesis{∗} representing all unknown propositions

not explicitly defined inΘ [19]. This singleton allows the

new discernment frameΘeow to become exhaustive (cf.

(4)). A non zero value ofmΘeow

i (∅) is then only linked

to the sources unreliability or to their discordance.

Θeow = Θ ∪ {∗} (4)

The combination gathers the different sourcesbbm.

Beside all the existing operators [20], the conjunctive

combination rule is the most straightforward [27]. Forp

sources to be combined, it is expressed as:















mΘ
∩ (A) =

∑

A1∩...∩Ap=A

p
∏

j=1

mΘ
j (Aj),

mΘ
∩ (∅) =

∑

A1∩...∩Ap=∅

p
∏

j=1

mΘ
j (Aj).

(5)

2) Pignistic level: Finding the association relations

consists in making a decision among all the possible

hypotheses of the problem given. Usually, the decision

is made inΘ, i.e. on simple hypothesesHj . Neverthe-

less, after the combination (see (5)), masses are placed

either on singleton hypotheses (|A| = 1) or on unions

(|A| > 1). It appears that a transformation from2Θ to

Θ is necessary. Among all the transformations available,

the pignistic one [28] is commonly used. It is built as

a probabilistic rule and shares the mass ofA on its

singletons. The pignistic probability (BetP) is given by

(6), with mΘ
∩ (∅) < 1:

BetP (Hj) =
∑

A∈2Θ

Hj∈A

mΘ
∩ (A)

|A| (1−mΘ
∩ (∅))

. (6)

B. Object Association: Problem Formalization

In tracking algorithms using TBM, the associa-

tion task is observed from two different points of

view [18]: target-to-track and track-to-target associa-

tions. This leads to the definition of two extended open

worlds Θi,. andΘ.,j
4, i = 1, ..., n, with n the number

of targets, andj = 1, ...,m, with m the number of

tracks at timek. The frameΘi,. contains them possible

target(i)-to-track(j) associations denoted{Y(i,j)}, and

{Y(i,∗)} represents the appearance of target(i)5. The

frame Θ.,j is composed of then possible track(j)-

to-target(i) assignments denoted{X(j,i)}, and{X(j,∗)}

represents a track deletion:

Θi,. =
{

{Y(i,1)}, {Y(i,2)}, ..., {Y(i,m)}, {Y(i,∗)}
}

,

Θ.,j =
{

{X(j,1)}, {X(j,2)}, ..., {X(j,n)}, {X(j,∗)}
}

.
(7)

The question which is then raised is: “Is targetXi as-

sociated with trackYj?”. To this question, three answers

are possible: either they are associated or not, or the

assignment is unclear. Within the TBM, these solutions

will be described by three belief masses over{Y(i,j)},

over its contrary{Y(i,j)} and over the ignoranceΘi,. so

that:

• m
Θi,.

j ({Y(i,j)}): belief in “Xi is associated with

Yj”,

• m
Θi,.

j ({Y(i,j)}): belief in “Xi is not associated with

Yj”,

4The exact denotation should beΘeowi,.
andΘeow.,j

but for clarity

reasons the reference to the “extended open world” (eow) has been

removed.

5The association of a target with the hypothesis{∗} corresponds to

the fact that no track is assigned to the target considered.
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• m
Θi,.

j (Θi,.): ignorance about the association.

The belief massesmΘ.,j

i ({X(j,i)}), m
Θ.,j

i ({X(j,i)})

and m
Θ.,j

i (Θ.,j) are generated for the track-to-target

associations in the same way. It is worth noting that

no information is initially considered on{Y(i,∗)} and on

{X(j,∗)}. These masses appear during combination. This

finally leads to ann×m dimension assignment problem

to be solved at each time step in order to define the

association relations. Thebbms are then combined with

the conjunctive rule (5) over each discernment frameΘi,.

andΘ.,j , generating massesmΘi,. (andmΘ.,j ) over2Θi,.

and2Θ.,j [19]:

mΘi,.

(

{Y(i,j)}
)

= m
Θi,.

j

(

{Y(i,j)}
)

m
∏

a=1
a 6=j

α(i,a)

mΘi,.

(

{Y(i,j), Y(i,l)}
)

=

m
Θi,.

j (Θi,.)m
Θi,.

l (Θi,.)

m
∏

a=1

a 6=j

a 6=l

β(i,a)

and for union combinations of2 to m− 1 hypotheses:

mΘi,.({Y(i,j), . . . , Y(i,l)}) = γ(i,(j,...,l))

m
∏

a=1

a 6=j

......

a 6=l

β(i,a)

mΘi,. ({∗}) =
m
∏

a=1

β(i,a)

mΘi,.

(

{Y(i,j)}
)

= m
Θi,.

j

(

{Y(i,j)}
)

m
∏

a=1
a 6=j

mΘi,.

a (Θi,.)

mΘi,. (Θi,.) =

m
∏

a=1

mΘi,.

a (Θi,.)

(8)

mΘi,. (∅) = 1−






m
∏

a=1

α(i,a) +

m
∑

a=1

mΘi,.

a

(

{Y(i,a)}
)

m
∏

b=1
b 6=a

δ(i,b)







TABLE I

TARGET-TO-TRACK PIGNISTIC PROBABILITIES

BetPi,.(.) Y1 . . . Ym ∗ ∅

X1 BetP1,.(Y(1,1)) . . . BetP1,.(Y(1,m)) BetP1,.(∗) BetP1,.(∅)

X2 BetP2,.(Y(2,1)) . . . BetP2,.(Y(2,m)) BetP2,.(∗) BetP2,.(∅)

...
...

...
...

...
...

Xn BetPn,.(Y(n,1)) . . . BetPn,.(Y(n,m)) BetPn,.(∗) BetPn,.(∅)

with:






























α(i,a) =
(

1−m
Θi,.

a

(

{Y(i,a)}
)

)

,

β(i,a) =
(

m
Θi,.

a

(

{Y(i,a)}
))

,

γ(i,(j,...,l)) = m
Θi,.

j (Θi,.) . . .m
Θi,.

l (Θi,.) ,

δ(i,b) =
(

1−m
Θi,.

b

(

{Y(i,b)}
)

)

.

In order to make a decision, the pignistic transfor-

mation (6) is performed over the masses from (8). This

leads to two pignistic matricesBetPi,.

(

{Y(i,j)}
)

and

BetP.,j

(

{X(j,i)}
)

, as shown in Table I for the target-

to-track association. Each line defines the association

probabilities ofXi with Y1, . . . , Ym, ∗. The association

of a targetXi or a trackYj with ∗ defines respectively

the appearance/disappearance of a track. The column of

the empty set∅ defines the conflict in the target or track

association considered. Usually, the conflictmΘi,. (∅)

is redistributed through the normalization of the pig-

nistic probability (see (6)). Nevertheless, as in other

studies [13], [17], [29], the authors use a non-normalized

form (9). Because of its informative aspect for decision-

making [20], the conflict is conserved especially for the

detection of association ambiguities or contradictions.


















BetPi,.

(

{Y(i,j)}
)

,
∑

A∈2Θi,.

Y(i,j)∈A

mΘi,. (A)

|A|

BetPi,. (∅) , mΘi,. (∅)

(9)

The formalization of (9) to the multi-object association

problem can be found in [17]. Decision making is based

on these pignistic matrices. In the literature, several algo-

rithms are proposed for selecting the “best” associations
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regarding global decision cost functions [13]. Generally,

and it will be the case in this work, they consider the

following constraints [18]:

• a target can only be associated with one track and

vice versa,

• multiple existing tracks can disappear,

• multiple new tracks can appear.

IV. M ULTI -ROI ASSOCIATION AND FILTERING

A. Track Filtering

Tracking a moving target can be viewed as the obser-

vation of a dynamic system. That is why the straight-

forward solution employed in computer-vision tracking

applications is the KF [22]. Usually, a tracking filter

is derived in terms of a recursive (linear) estimator.

It recursively computes the estimates of the objectl-

dimensional state vectorXj(k) ∈ R
l by a combination

of the previous estimates and new object observations

Zi(k) ∈ R
p. For this purpose, a dynamic (motion) model

and a measurement model are employed:

Xj(k) = F Xj(k − 1) + w(k),

Zi(k) = HXj(k) + v(k).
(10)

F is the l × l state transition matrix based on the

chosen track motion model. It is assumed that the model

and measurement noisesw and v are independent and

identically distributed random noises. The state noise

w is a white Gaussianl-dimensional process with zero

mean and covarianceQ denotedw ∼ Nl(0, Q) and

v ∼ Np(0, R). The measurement model relates the state

Xj(k) to the observationZi(k) with the measurement

matrix H ∈ R
p×l. For a given framek, the detector

provides a setZ of ROI candidates which represents

the n targets defined by the measurementsZi(k) ∈ Z.

Assume that the state evolution model behaves linearly

with respect to the track motion and that the observations

Zi(k) and statesXj(k) are linearly dependent, leading to

(10). According to the data association results at timek,

KFs corresponding to existing tracks are updated and

new filters are created for appearing tracks. The number

m of KFs depends on the number of tracked ROIs.

The 2D motion of objects in a video sequence is

strongly related to the camera motion and to their own

displacement. In TSR applications, only the camera mo-

tion has to be considered since the objects are static. A

steady-state vehicle movement is assumed, characterized

by low velocity variations with respect to the sampling

rate of the system (> 15 fps). Moreover, the angle

between the line of sight of the camera and the vehicle

direction is sufficiently small so that the sign sizes in

the image can be considered as constantly increasing.

In this context, the nearly constant velocity model (12)

represents a globally satisfactory motion model and a

classic choice for tracking applications [3], [8], [30]. The

state vectorXj(k) of a track(j) is such that:

Xj(k) = [x, y, s, vx, vy, vs]
T , (11)

where [x, y] define the position ands the size of the

tracked ROIj in the image coordinate frame,[vx, vy]

the track(j) relative velocities between two successive

frames andvs the scale change. Thanks to the high

sampling time of the MRT, the scale variationvs(k) and

the position variations[vx(k), vy(k)] of the traffic signs

are considered similar to the previous ones and only due

to Gaussian noises:



















x(k) = x(k − 1) + vx(k),

y(k) = y(k − 1) + vy(k),

s(k) = s(k − 1) + vs(k).

(12)

with :



















vx(k) ∼ N (vx(k − 1), σ2
x),

vy(k) ∼ N (vy(k − 1), σ2
y),

vs(k) ∼ N (vs(k − 1), σ2
s).

(13)
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Zi(k) is a p× 1 vector defined by:

Zi(k) = [x, y, s]
T
. (14)

Three processing steps are possible for a given track:

creation, update, and deletion. The appearance decision

(depending onBetPi,.({Y(i,∗)})) creates a new filterj.

Its state vectorXj(k) is initialized by the observation

Zi(k) of the newly detected ROIs. The initial displace-

ment and scale change are set to 0. An association

between an existing track and a target leads to the track

update. In addition, the update step helps to increment a

countcupdate(j) related to track(j) which will be used to

remove the false positives. The disappearance decision

(related toBetP.,j({X(j,∗)})) follows a non association

between the targets and the track considered. The track

predicted statêXj(k) is propagated into filterj with

no correction (15). A track deletion occurs following

three consecutive disappearances.X̂j(k) is fed back to

Detectionasa priori search positions of the given signs

in the coming images in order to reduce the ROI search

space and time.

X̂j(k) = F Xj(k − 1)

P̂j(k) = FPj(k − 1)FT +Q
(15)

P̂j(k) defines the predicted error covariance matrix of

filter j andPj(k−1) its error covariance matrix in frame

k − 1.

The false positive reduction is performed through a

track-related confidence scoreC(j) defined by the ratio

between the update countcupdate(j) and the length of

the track:

C(j) =
cupdate(j)

length(j)
, (16)

with cupdate(j) the number of frames where ROIj is

confirmed andlength(j) the total frame number where

objectj is present. A false positive occurs whenC(j) is

lower than a predefined thresholdTconfidence, otherwise

the objectj is valid and becomes a ROI forwarded to

the Recognition.

B. Data Modelling in the TBM

There are several solutions to describe thebbmsmΘi,.

j

andm
Θ.,j

i related to{Y(i,j)} and {X(j,i)}. One model

considers for instance non-antagonistic propositions in

which m
Θi,.

j ({Y(i,j)}) and m
Θi,.

j ({Y(i,j)}) cannot si-

multaneously be non-zero in order to avoid intrinsic

conflict [13], [18], [20]. In this paper, the masses defined

respectively onΘi,. andΘ.,j are described according to

[31]:


















m
Θi,.

j ({Y(i,j)}) = αj exp
−d2

ij ,

m
Θi,.

j ({Y(i,j)}) = αj(1− exp−d2
ij ),

m
Θi,.

j (Θi,.) = 1− αj ,

(17)

where:

• 0 < αj < 1 represents the reliability of sourcej,

• dij is the dissimilarity measurement between

target(i) detected at timek and track(j) already

known at timek.

dij characterizes the level of confidence that target(i)

corresponds to track(j). For the purpose of ROI tracking,

dij is chosen as the Mahalanobis distance [7] between

track(j) and target(i):

d2ij = Z̃
T
ijS

−1 Z̃ij , (18)

with S the residual covariance matrix and̃Zij the in-

novation of filter j. In (17), the choice of a monotone

decreasing function ofdij leads to the belief reduction in

the association of target(i) to track(j) when the distance

between the objects is large. On the contrary, if the

dissimilarity measurement is low, their association is

more probable. It can be noted thatdij depends on the

tracking filter covariance, so that the belief depends on

the prediction and tracking performance.

March 5, 2015 DRAFT



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX 10

Algorithm 1 Local Pignistic Probability (LPP(BetP))
Require: Pignistic matrixBetP

Ensure: Decision vector containing the “best” associa-

tions

{Associations} ← {}

for all lines ofBetP do

(imax, jmax) = argmax
(i,j)

(BetP (i, j))

{Associations} ← (imax, jmax)

Removeimax row andjmax column fromBetP

end for

C. Pignistic Association Algorithm

In [17], a review of the state-of-the-art credal associ-

ation algorithms is proposed. It shows that with a global

(sub-optimal) cost optimization, suspicious associations

could be selected. To cope with this problem, local

optimization solutions have been proposed. In the MRT,

decision making is based on the Local Pignistic Proba-

bility algorithm (cf. Algorithm 1) [17]. This algorithm is

applied to each pignistic matrixBetPi,. (BetP.,j) and

performs a successive line-wise selection of then (or

m) local maximum in the pignistic matrix. Compared to

other algorithms, the LPP has the advantage of generat-

ing decisions directly from the pignistic matrices with no

extra-calculations. A major consequence is its ability to

be used in real-time applications. Furthermore, the LPP

is shown to be less conservative than other association

solutions. A complete description and evaluation of this

algorithm can be found in [17].

An overview of the MRT algorithm is shown in

Algorithm 2. After thebasic belief assignmentand the

bbms combination (steps 1 and 2), the best target-to-

track and track-to-target associations are generated by

the LPP (step 3). Track maintenance (step 4) manages

track appearance and disappearance. The update step of

Algorithm 2 Multi-ROIs Tracking (MRT(Zi))

Require: Detected ROIsZi(k), i = 1, ..., n

Ensure: Predicted position̂Xj(k + 1), j = 1, ...,m of

the tracked and filtered ROIs

// 1. Basic Belief Assignment

for all measurementsZi(k) do

for all predicted ROIŝXj(k) do

d2ij ← getDistance(Zi(k),X̂j(k)) (18)

ComputemΘi,.

j andmΘ.,j

i (17)

end for

end for

// 2. Mass combination and BetP computation

ComputemΘi,. , mΘ.,j , BetPi,., BetP.,j (8) and (9)

// 3. Target-to-track and track-to-target associations

{Y } ← LPP(BetPi,.) and{X} ← LPP(BetP.,j)

// 4. Track maintenance

AddNewTrack({Y }) and

ConfirmTrackDisappearance({X})

// 5. Update the state of the tracked ROIs

UpdateKalmanFilters()

// 6. ROI evolution analysis

while j ≤ m do

if C(j) > Tconfidence then

{filtered ROIs} ← Xj(k)

end if

end while

the tracking filters is perfomed in step 5 depending on the

assignment decisions and available observationsZi(k).

To deal with false positives, the evolution of the tracked

ROIs is analyzed (step 6).

V. EXPERIMENTAL RESULTS

This section presents the results obtained during real-

time experiments performed with a fully equipped test

vehicle. First, the configuration of the system and im-
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plementation details are presented; then, a quantitative

analysis presents the performance rates of the MRT. In

order to give a realistic idea of the system performance

in real conditions and help to understand the quantitative

results, a video (videoIEEE.wmv) is also provided.

A. System Configuration

The vehicle-mounted camera is a 12-bit grey scale

ECK-100 from Sensata Technologiesproviding VGA

images (640 × 480 pixels, 25 fps) of the vehicle front

scene. The MRT system is written in C++ with the

OpenCV2.4 library. It runs on an Intel corei7 2.20 GHz

with 8 GB RAM under Windows Seven64 bits. The criti-

cal parameters of the application are:Tconfidence = 0.85

(confidence threshold of the track evolution rateC(j)),

αj = 0.9 (discounting factor of thebbm), mmax = 10

(maximal number of KFs),(σx, σy, σs) = (2, 2, 3)

(standard deviations of the Kalman motion model), the

minimum size of a ROI to be detected is20 × 20

pixels. The performance of the MRT refers to its capacity

to reduce the false positives while maintaining a high

detection rate. Consequently, this section focuses on the

Detection Rate Per Frame (DRPF), the False Positive Per

Frame (FPPF), and the Detection Rate Per Sign (DRPS)

for system evaluation. A system output is defined as a

true positive if it can be matched with the ground truth,

and as a false positive otherwise. A tracked target is

correct if a sign candidate is forwarded to the recognition

step more thanN = 3 successive times. The DRPF,

DRPS and FPPF are defined as:

DRPF =
Number of true positives

Ground Truth
· 100,

DRPS =
Number of correct detections

Total Sign Number
· 100,

FPPF =
Number of false positives

Total Frame Number
.

(19)

Fig. 7. Detection results without MRT in successive frames. (a) and

(d) Correct sign detection. (b) and (c) Presence of false positives.

B. Quantitative Results

The MRT performance is evaluated with respect to

the ground truth of the two video sequences described

in Table II. These sequences have been annotated empiri-

cally so that, in each frame, the positions of signs having

between20× 20 pixels and60× 60 pixels are defined.

The first sequence (12 500 frames) mainly concerns

departmental roads and motorways with several lane

changes, and thus presents large vehicle speed variations.

42 traffic signs appear in1 452 frames. The second video

(6 250) contains even more various scenarios since all

French road types are represented with a larger ratio of

speeds under90 km/h. This variety is confirmed by the

high ratio of signs with respect to its length. These signs

are present in1 031 frames.

Fig. 7 gives a qualitative view of detection results

without MRT on consecutive frames. In frames (b) and

(c), two false positives can be observed. As they occur

suddenly and do not remain visible over time, these

are typical examples of wrong detections which can

be removed by the MRT. Fig. 8 (Top) shows a short

sequence of circular sign detection with no feedback

March 5, 2015 DRAFT



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX 12

TABLE II

TEST SEQUENCES ONFRENCH ROADS

Video 1 Video 2

Number of frames 12 500 6 250

Length (km) 9.3 5.2

Motorway (%) 26.3 7.7

National (%) 0.0 27.3

Departmental (%) 73.7 64.9

City (%) 20.2 16.2

Number of circular signs 31 18

Number of triangular signs 11 13

Min Vehicle Speed (km/h) 0 50

Max Vehicle Speed (km/h) 110 110

Speed< 90 km/h (%) 20.9 45.7

Occlusions (partial/total) 14(13/1) 3(1/2)

Lane change (exits) 8(3) 4(3)

betweenTracking and Detection. In frame (a), the sign

is correctly detected. However, in frames (b) and (c),

the corner detection fails and so misses the circular sign

twice. This drawback is solved by the prediction task

of the MRT and the feedback of the tracked ROIs (see

Fig. 8 (Bottom)) providing the detector with potential

search positions.

At first, a comparison of the proposed MRT with

Detection-Tracking-Recognition approaches from [32]–

[34] and evaluated in [1] is proposed in table III. Some

properties of these systems are given in table IV as

they are presented in [1]. One may note that a direct

metric comparison is unappropriate since each method is

evaluated considering specific data sets and sometimes

different metrics. For instance in [33] and [34], two

measurements are used to evaluate the FP: the Positive

Predictive Value (PPV = TP/(TP + FP )) and the

False Positive Rate (FPR = FP/N whereN is the

number of negative examples in dataset). Unlike the

FPPF, the PPV is influenced by the number of frames

Fig. 9. Receiver Operating Characteristic (ROC) curves without and

with MRT for circular (a) and triangular (b) signs.

where signs are present. Consequently, it is difficult to

compare the proposed method with [34] as the authors

do not give any information about the34 sequences used.

Moreover, the FPR is rarely used as the negative number

does not make sense [1]. Considering these limitations,

the proposed solution presents interesting performance

with a low FPPF (0.16) and a high DRPF (89.92). The

Mean DRPF and Mean False Positives (more accurate

since they show the results for different sign types)

already higlight the good results of the MRT.

Table V shows that the circular and triangular sign

detector alone (denotedMRT ) provides respectively
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Fig. 8. Impact of the candidate position prediction feedbackin 4 successive frames. (Top) Without feedback. (Bottom) Withfeedback.

TABLE III

COMPARISON BETWEENMRT AND STATE-OF-THE-ART DETECTION-TRACKING-RECOGNITION ALGORITHMS

Paper Evaluation data Number of Best detection False positives Mean DRPF Mean false

format positive ROIs rate (DRPF)(%) for best DRPF positives

[32] 2134 images from videos 3298 94.03 FPPF:3.41 - -

[33] 2967 images from videos 4886 90.1 PPV: 85.6% - -

[34] Images from34 videos N/A 87.12 FPR:0.14% - -

Our paper 18000 images from two videos 2850 89.92 FPPF:0.16 74.19 FPPF:0.13

TABLE IV

PROPERTIES OFSELECTED DETECTION-TRACKING-RECOGNITION ALGORITHMS

Paper Sign type detected Real-time Rotation inv. Model vs. training Test image type

[32] Circular red and blue Yes Yes Both Low-res

[33] Circular red No Yes Training Low-res

[34] Circular Yes Yes Model Low-res

Our paper Circular, triangular, and yield signs Yes Yes Model Low-res

87% and 91% of DRPS for Sequence1 with 0.28 and

0.26 of FPPF. Slightly better results are obtained in

Sequence2. In addition, it is clearly visible that the

MRT reduces the false positives by more than45%

while keeping substantially similar levels of DRPF and

DRPS. This lowers the amount of useless data provided

to the recognition step, and thus reduces the global TSR

computational time. Fig. 9 presents more details about

the MRT influence on the detection step. These Receiver

Operating Characteristic (ROC) curves are created by

plotting the DRPF with respect to the FPPF, considering

various system configurations with and without the MRT.
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TABLE V

PERFORMANCERATES FORSEQUENCE1 AND 2

Sequence 1 Sequence 2

MRT MRT MRT MRT

Circular sign

DRPS(%) 87 87 95 95

DRPF (%) 87.95 86.55(−2%) 92.81 93.3(+0.5%)

FPPF 0.28 0.15(−46%) 0.27 0.17(−37%)

Triangular sign

DRPS(%) 91 91 100 100

DRPF (%) 64.15 55.37(−14%) 69.54 61.56(−11%)

FPPF 0.26 0.14(−46%) 0.11 0.07(−37%)

For the circular sign detection, the ROC curves clearly

show the improvement induced by the MRT algorithm

since equivalent DRPFs are obtained with lower FPPF

values (Fig. 9 (a)), especially when the DRPF is high

(> 80%). For the triangular sign detection, the reduction

of FPPF is also large (about40%) but with a lower

DRPF (71%) than for circular signs (87%) as shown in

Fig. 9 (b)). In this second case, the test highlights the

sensitivity of the triangular detector to the minimum ROI

size. Improved results can be obtained by considering

ROIs larger than30 square pixels.

Table VI shows the average computation time per

frame in milliseconds, without code optimization, for the

detector and the MRT in both sequences. The detection

of triangular and circular signs requires an average of

40 ms to process a single frame. The MRT computation

time depends on the number of detected(n) and tracked

(m) ROIs but remains insignificant (less than2 ms in the

worst case). Withn = m = 4, the computation time of

the MRT is close to0.70 ms, representing less than2%

of the computation time of the detection. Therefore, the

proposed MRT provides good performance by reducing

false positives while run time remains low.

TABLE VI

AVERAGE COMPUTATION TIMES

Execution time (ms)

Detection (triangular and circular) 40

MRT (n = 1,m = 1) 0.25

MRT (n = 2,m = 2) 0.30

MRT (n = 3,m = 3) 0.56

MRT (n = 4,m = 4) 0.65

MRT (n = 5,m = 5) 1.56

VI. CONCLUSION

A Multi-ROI association and tracking algorithm based

on spatio-temporal data fusion for vision-based traffic

sign recognition has been presented. The idea is to re-

duce false positive detections by tracking sign candidates

over time and processing the association task with the

Transferable Belief Model. First, a detector extracts a set

of ROI candidates which represents data to be combined

in the fusion process. Then, the correlation task provides

the associations with respect to the maximum of belief of

each target-to-track and track-to-target pairing. Tracking

is performed using multiple Kalman filters. Finally, the

generated tracks are analyzed to detect false positives.

The algorithm provides a set of ROIs, and on the other

hand, it feeds the predicted sign locations back into the

detector asa priori knowledge to influenceDetectionin

subsequent frames. The experimental results show the

effectiveness of this strategy in the reduction of the false

positives by up to45% with real-time performance.

It can be noted that the Multi-ROI tracker does not

only apply to the ROI detector used in this paper. It can

be applied to any traffic sign detector to reduce false

positives.

This paper has focused on tracking traffic signs lead-

ing to a limited number of ROIs in frames. One extension
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of this study will be to consider more dynamic situations

in a dense traffic environment, such as pedestrian and

dynamic object tracking.
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