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Multi-ROI Association and Tracking With
Belief Functions: Application to Traffic Sign

Recognition

Mohammed Boumediene, Jean-Philippe Lauffenburgaendie Daniel, Christophe Cudel,

and Abdelaziz Ouamri

Abstract—This paper presents an object tracking algo- I. INTRODUCTION
rithm using belief functions applied to vision-based traffic
sign recognition systems. This algorithm tracks detected L .

9 9 y 9 Although traffic signs are designed to be clearly
sign candidates over time in order to reduce false positives ) ) ) )

. o ) visible, they can be missed due to driver distraction or
thanks to data fusion formalization. In the first stage,

Regions Of Interest (ROIs) are detected and combined SIgn masking. This can be avoided by using Traffic Sign
using the Transferable Belief Model semantics. In the Recognition (TSR) systems. Indeed, they can inform the

second stage, the Local Pignistic Probability algorithm driver of a possibly missed traffic sign. Usually, vision-

generates the associations maximizing the belief of eaChbased TSR consists of a detection and a recognition

pairing between detected ROIs and ROIls tracked by

multiple Kalman filters. Finally, the tracks are analyzed to (or classification) step [1]. In each frame, the detection

detect false positives. Thanks to a feedback loop between!0calizes Regions Of Interest (ROIs) which may contain

the Multi-ROI Tracker and the ROI detector, the solution  signs for instance based on shape detection [2] using

proposed reduces false positives by up tot5% while the Hough transform [3] or Histograms of Oriented

computation time remains very low. Gradients (HOG) [4]. The purpose of recognition is

Index Terms—Data fusion, multi-target tracking, credal 0 identify the pictograms present in the ROIs, with
association, TSR. the help of support vector machines, K-d trees [4],
neural networks [5], etc. When detection and recogni-
tion are independently processed, TSR systems show
known limitations - multiple detections for the same
sign, misdetections due to temporal occlusions, wrong
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provides obviously substantial benefits, its applicatmn &nd tracking. The detection process, recently presented
TSR is still unusual as shown in Mggelmose et al. revieim [21], is based on corner and edge orientation detection
paper [1]. in grey-scale images. The corners help to define the

One of the main tasks of target tracking concerrgandidate positions (i.e. the ROIs) where the presence
data associationlt defines, at a timek, the relations Of signs is to be confirmed while the edge orientation
between the set of perceived objectargety and the informs about the sign candidate type (triangular, circu-
set of already known onesrgcks. Association methods lar, etc.).

are usually based on the Bayesian theory. They are either

The detected ROIls are then spatio-temporally tracked
track-oriented such as (G)NN(J)PDAF [7] or target- _ ,
using a TBM-based Multi-ROI Tracking (MRT) algo-

oriented like MHT [9]. Track-oriented methods perform . _
rithm. The MRT considers the ROIs provided by the

single frame associations and are mainly based on the . . ) .
detector as information to be combined with the known

a priori known track number. As a consequence, track . .
tracks and thus allows their appearance, disappearance

appearances are not directly managed but can be possible . . o
or evolution along time. The aim is to reduce the

through the computation of some specific measurements _ . . .
influence of sensor inaccuracies and false positives while

(likelihood ratio, observability measurement, etc.) for = | ) .
maintaining a good detection rate. For the associated

(J)PDA filters, for instance. MHT tracks objects over . . . . .
objects, a spatial data fusion using dynamically managed

time and defers the assignment decision if ambiguities ) . .
multiple Kalman Filters (KF) [22] both for their tracking

occur. At each time step, a decision tree containing all . L .
and position prediction in the future frames is integrated

the hypotheses is updated and each hypothesis leads , ) )
to enhance detection performance. This MRT provides a

iteratively to a new decision tree, requiring important )
global approach managing all targets and tracks whatever

computation time. .
the association type (track-to-track, target-to-targat,)

Recently, the use of belief functions [10], [11] and th$vith a generalized combination rule allowing complexity

Transferable Belief Model (TBM) [12] for data aSSOCI-reduction. In addition, it provides native mechanisms for

ation emerged [13[-{19]. One can particularly cite [14]frack initialization, temporary occlusion and conflicting

15] in which a comparison with Bayesian trackin . .
[15] P y gassomatlon management. The system has been imple-

solutions s presented and [16], [20] highlighting the faCr%ented in a test vehicle. The results obtained show

that belief functions constitute a suitable and intuitiv?he benefits in terms of detection rate, false positive

framework for data and imperfections modelling. The . . . . :
P 9 ¥eductlon and computation time, satisfactory real-time
easily deal with the source ignorance and conflict with- _
constraints.
out any assumptions on the sensor error models. This is

the formal context of this article. The paper is organized as follows. Section Il presents
The present paper focuses on traffic sign detectidhe system overview. The theoretical background of data
association in the TBM is presented in Section lll. Sec-
1(G)NN: (Global) Nearest Neighbor, tion IV details the proposed MRT and its experimental
2(J)PDAF: (Joint) Probability Data Association Filter. validation is presented in Section V. Finally, Section VI

3Multi-Hypothesis Tracking. concludes this paper.
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Tracking Pridicted positions of tracked :?Ols

Detected

AT
. ROls Multi-ROI Filtered ROIs
— Detection |—» Recogniton —» e Tracking ’

Recognition —»

Fig. 1. Basic tracking-based TSR system architecture [1]. Fig. 2. Overview of the proposed system.

Il. SYSTEM OVERVIEW illumination conditions where corner detection can fail.

Tracking-based TSR systems are characterized [I;pe filtered ROIs represent tracked ROIs with a high
two architectures:Detection-Recognition-Trackingnd ~ confidence score.
Detection-Tracking-Recognitionin the first one, the This paper focuses on the association and tracking
temporal information is used after tiRecognition(see capabilities of the proposed MRT. It will be shown how
Fig. 1) so that only the recognized signs are trackdiglief functions provide an interesting framework for
in the future framesTracking consequently provides athe problem description, good association and tracking
memory [3] which makes the recognition of the trackeBerformance while reducing the level of false positives.
sign in subsequent frames unnecessary [23]. Several
approaches have been adopted in the literature for t’ﬁ‘e ROI Detection
second architecture which performs tfieacking after Fig. 3 describes the ROI detector. A traffic sign
the Detection For instance, Fangt al. [24] track all shape detector initially described and evaluated in [21]
detected ROIs until their respective size is sufficientlig implemented here. Singularities or angular edges of
large for easy recognition while in [25], a classifier sepraffic signs are detected by tt@orner Detectionstep
arates valid and invalid tracks by using spatio-temporand represent the position candidates of signs. Fig. 4
constraints. shows an example of the position candidates which are

This study adopts @etection-Tracking-Recognition defined by the standard Harris corner detector [26]. For
architecture. The system proposed combibetection €ach corner, a candidate ROI is selected according to the
andTrackingin order to deal with temporary occlusionsshapes in the corner neighbourhood. Shape recognition is
and false positive detections. It is composed of a R@erformed using a coded image where each pixel is de-
detector and a MRT algorithm (see Fig. 2). The Rdined according to edge orientations as depicted in Fig. 5.
detection uses corner and edge orientation which heip@ recognize triangular shapes, the RANSAC Symmetric
to detect signs at the position candidates. This resultsliine Detection RSLD algorithm from Boumedienet
the generation of a set of traffic sign candidates (detectall [21] is implemented. Its principle is extended with a
ROIs) which can contain false positives. To cope withemplate-Matchingrocess to circular shape detection.
this problem, the algorithm tracks the detected ROls
to provide filtered ROIs tcRecognition Tracking also B- Multi-ROI Tracking
feeds back to the detector the predicted position of ROIsThe MRT algorithm is composed of three functions:
(tracked ROls in Fig. 2) in the subsequent frames. Thiltering, Data Associationand ROI life analysis(see

feedback enhances the detection performance in variabig. 6). Filtering performs target tracking by predicting
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Predicted position of tracked ROIs

RSLD Algorithm

Camera — Gradient Image Corner Detection pgsition (Triangular Signs)

Candidates

Detected ROIs Multi-ROI  |Filtered ROIs
—_— : — 5
% Tracking

Template Matching

Pixel Codi
ixel -oding (Circular Signs)

ROls Detection Coded Image

Fig. 3. Block-diagram of the ROI detector.

are transmitted to the detector apriori information to

influence future searches. Indeed, predicted positions are
added to the position candidates which are defined by the
corner detector. In addition, the filter updates the states

of the tracked ROIs based on the association results.

Data Associationconsists of three subtask&ating
Associationand Track MaintenanceFirst, Gating elim-
inates the improbable target-to-track pairings to reduce

the computational complexity oAssociation This can

be done considering, for instance, a distance criterion
Fig. 5. Segmentation of the orientation space (from [21]asSés 3 between the targets and the trackssociationdefines,
and 4 represent horizontal and vertical pixel edges respbctClasses at a time k, the relations between targets and tracks.
1 and 2 describe diagonal pixel edges. The non-edge pixehsidered Noisy environments with uncertain measurements make
as class 0. - . . .

joint association and tracking a challenging task, espe-

cially in multiple target scenarios, when their number

the future position of the tracked ROIs in the frameds unknown and temporally variable. Uncertainty also
Data Associatiorassigns one target provided by the dedCcurs when targets are close to each other, and so can
tector to a track and manages the track creation/deletid@ll Simultaneously into multiple gates. These conditions
ROI life analysisuses the temporal context to vali-involve ambiguities and contradictions in the association
date/reject the tracks transmitted Recognition Traffic since targets could be associated with multiple tracks and
sign candidates provided by tHeetection define the Vice versa
targets of the MRT. The tracked ROIs define the tracks The association is done through an evidential data
to be filtered so as to reduce false positives. fusion process to consider and propagate these uncertain-
For the track State Estimation the well-known ties as well as sensor imperfections and reduce false de-
KF [22] has been adopted as it is one of the mostctions.Track Maintenancanalyzes the selected target-
efficient methods. The filter predicts the states of the-track pairs to detect appearances and disappearances.

tracked ROIs from the previous states. These predictioAstrack appearance/disappearance leads respectively to
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Filtered
/ Multi-ROlI Tracking —»[ RO life analysis p& Recognition

i » Filtering
Predicted position

of tracked ROIs o X i
State Prediction }1— State Estimation
Tracked ROIs

.

Detected v Data Association
. ROIs
Possibles "Best" aintenance
Associations Associations

Fig. 6. Block-diagram of the MRT algorithm.

adding/deleting a KF. However, traffic signs do not 1) Credal level: Consider a problem for which all
suddenly appear and disappear in frames. Therefore, the discrete solutions (also called hypothesHs); =
analysis of the track temporal evolution helps to detett?2, ..., k, with £ the number of possible hypotheses,
false positives. Indeed, based on the track propertidsfine theframe of discernmen®:

such as its length (number of frames where the track

k
O = {m} {H}, . (I} = J{H} @

considered is present), a confidence score is defined. A i

tracked ROI with a low confidence value is considered 0 is the ignorance, i.e. the union of all hypotheses.

as a false positive and thus ignored. Otherwise, it % correspondingeferential subseta power set denoted

forwarded to theRecognitionstep. On the other hand,2@ of 2¢ disjunctions of#; is such that:

disappearance is confirmed if no target is assigned to

the track several times at a stretch. 29 ={0,{H},.... {Hi}, .. {H, Hz, H3} , ..., O},
The next sections will show that credal association @)

and tracking is able to reduce the false positive rate whitdered represents the impossible hypothesis commonly
keeping a high detection rate. This result is reproducibl@terpreted as the conflict between sources. A proposition

whichever traffic sign detector is used. A = {Hy, H,} refers to the disjunctionf, or H," and
means that eithefH;} or {H>} can be the solution to
lIl. DATA ASSOCIATION IN THETBM the problem. Each propositiod of 2° provided by a

A. Transferable Belief Model: Basic Concepts sourcei is characterized by itbasic belief masgbbm)

The TBM is a subjective and non-probabilistic in?7 (A) which represents its veracity:
terpretation of the evidence theory [10], [11]. This m:29 5 [0,1], Z mO(A) = 1. 3)
framework describes a model of uncertain reasoning Ae2e
and decision making based on a credal and a pignisticWhen thek answers are exclusive and exhaustive, the
level. At the credal level, belief masses are used swlution to the problem is one of the hypothese®afnd
represent and combine the pieces of information whike mass orf) is not allowed. Practically, in applications
at the pignistic level, these masses are transformed istiach as target tracking, this assumption is often too

probability measurements for decision making. restrictive. Indeed, all possible associations cannot be
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identifieda priori since targets can appear/disappear ovés), with m2 () < 1:

time. Hence the suggestion of two other frameworks: the 94
9 BetP (Hy) = Y m“—(% (6)
“open world [12] and the ‘extended open world19]. e 1AL =mR(2))
Hj €A

In the open world,® is exclusive but not exhaustive
so that a massn®(()) > 0 is possible. In this casd} B. Object Association: Problem Formalization

represents a reject class which describes the unknownp tracking algorithms using TBM, the associa-
hypotheses not taken into account during the problefgn task is observed from two different points of
formalization. The non-exhaustivity of the discernmenjja,, [18]: target-to-track and track-to-target associa-
frame can be managed by adding @an alternative tjons. This leads to the definition of two extended open
hypothesis{+} representing all unknown propositionsygids ©,. and©_;4 i = 1,..,n, with n the number

2]
not explicitly defined ir® [19]. This singleton allows the ¢ targets, andj = 1,...,m, with m the number of

new discernment framé.,,, to become exhaustive (cf. 5cks at timek. The frame©, . contains then possible
(4)). A non zero value ofn=>*(0) is then only linked target()-to-track(j) associations denotedly,; ;}, and
to the sources unreliability or to their discordance. {Yiiv)} represents the appearance of taet(The
frame ©_; is composed of then possible track)-

Ocow = O U {*} ) to-targetf) assignments denotedX; ;) }, and {X; .}

represents a track deletion:

B ‘ot . .0 = Yi AYa ey Yiim ; Yii v ;
Beside all the existing operators [20], the conjunctive {{ b Yo b Yem b Ve, )}}

0 = (X} AX o b Xy b A X Y
combination rule is the most straightforward [27]. Ror X} (X b Xgm b4 (]")}}(7)

The combination gathers the different sourdssn

sources to be combined, it is expressed as: The question which is then raised is: “Is targét as-

o L sociated with track’;?". To this question, three answers
mA(4) = > I mp (4),

AiN...NA,=Aj=1 (5) are possible: either they are associated or not, or the

p
me0) = > ; [I m]@ (4)- assignment is unclear. Within the TBM, these solutions
AiN...NA,=0j=1
will be described by three belief masses oyéf; ;) },
2) Pignistic level: Finding the association relationsover its contrary{Y; ;) } and over the ignoranc®; . so

consists in making a decision among all the possibigat:

hypotheses of the problem given. Usually, the decision mQ""({Y( »}): belief in “X; is associated with
j 1,7 7
is made in©, i.e. on simple hypothesed;. Neverthe- Y;”

less, after the combination (see (5)), masses are placed m?i,.(m): belief in “X; is not associated with

either on singleton hypothesegA( = 1) or on unions Y;”
(JA| > 1). It appears that a transformation frozf? to

© is necessary. Among all the transformations available,*The exact denotation should B2 ow; and©eow ; but for clarity

L . . . the ref to thextended rl has b
the pignistic one [28] is commonly used. It is built s asons fhe reterence fo fextended open wo d(eow) has been

removed.

a probabilistic rule and shares the massbfon its 5The association of a target with the hypothesig corresponds to

singletons. The pignistic probabilityBétP) is given by the fact that no track is assigned to the target considered.
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« m; " (©;): ignorance about the association. TABLE |
TARGET-TO-TRACK PIGNISTIC PROBABILITIES

The belief massem?"J({X(j,i)}), m?"j({X(j’i)})

o . e . *
and m, 7 (©_;) are generated for the track-to-target 2<"-) n Y 0

’ X1 BetPy (Y1) | .- | BetPy (Y(1,m)) | BetPi (x) | BetP (0)
associations in the same way. It is worth noting that X BetPy, (Vo) | - | BetPy, (Yo,m) | BetPy.(+) | BetPy.(9)
no information is initially considered ofi{; )} and on X | Betrn o) | oo | Betbr (Vom) | BetPa () | Bepn.®)

{X(j,% }- These masses appear during combination. This
finally leads to am x m dimension assignment problem

. . , with
to be solved at each time step in order to define the

association relations. Thebns are then combined with Aisa) = ( —mg (¥, a)}))

the conjunctive rule (5) over each discernment frape Bi,a) = ( o ( Y a)}))

and®_;, generating masses®: (andm®-7) over2®©:. Vi, Gty = M5 (O) - my (),
and2©-i [19]: O(ip) = (1 —my " ({Yip })>

In order to make a decision, the pignistic transfor-

mO ({Yun}) = m5 ((Yan}) II et

mation (6) is performed over the masses from (8). This

a=1
a#j
_ leads to two pignistic matrice®etP; ({Y; ;y}) and
O (V) Yan}) = , (¥ep))
BetP ; ({X(;,»}), as shown in Table | for the target-
mS (0;.) ml H Bia) ’ o . , .
J " to-track association. Each line defines the association
“Zl probabilities of X; with Yi,...,Y,,,*. The association
aFj
a#l of a targetX; or a trackY; with = defines respectively

and for union combinations &f to m — 1 hypotheses: the appearance/disappearance of a track. The column of
m the empty sef) defines the conflict in the target or track
m® (Y- Yoo ) = VG LI Bow association considered. Usually, the confliaf:- (0)
a=1 is redistributed through the normalization of the pig-
nistic probability (see (6)). Nevertheless, as in other
. a;ﬁl studies [13], [17], [29], the authors use a non-normalized
mOi- ({x}) = H Bi,a) form (9). Because of its informative aspect for decision-

making [20], the conflict is conserved especially for the

detection of association ambiguities or contradictions.

o, 1. e BetP, ({Yu,)) 2 Y mo (4)
m%(0;,) = [[mg (©:.) B AU GA) L T .
_ €2
i @ per, )
BetP;  (0) £ mO. (0)
The formalization of (9) to the multi-object association
problem can be found in [17]. Decision making is based
H Aia) + Z m® {Y(Z o) H Siin) on these pignistic matrices. In the literature, severa-alg

b Za rithms are proposed for selecting thee'st associations
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regarding global decision cost functions [13]. Generally,; (k) and statex; (k) are linearly dependent, leading to

and it will be the case in this work, they consider th¢l0). According to the data association results at tkine

following constraints [18]: KFs corresponding to existing tracks are updated and

. a target can only be associated with one track afgW filters are created for appearing tracks. The number
vice versa m of KFs depends on the number of tracked ROls.

« multiple new tracks can appear. strongly related to the camera motion and to their own

displacement. In TSR applications, only the camera mo-
V. MULTI-ROI ASSOCIATION AND FILTERING tion has to be considered since the objects are static. A

A. Track Filtering steady-state vehicle movement is assumed, characterized

by low velocity variations with respect to the sampling

Tracking a moving target can be viewed as the obser-
rate of the system>{ 15 fps). Moreover, the angle

vation of a dynamic system. That is why the straight- . , ,
between the line of sight of the camera and the vehicle

forward solution employed in computer-vision tracking.. . | . ) .
direction is sufficiently small so that the sign sizen

applications is the KF [22]. Usually, a tracking filter , ) ) )
the image can be considered as constantly increasing.

is derived in terms of a recursive (linear) estimator. . .
In this context, the nearly constant velocity model (12)

It recursively computes the estimates of the object , i
represents a globally satisfactory motion model and a

dimensional state vector;(k) € R! by a combination ) _ ) o
classic choice for tracking applications [3], [8], [30].dh

of the previous estimates and new object observations .
state vectorx ;(k) of a track) is such that:

z;(k) € RP. For this purpose, a dynamic (motion) model

_ T
and a measurement model are employed: Xj(k) =[x,y 8,02, vy, vs]", (11)
X;(k) = Fx;(k—1)+w(k) where [z, y] define the position and the size of the
’ 10 : : ,
zi(k) = Hx;(k)+v(k). (10) tracked ROIj in the image coordinate framéy,, v,]

I is thel x [ state transition matrix based on th ethe track(@) relative velocities between two successive

chosen track motion model. It is assumed that the mo (ra?mes andy, the scale change. Thanks to the high

and measurement noises and v are independent and sampling time of the MRT, the scale variation(k) and

identically distributed random noises. The state noistge position variationgu..(k), vy (k)] of the traffic signs

: . . . . : are considered similar to the previous ones and only due
w is a white Gaussiafrdimensional process with zero

mean and covarianc€ denotedw ~ N;(0,Q) and to Gaussian noises:
v ~ N, (0, R). The measurement model relates the state
X;(k) to the observatiore;(k) with the measurement
matrix H € RP*!, For a given framek, the detector
provides a setZ of ROI candidates which represents
the n targets defined by the measuremeni&:) € Z. vy (k) ~ N
Assume that the state evolution model behaves linearly with : vy(k) ~ N(vy(k —1),07), (13)
N

with respect to the track motion and that the observations vs(k) ~
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z;(k) is ap x 1 vector defined by: the object;j is valid and becomes a ROI forwarded to

- the Recognition
Zz(k) = [Z’,y,S] . (14)

Three processing steps are possible for a given tragk: pata Modelling in the TBM

creation, update, and deletion. The appearance decision . . .
P PP There are several solutions to describelibes m?“'

depending onBetP; ({Y(; « creates a new filtej.
(dep g ethi. ({Yin ) d and m?'“ related to{Y(; ;)} and {X;; }. One model

Its state vectorx;(k) is initialized by the observation . , L " )
considers for instance non-antagonistic propositions in

z;(k) of the newly detected ROIs. The initial displace- . ey 0, .
which m; " ({Y(; ;}) and m;" ({Y ;}) cannot si-

ment and scale change are set to 0. An association ) e
multaneously be non-zero in order to avoid intrinsic

between an existing track and a target leads to the track
g g conflict [13], [18], [20]. In this paper, the masses defined

update. In addition, the update step helps to increment a , ) .
P P phelp respectively or®; and®©_; are described according to

[31]:
remove the false positives. The disappearance decision

countc,paate (7) related to track{) which will be used to

@

m$ (Y} = agexp™ ™,
mS ™ (Yo pnh) = aj(1 — exp™®), 17)
“(0;,) =1-aj,

(related toBet P, ;({X(;,.)})) follows a non association

o=

between the targets and the track considered. The track

predicted statex;(k) is propagated into filterj with m

no correction (15). A track deletion occurs followingVhere:
three consecutive disappearances(k) is fed back to  « 0 < «; < 1 represents the reliability of sourge
Detectionasa priori search positions of the given signs « d;; is the dissimilarity measurement between

in the coming images in order to reduce the ROI search target{) detected at timek and trackf) already

space and time. known at timek.
Xi(k) = Fxj(k—1) d;; characterizes the level of confidence that taiyet(
15
Aj(k) = FPi(k—1)FT+Q (15) corresponds to track). For the purpose of ROI tracking,

R ;; 1S chosen as the Mahalanobis distance [7] between
P;(k) defines the predicted error covariance matrix OO%J 7

) . . . track(j) and target):
filter j and P;(k—1) its error covariance matrix in frame 0) get)

k—1. & = 7877, (18)

The false positive reduction is performed through a ~
i i . with S the residual covariance matrix arm; the in-
track-related confidence scofgj) defined by the ratio
novation of filterj. In (17), the choice of a monotone
between the update couni,qq.(j) and the length of
decreasing function af;; leads to the belief reduction in
the track:
the association of targéj(to track(j) when the distance

C(j) = Cupdate(J) (16)

~ length(j)’ between the objects is large. On the contrary, if the
With ¢ypaate(7) the number of frames where RQlis dissimilarity measurement is low, their association is
confirmed andength(j) the total frame number wheremore probable. It can be noted tht depends on the
object; is present. A false positive occurs wheétf;) is tracking filter covariance, so that the belief depends on

lower than a predefined threshdi,, fiqence, Otherwise the prediction and tracking performance.
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Algorithm 1 Local Pignistic Probability (LPMBetP) Algorithm 2 Multi-ROls Tracking (MRTEg;))

Require: Pignistic matrixBet P Require: Detected ROIg;(k), i =1,...,n
Ensure: Decision vector containing thebést associa- Ensure: Predicted positiork;(k + 1), j = 1,...,m of
tions the tracked and filtered ROls
{Associations} + {} /Il 1. Basic Belief Assignment
for all lines of BetP do for all measurementg; (k) do
(imazs jmas) = arg max(BetP(i, j)) for all predicted ROIsK; (k) do
{Associations} <—(Z’Z%mm,jmai) d3; + getDistance; (k),X;(k)) (18)
Removei, ., row andj,,q.. column from BetP Computem?“ and mf’"" 17
end for end for
end for

/I 2. Mass combination and BetP computation
C. Pignistic Association Algorithm Computem®i-, m®-7, BetP;,, BetP.; (8) and (9)

In [17], a review of the state-of-the-art credal associ- /I 3. Target-to-track and track-to-target associations

ation algorithms is proposed. It shows that with a global {Y} < LPP(BetP; ) and{X} « LPPBetP. ;)
/I 4. Track maintenance

| AddNewTrack{Y}) and
ConfirmTrackDisappearandeX })
/I 5. Update the state of the tracked ROIs

(sub-optimal) cost optimization, suspicious association
could be selected. To cope with this problem, loca
optimization solutions have been proposed. In the MRT,
decision making is based on the Local Pignistic Proba-
bility algorithm (cf. Algorithm 1) [17]. This algorithm is ~ JPdateKalmanFilters()

applied to each pignistic matriBetP;  (BetP ;) and /I 6. ROI evolution analysis

performs a successive line-wise selection of théor while j < m do

if C(j) > Teonfidence then
{filtered ROIg + X, (k)

end if

end while

m) local maximum in the pignistic matrix. Compared to
other algorithms, the LPP has the advantage of generat-

ing decisions directly from the pignistic matrices with no

extra-calculations. A major consequence is its ability to

be used in real-time applications. Furthermore, the LPP

is shown to be less conservative than other associatiia tracking filters is perfomed in step 5 depending on the
solutions. A complete description and evaluation of thigssignment decisions and available observatio).

algorithm can be found in [17]. To deal with false positives, the evolution of the tracked

An overview of the MRT algorithm is shown in RQIs is analyzed (step 6).
Algorithm 2. After thebasic belief assignmerand the
bbns combination (steps 1 and 2), the best target-to- V. EXPERIMENTAL RESULTS
track and track-to-target associations are generated byThis section presents the results obtained during real-
the LPP (step 3). Track maintenance (step 4) managéne experiments performed with a fully equipped test

track appearance and disappearance. The update stepebiicle. First, the configuration of the system and im-
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plementation details are presented; then, a quantitative

analysis presents the performance rates of the MRT. Ir

order to give a realistic idea of the system performance
in real conditions and help to understand the quantitativel

results, a video (videdEEE.wmv) is also provided.

(a)

A. System Configuration

The vehicle-mounted camera is a 12-bit grey scale

ECK-100 from Sensata Technologiegroviding VGA

images (40 x 480 pixels, 25 fps) of the vehicle front

scene. The MRT system is written in4G- with the

OpenCV2.4 Iibrary. It runs on an Intel coré? 2.20 GHz Fig. 7. Detection results without MRT in successive frama}.ahd
. ) . _ . (d) Correct sign detection. (b) and (c) Presence of fals&ipes.

with 8 GB RAM under Windows Seve bits. The criti-

cal parameters of the application a¥&,,, tigence = 0.85

(confidence threshold of the track evolution ratéj)), B. Quantitative Results

a; = 0.9 (discounting factor of thédbm), mya =10 The MRT performance is evaluated with respect to
(maximal number of KFs),(0s,0y,05) = (2,2,3) the ground truth of the two video sequences described
(standard deviations of the Kalman motion model), th@ Taple II. These sequences have been annotated empiri-
minimum size of a ROI to be detected ®) x 20 ¢q)1y 50 that, in each frame, the positions of signs having
pixels. The performance of the MRT refers to its capacityanyeen20 x 20 pixels and60 x 60 pixels are defined.

to reduce the false positives while maintaining a highne first sequencelg 500 frames) mainly concerns
detection rate. Consequently, this section focuses on Tﬁ@partmental roads and motorways with several lane
Detection Rate Per Frame (DRPF), the False Positive Rgfanges, and thus presents large vehicle speed variations.
Frame (FPPF), and the Detection Rate Per Sign (DRP£) iraffic signs appear in452 frames. The second video
for system evaluation. A system output is defined as(@ 950) contains even more various scenarios since all
true positive if it can be matched with the ground truthe,ech road types are represented with a larger ratio of
and as a false positive otherwise. A tracked target é?)eeds unde®0 km/h. This variety is confirmed by the

correct if a sign candidate is forwarded to the recognitiomgh ratio of signs with respect to its length. These signs

step more thanV = 3 successive times. The DRPF4¢ present il 031 frames.

DRPS and FPPF are defined as: Fig. 7 gives a qualitative view of detection results
Number of true positives
DRPF = Ground Truth - 100, without MRT on consecutive frames. In frames (b) and

(c), two false positives can be observed. As they occur

Number of correct detections

DRPS = . 100 in visi [
Total Sign Number , suddenly and do not remain visible over time, these

are typical examples of wrong detections which can

pppp - Number of false positives be removed by the MRT. Fig. 8 (Top) shows a short
Total Frame Number °

(19) sequence of circular sign detection with no feedback
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TABLE Il 20 r T r T r
TEST SEQUENCES ONFRENCH ROADS @ :
T 8O- —_
% ‘ —e— without MRT
b ¢ = ® = with MRT
Video 1 Video 2 ] R R
i 69
Number of frames 12 500 6 250 S 3 §
60 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Length (km) 9.3 5.2 ﬁ : :
Motorway (%) 26.3 7.7 g
50p -
National ) 0.0 27.3 3 :
Departmental %) 73.7 64.9 i ‘ i ‘ i
City (%) 20.2 16.2 *% 0.05 0.1 0.15 0.2 0.25 0.3
False Positives Per Frame (FPPF)
Number of circular signs 31 18 (@)
Number of triangular signs 11 13 90 r r r :

. . = without MRT (ROls > 20x20)
Min Vehicle Speed (km/h) 0 50 | - & = with MRT (ROIs > 20x20)
Max Vehicle Speed (km/h) 110 110 8O- e —— without MRT (ROls > 30x30)H

: m— i
Speed< 90 km/h (%) 20.9 457 with MRT (ROIs > 30x30)
Occlusions (partial/total) ~ 14(13/1)  3(1/2) 1
Lane change (exits) 8(3) 4(3)

12

Detection Rate Per Frame (DRPF) (%)

betweenTracking and Detection In frame (a), the sign

is correctly detected. However, in frames (b) and (c), 4% 0z 0.4 05 0.8

False Positives Per Frame (FPPF)
the corner detection fails and so misses the circular sign ()

twice. This drawback is solved by the prediction task
of the MRT and the feedback of the tracked ROls (sqgg. 9. Receiver Operating Characteristic (ROC) curvedanit and
Fig. 8 (Bottom)) providing the detector with potentialith MRT for circular (a) and triangular (b) signs.
search positions.

At first, a comparison of the proposed MRT with
Detection-Tracking-Recognition approaches from [32]where signs are present. Consequently, it is difficult to
[34] and evaluated in [1] is proposed in table 1ll. Som&ompare the proposed method with [34] as the authors
properties of these systems are given in table IV &lo not give any information about ti3d sequences used.
they are presented in [1]. One may note that a direMoreover, the FPR is rarely used as the negative number
metric comparison is unappropriate since each method@es not make sense [1]. Considering these limitations,
evaluated considering specific data sets and sometinig@ Proposed solution presents interesting performance
different metrics. For instance in [33] and [34], twoWith & low FPPF (.16) and a high DRPF80.92). The
measurements are used to evaluate the FP: the Posil{@an DRPF and Mean False Positives (more accurate
Predictive Value PPV = TP/(TP + FP)) and the since they show the results for different sign types)
False Positive RateF(PR = FP/N where N is the already higlight the good results of the MRT.
number of negative examples in dataset). Unlike the Table V shows that the circular and triangular sign

FPPF, the PPV is influenced by the number of frameketector alone (denoted/RT) provides respectively
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Fig. 8. Impact of the candidate position prediction feedbiack successive frames. (Top) Without feedback. (Bottom) iéddback.

TABLE Il
COMPARISON BETWEENMRT AND STATE-OF-THE-ART DETECTION-TRACKING-RECOGNITIONALGORITHMS

Paper Evaluation data Number of Best detection False positives Meaf DRWean false
format positive ROIs rate (DRPF)%) for best DRPF positives
[32] 2134 images from videos 3298 94.03 FPPF:3.41 - -
[33] 2967 images from videos 4886 90.1 PPV: 85.6% - -
[34] Images from34 videos N/A 87.12 FPR:0.14% - -
Our paper 18000 images from two videos 2850 89.92 FPPF:0.16 74.19 FPPF:0.13
TABLE IV

PROPERTIES OFSELECTED DETECTION-TRACKING-RECOGNITIONALGORITHMS

Paper Sign type detected Real-time Rotation inv. Model vs. training Teskityag
[32] Circular red and blue Yes Yes Both Low-res
[33] Circular red No Yes Training Low-res
[34] Circular Yes Yes Model Low-res
Our paper Circular, triangular, and yield sign: Yes Yes Model Low-res

87% and 91% of DRPS for Sequencé with 0.28 and to the recognition step, and thus reduces the global TSR
0.26 of FPPF. Slightly better results are obtained isomputational time. Fig. 9 presents more details about
Sequence2. In addition, it is clearly visible that the the MRT influence on the detection step. These Receiver
MRT reduces the false positives by more th&bfi, Operating Characteristic (ROC) curves are created by
while keeping substantially similar levels of DRPF anglotting the DRPF with respect to the FPPF, considering

DRPS. This lowers the amount of useless data providedrious system configurations with and without the MRT.
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TABLE V TABLE VI
PERFORMANCERATES FORSEQUENCE1 AND 2 AVERAGE COMPUTATION TIMES
Sequence 1 Sequence 2 Execution time (ms)
MRT MRT MRT MRT
Detection (triangular and circular) 40
Circular sign
DRPS(%) 87 87 95 95 MRT = 1,m = 1) 0.25
DRPF (%) 87.95  86.55(—2%)  92.81  93.3(+0.5%) MRT (» = 2,m = 2) 0.30
FPPF 0.28 0.15(—46%)  0.27 0.17(—37%) MRT (o = 3,m = 3) 0.56
MRT (n =4,m = 4) 0.65
Triangular sign
DRPS(%) 91 91 100 100 MRT o = 5,m = 5) 1.56
DRPF (%) 64.15  55.37(—14%) 69.54  61.56(—11%)
FPPF 0.26 0.14(—46%)  0.11 0.07(=37%)

VI. CONCLUSION

A Multi-ROI association and tracking algorithm based
For the circular sign detection, the ROC curves clearlyn spatio-temporal data fusion for vision-based traffic
show the improvement induced by the MRT algorithmajgn recognition has been presented. The idea is to re-
since equivalent DRPFs are obtained with lower FPRiyce false positive detections by tracking sign candidates
values (Fig. 9 (a)), especially when the DRPF is highyer time and processing the association task with the
(> 80%). For the triangular sign detection, the reductionrransferable Belief Model. First, a detector extracts a set
of FPPF is also large (about0%) but with a lower of ROI candidates which represents data to be combined
DRPF (71%) than for circular signs&7%) as shown in i the fusion process. Then, the correlation task provides
Fig. 9 (b)). In this second case, the test highlights thfie associations with respect to the maximum of belief of
sensitivity of the triangular detector to the minimum ROgach target-to-track and track-to-target pairing. Tragki
size. Improved results can be obtained by considering performed using multiple Kalman filters. Finally, the

ROIs larger thar80 square pixels. generated tracks are analyzed to detect false positives.

Table VI shows the average computation time perhe algorithm provides a set of ROIs, and on the other
frame in milliseconds, without code optimization, for thé1and, it feeds the predicted sign locations back into the
detector and the MRT in both sequences. The detectiéatector asa priori knowledge to influenc®etectionin
of triangular and circular signs requires an average fibsequent frames. The experimental results show the
40 ms to process a single frame. The MRT computatiggffectiveness of this strategy in the reduction of the false
time depends on the number of detected and tracked positives by up tot5% with real-time performance.

(m) ROIs but remains insignificant (less thams in the It can be noted that the Multi-ROI tracker does not
worst case). Witm = m = 4, the computation time of only apply to the ROI detector used in this paper. It can
the MRT is close td).70 ms, representing less thafi, be applied to any traffic sign detector to reduce false
of the computation time of the detection. Therefore, thgositives.

proposed MRT provides good performance by reducing This paper has focused on tracking traffic signs lead-

false positives while run time remains low. ing to a limited number of ROIs in frames. One extension
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of this study will be to consider more dynamic situationgi4]

in a dense traffic environment, such as pedestrian and

dynamic object tracking.

(18]
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