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Biopolymères, Interactions & Assemblages, Equipe « Polyphénols, Réactivité & Procédés », Le Rheu, France, 6 INRA-UBP, UMR1095 Genetics, Diversity and Ecophysiology of

Cereals, Clermont-Ferrand, France, 7 Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all’Adige, TN, Italy

Abstract

Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the
beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency,
bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the
average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of
phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and
juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled
to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were
detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this
study are specific to this population, while others are consistent with previous studies. This study presents for the first time
in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown
to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the
identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin
regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their
co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is
discussed.
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Introduction

Apples can be separated in two main classes depending on their

use: dessert and cider apples. The latter are generally bitter and

astringent, more rustic, and many cider varieties are more resistant

to the major pathogens of apple. Phenolic compounds are

responsible for bitterness, astringency, color and may also partly

contribute to aroma of cider. In relation to their tanning

properties, procyanidins form aggregates with salivary proteins

for astringency or receptors for bitterness, depending on their

polymerization degree [1]. The color is linked to the enzymatic

oxidation of phenolic compounds, mainly chlorogenic acid,

procyanidins, (+)-catechin and phloridzin, by polyphenoloxydase

[2–3]. Some hydroxycinnamic acids are also precursors of volatile

phenols responsible for particular cider aroma that may be

detrimental to the cider quality [4]. Apple consumption is

inversely correlated with the development of diseases such as

asthma, diabetes, cancer or cardiovascular diseases (for review see

[5–6]). Their high phenolic content and antioxidant potential

likely contribute to these protective effects. However, the

mechanisms by which these compounds can exert this positive

effect is still unclear (for review see [7]). In addition, interaction

with other protective constituents such as dietary fibers plays a

major role in the protection against these diseases [8–9].

Due to their importance in human health and their contribution

to organoleptic properties, phenolic compounds have been

characterized both qualitatively and quantitatively in whole fruit

and various processed products like apple juice [10–14]. Globally,

cider varieties are richer in total polyphenols than apple dessert

varieties, with hydroxycinnamic acids, monomeric flavanols (i.e.
catechins) and their oligomers and polymers (i.e. procyanidins and

condensed tannins), dihydrochalcones and flavonols as the main

phenolic groups.

The polyphenol pathway is well known and several studies have

highlighted the major enzymes involved, especially in Arabidopsis
(Figure 1) [15–20]. However, mechanisms involved in the

biosynthesis of procyanidins remain unknown [17]. Transcription

factors of this pathway such as MYC [21–22], MYB [23–24],

WD40-like protein [25], WRKY, MADS and TFIIIA-like protein

(for review see [17]), activated by environmental stresses such as

light [26], temperature [27] or wounding [23], have been
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identified in many species. So far in apple, three MYB (MdMYB1
[28]/MdMYBA [29]/MdMYB10 [30], MYB110a and MYB110b
[31]), two bHLH (MdbHLH3 [32] and MdbHLH33 [30,33]) and

one WD40 (MdTTG1) [33] genes have been identified for their

involvement in the anthocyanin pathway regulation.

QTL detection is a first step to detect genomic regions involved

in phenotypic trait variation. Although widely investigated,

phenolic compounds have been the subject of very few genetic

studies. Only two studies have been recently published on the

genetic basis of phenolic compound content of apple [34–35].

Both studies were performed on dessert apple progenies,

separating skin from flesh, with two different approaches to

quantify and map phenolic compounds. Chagné et al. reported the

quantification of 16 and 23 phenolic compounds in two different

harvest years using an ultra high performance liquid chromatog-

raphy (UHPLC) coupled to a UV-PDA detector [34]. Seven

clusters on linkage group (LG)1, LG14 and LG15 for p-

coumaroylquinic acids, LG9 for anthocyanins, LG16 for flavanols,

and LG17 for rutin and 5-caffeoylquinic acid were identified in

this study. Khan et al. reported the quantification of 81 phenolic

compounds belonging to the two groups of phenylpropanoids and

polyphenols in the skin and the flesh, using a high performance

liquid chromatography (HPLC) coupled to a mass spectrometer

associated with MSClust software [35]. Five QTL hotspots on

LG1 for quercetin and kaempferol glycosides, LG8 for quercitrin,

LG13 for isorhamnetin glycosides, LG16 for kaempferol glycosides

and flavanols, and LG17 for 5-caffeoylquinic acid were identified.

In both studies, the top of LG16 was identified as the region

controling the flavanol content variation. A candidate gene study

revealed the presence of a leucoanthocyanidin reductase (LAR)

gene, involved in flavanol biosynthesis, within the support interval

of the LG16 QTLs detected both in flesh and skin [34]. None of

these studies have included the mean polymerization degree (DPn)

of procyanidins in their analyses.

For the first time in cider apples, this study aims to identify

genomic regions controlling phenolic content by a QTL mapping

approach. To achieve this goal, 32 phenolic compounds were

quantified by liquid chromatography in fruit and juice prepared

from a cider apple progeny, during three harvest years [36]. The

DPn was also estimated by phloroglucinolyse reaction performed

in fruit. For major QTL regions, candidate genes for phenolic

content were identified in silico from the apple genome sequence,

and their co-localizations were confirmed by genetic mapping.

Figure 1. Phenolic compounds biosynthesis [15–20] (KEGG, 2012). In bold, enzymes identified in the support interval of QTLs. 4CL: 4-
coumarate:CoA ligase; ANR: anthocyanidin reductase; ANS: anthocyanidin synthase; C3’H: p-coumarate 39-hydroxylase; C4H: cinnamate 4-
hydroxylase; CHI: chalcone isomerase; CHS: chalcone synthase; D2’GT: dihydrochalcone 2-O-glucosyltransferase; DFR: dihydroflavanol 4-reductase;
F3’H: flavonoid 39-hydroxylase; F3’5’H: flavonoid 3’,5’-hydroxylase; FHT: flavanone 3-b-hydroxylase; FLS: flavonol synthase; HCT: shikimate O-
hydroxycinnamoyl transferase; HQT: quinate O-hydroxycinnamoyl transferase; LAR: leucoanthocyanidin reductase; PAL: phenylalanine ammonia lyase;
TAL: tyrosine ammonia lyase; UFGT: UDP-glucose 3-glucosyltransferase.
doi:10.1371/journal.pone.0107103.g001
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Material and Methods

Plant material
No specific permission from the French regulatory authorities

was required for this study. The location of this study is not

protected in any way, and the study did not involve endangered or

protected species.

Three hundred and eighty-five fruiting trees were analyzed in

this study. They were derived from a cross between the two

hybrids X5210 and X8402 produced at the Institut National de la

Recherche Agronomique (INRA) cider apple breeding program

(Figure S1). X5210 was derived from ‘Kermerrien’, a well-known

French cider apple variety, while X8402 is a dessert apple hybrid

derived from a cross between the varieties ‘Florina’ and ‘Prima’,

selected for their resistance against apple pathogens. In the

selection process, early selection tests for scab (Venturia inaequalis)
and powdery mildew (Podosphaera leucotricha) resistance were

performed in greenhouse and nursery respectively. Four hundred

and sixty-two trees (29% of the population) remained after

removing individuals susceptible to scab and powdery mildew and

were planted on their own roots in 2003 in the orchard of the

‘‘Horticulture Experimental Unit’’ at INRA Angers-Nantes,

France (47u289390N, 0u369490W).

Fruit extracts (flesh and skin together) were prepared from 92

hybrids harvested in 2008 and 137 harvested in 2009 (later

denominated as F08 and F09, respectively). Apple juices (contain-

ing both flesh and skin) were prepared from 209 and 120 hybrids

harvested in 2009 and 2010, respectively (later denominated as J09

and J10 respectively). All fruits were harvested from the tree at the

mature stage corresponding to ‘‘50% of fallen fruits’’, which is an

easy visible metric employed in commercial cider orchards. This

stage also has the advantage of providing comparable fruit

maturity from one year to the next. The effect of light exposure

was not recorded but it was minimized by sampling fruit (60 fruits

per tree) in different parts of the tree (bottom/top; inside/outside)

and by randomizing them before constituting each batch.

Sample preparation and phenolic quantification
The quantification of phenolic compounds in fruit and juice was

performed with a liquid chromatography system coupled with a

UV-PDA detector and a mass spectrometer analyzer [36].

Compounds such as (+)-catechin, (2)-epicatechin, procyanidins

B1 and B2, avicularin, hyperin, quercitrin, 5-caffeoylquinic acid,

4-p-coumaroylquinic acid and phloridzin were quantified each

year and in both fruit and juice. Other compounds (procyanidins

B5 and C1, 4-caffeoylquinic acid, isoquercitrin, reynoutrin, ideain,

rutin and phloretin xyloglucoside) were only quantified in some

experiments. Fourteen other compounds were quantified in J10:

ten procyanidins, two unknown flavanols named by their

molecular weight 245 and 518, the 5-p-coumaroylquinic acid

and another phloretin xylohexoside (Table S1).

An acidolysis was performed on fruit extract to depolymerize

procyanidins. This reaction allowed us to quantify all procyanidins

present in the extract and estimate the mean polymerization

degree of flavanols (DPnFlav, including monomers of flavanols)

and procyanidins (DPnProc) [36]. The term ‘‘other procyanidins’’

(OP) includes all procyanidins of the extracts except procyanidins

B1 and B2 quantified individually in fruit.

DNA extraction and molecular marker genotyping
DNA extractions were performed from leaves using the CTAB

extraction protocol as described by Tai and Tanksley [37] with

some modifications: the leaves were ground in liquid nitrogen and

400 ml of the extraction buffer were added. The buffer was

composed of 60 ml of the buffer A (0.35 M sorbitol, 0.1 M Tris-

HCl, 5 mM EDTA), 25 ml of the buffer B (0.2 M Tris-HCl,

0.05 M EDTA, 2M NaCl, 2% CTAB), 10 ml of sarkosyl and 0.3 g

of sodiumdisulfite. After the incubation at 65uC, 400 ml of

chloroform were used instead of the potassium acetate. The

incubation step on ice was removed.

One hundred and fifty three SSR markers available from

HiDRAS project [38] and mapped by Silfverberg-Dilworth et al.
[39] were amplified as described by Hibrand-Saint Oyant et al.
[40] with some modifications: 0.22 mM of each primers and 2 ng

of genomic DNA were used with the Qiagen multiplex PCR kit

(Qiagen, Courtaboeuf, France). PCR amplifications were per-

formed under the following conditions: initial denaturation at

94uC for 15 min followed by 34 cycles of 94uC for 30 sec, 55uC
for 1 min 30 s, 72uC for 1 min. A final elongation step at 55uC for

15 min was included. PCR products were analyzed on a capillary

sequencer 3730xl (Applied Biosystems, Saint Aubin, France) at the

GENTYANE platform, INRA station of Clermont-Ferrand.

Three hundred and eighty four SNP markers identified in the

‘Golden Delicious’ genome sequence (Table S2) were genotyped

using the Illumina Golden Gate assay at the GENTYANE

platform according to the Illumina technology manufacturer’s

protocol.

Genetic linkage map construction
Parental genetic linkage maps were built using JoinMap 4

software [41]. A logarithm of the odds (LOD) score threshold of

five was used for grouping. Genetic distances between markers

were calculated using Kosambi mapping function as described by

Liebhard et al. [42].

Statistical and QTL analysis
The broad sense heritability (h2) was calculated as follow:

h2 =s2
g/(s2

g+s2
r) where s2

g and s2
r were the individual genetic

and residual variances respectively.

QTL analysis was performed with the MapQTL 5 software on

data obtained from the phenolic compound quantification each

year on fruit and juice [43]. The DPn of flavanols and

procyanidins estimated in fruit extract were also used in the

analysis. Kruskal-Wallis (KW), Interval Mapping (IM) and

multiple QTL mapping (MQM) functions were used to identify

QTLs. Significance threshold was computed using a 1000

permutation tests, at the 95% genome-wide (GW) LOD thresh-

olds. QTLs were described by their LOD score and their

proportion of explained phenotypic variation (R2). The support

intervals were defined as LOD-1 and LOD-2 around the

maximum likelihood of QTL. The normality of residuals after

QTL detection was calculated for each QTL [44] using a Shapiro-

Francia normality test available in the ‘Nortest’ package of the R

software version 3.0.3 [45]. MapChart software version 2.2 was

used to represent confidence intervals of the mapped QTLs [46].

Epistatic effects were calculated for each trait for which more

than one QTL was detected using a global model including all

cofactors with the R software version 3.0.3 as described by Celton

et al. [47].

Candidate gene identification
All predicted gene sequences under the support interval of

major QTLs were extracted from the apple genome sequence

using tools based on the Bio++ libraries [48]. A blastx analysis was

performed for each sequence on the non-redundant NCBI

database with a minimum Blast Expected Value of 1.1023 using

the BLAST2GO software version 2.5.0 [49]. The KEGG pathway

tool was used to select polyphenolic pathway enzymes [50]. The

QTL Analysis for Apple Polyphenol Content
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six transcription factors identified in apple for their anthocyanin

pathway regulation (MdMYB1/MdMYBA/MdMYB10, MYB
110a, MYB110b, MdbHLH3, MdbHLH33, MdTTG1) were also

considered as putative candidate genes.

Candidate gene mapping
PCR primers were designed based on contig sequence of the

putative candidate genes. SSR were identified with the webstat

software (http://wsmartins.net/webstat) and primers were de-

signed with Primer3 software version 0.4.0. (http://frodo.wi.mit.

edu/) using the same criteria as described by Chagné et al. [34]

except for the final product size that ranged from 100 to 350 bp.

Primer sequences are listed in Table 1. The M13 sequence was

added at the 59 position to analyze SSR products through a

capillary sequencer as described by Hibrand-Saint Oyant et al.
[40]. PCR products were analyzed on an ABI 3130xl genetic

analyzer using the GeneScan 400HD ROX as size standard

(Applied Biosystems, Saint Aubin, France). Electrophoregrams

were analyzed with the GeneMapper 4.1 software and candidate

genes were mapped to the parental maps using JoinMap 4

software.

Results

Construction of genetic maps
Of the 153 SSR markers tested, 80 (52.3%) and 64 (41.8%) were

used, for the female and male linkage map construction,

respectively. Of the 384 SNP markers, 170 (44.3%) were

monomorphic, 30 (7.8%) did not amplify or were unreadable

and 184 (47.9%) were polymorphic (98 abxaa, 57 aaxab, 29

abxab). Among the 184 polymorphic SNP markers, only 54 and

45 were kept for the female and male map construction,

respectively. The female map covered 1191.6 cM over 16 LG

and the male map covered 1005.3 cM over 17 LG (Figure S2).

Only one SNP marker was polymorphic for the female LG7.

Distortions were observed on the LG1, LG11 and LG17 of both

parental maps.

QTL detection
The individual broad sense heritability was higher for

compounds quantified in fruit extract than for those quantified

in apple juice (Table 2). Broad sense heritability values ranged

from 0.13 to 0.98. Only heritabilities of avicularin and hyperin

were less than 0.5 (h2 = 0.13 for avicularin in J09 and h2 = 0.39 for

hyperin in J10).

Sixty nine and 72 QTLs were detected at GW threshold on 14

and 11 LGs of the female and male maps, respectively, for the

DPn and all phenolic compounds, except phloretin xylohexoside.

Table 3 shows results for both KW and MQM (LOD and R2)

analyses, since MQM detection is sufficiently robust with non-

normally distributed traits [51]. Results are similar with both

parametric and non-parametric tests.

Flavanols and their mean polymerization degree

(DPn). Six clusters of QTL were detected on LG3, LG6,

LG10, LG12, LG15 and LG16 on the female map (X5210) and

four clusters on LG1, LG4, LG7 and LG15 on the male map

(X8402) with a proportion of explained phenotypic variation

comprised between 6 to 30% (Table 3). Clusters on LG1, LG12

and LG16 were identified for many flavanols detected in both fruit

and juice independent of the harvest year. QTLs on LG3, LG4,

LG6, LG7, LG10 and LG15 were specifically detected for

compounds quantified in juice (Table 3). Epistatic effects were

significant between QTLs on LG3 and LG10 and between LG3

and LG12 for the procyanidin B1 quantified in J09. Epistatic

effects were also significant between QTLs on LG1, LG4 and

LG15 of the male map of the procyanidin Ca and between QTLs

on LG9, LG12 and LG15 of the female map of the procyanidin G

(Table 3).

Five QTLs were detected for the DPnFlav and DPnProc

estimated in F08 on LG5, LG12, LG14 and LG16 of the female

map, explaining between 13 and 24% of the phenotypic variation.

Two other QTLs were detected on the male map in F08 on LG1

and LG15, explaining 16% of the phenotypic variation (Table 3).

Hydroxycinnamic acid. A QTL was detected for hydro-

xycinnamic acids esterified in fourth position (4-caffeoylquinic and

4-p-coumaroylquinic acids) at the top of LG14 on the female map

(X5210), explaining between 4 and 46% of the phenotypic

variation (Table 3). We identified a QTL for 5-caffeoylquinic acid

content for fruit and juice on the LG17 of both parental maps.

The proportion of phenotypic variation explained by this QTL

varied from 16 to 26% (Table 3). A cluster of QTLs was detected

for hydroxycinnamic acids quantified in J10 at the bottom of the

LG1 of the male map grouping QTLs for the 4-caffeoylquinic

acid, the 4-p-coumaroylquinic acid and the 5-p-coumaroylquinic

acid, explaining between 12 and 14% of the phenotypic variation

(Table 3).

Flavonols. A major region controlling flavonols concentra-

tion was localized at the bottom of the female (X5210) LG15 at the

same position as the flavanol cluster detected on the male map

(X8402). Seven QTLs were detected for avicularin, hyperin,

isoquercitrin and reynoutrin quantified each year in both fruit and

juice, with a proportion of explained phenotypic variation

comprised between 3 and 20% (Table 3). Another region was

detected for quercitrin quantified in F09 and J10 on the LG13 of

the female map, with two QTLs explaining 12 and 15% of the

phenotypic variation. Significant epistatic effects were found for

isoquercitrin quantified in F09 between QTLs detected on LG7

and LG17 and for reynoutrin quantified in F08 between QTLs

detected on LG14 and LG16 (Table 3).

Dihydrochalcones. Two clusters of QTLs were detected on

the LG1 for phloridzin and on the LG5 for phloridzin and

phloretin xyloglucoside on the male map (X8402), and explained

between 6 and 19% of the phenotypic variation (Table 3). Single

QTLs for phloretin xyloglucoside quantified in F08 and J10 were

detected on LG12 of the male map and on LG3 and LG15 of the

female map, explaining 21, 17 and 24% of the phenotypic

variation respectively.

Anthocyanins. Two QTLs were detected for ideain concen-

tration on the LG1 female map (X5210) and on the LG5 male

map (X8402), explaining 19 and 12% of the phenotypic variation,

respectively (Table 3).

Putative candidate genes identification
Genomic regions located on LG1, LG3, LG5, LG12, LG14,

LG15 and LG17 underlying QTLs for flavanols, dihydrochal-

cones, flavonols and hydroxycinnamic acid were selected for

candidate gene identification. Concerning the hydroxycinnamic

acids pathway, three genes homologous to flavonoid 39-hydroxy-
lase (F3’H) and two homologous to flavonoids 3’,5’-hydroxylase
(F3’5’H) were identified on LG14. Four genes annotated as

shikimate/quinate hydroxycinnamoyltransferase (HCT/HQT) and as

dihydroflavanol 4-reductase (DFR) were identified on LG17

(Table 4). The MYB110a and MYB110b genes were also

identified within the same interval on LG17. For flavanols, one

gene with sequence homology to UDP-glucose 3-glucosyltransfer-
ase (UFGT), three genes homologous to flavonoid 39-hydroxylase
(F3’H) and one homologous to flavonols synthase (FLS) were

identified on LG1. The MdTTG1 transcription factor was also

QTL Analysis for Apple Polyphenol Content
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identified within this interval. Four genes annotated as DFR, two

F3’5’H and one FLS were found on LG3. On LG12, two FLS
were also identified. The bHLH33 transcription factor was

localized under the cluster of flavonols on the LG15. One F3’H
and one F3’5’H were identified for flavonols on LG1. For

dihydrochalcones, six genes annotated as UFGT, F3’H, FHT,

DFR and FLS were identified on LG5, one chalcone isomerase
(CHI) was identified on LG12 and one chalcone synthase (CHS)

and one FLS were identified on LG15.

Fifteen pairs of primers were designed to map the candidate

genes (Table 1). Eleven amplified and were polymorphic in the

X52106X8402 progeny. Of these, eight were mapped at the

predicted position. The genes homologous to F3’5’H, FHT and

MdTTG1 genes were mapped on LG1, the F3’H apple

homologue on LG5, the F3’5’H apple gene homologue on

LG14, the gene homologous to CHS on LG15 and the HCT/HQT
apple homologues, MYB110a and MYB110b genes on LG17

(Figure 2). Of the three others, one failed to map (FLS), while two

mapped outside of the in silico expected regions (UFGT expected

between GD_SNP00252 and Ch05g08, and CHI expected

between GD_SNP00762 and Hi07f01).

Discussion

This study was performed with a breeding population designed

for the selection of cider apple varieties. The cross of a cider with a

dessert apple hybrid has maximized the diversity and could

explain the higher number of QTLs detected compared with

previous studies. The grandparent ‘Kermerrien’ was selected for

its cider quality and the dessert ancestors of the progeny were

selected for their resistance to scab and/or powdery mildew and

carry some resistance genes e.g. Vf on the LG1 [52] and Pl2 on

the LG11 [53], respectively. These genes were transmitted to the

progeny and the early selection made for the resistance to both

pathogens could explain distortions observed on linkage maps. For

the QTL detection, biases caused by distortions were overcome by

performing permutation tests to determine a LOD threshold for

Table 1. Properties of polymorphic SSR primers developed from ‘Golden Delicious’ genomic sequence for major candidate genes.

Genea LG Contig Expected size (bp) Primer (59-39) TM (6C)

F3’H* 1 MDC037600.14 155 F: AAGGGTAGGGCTAGAAGACACC 59

R: ATAGATGTCGGCAACGTGAA 58

F3’5’H 1 MDC034541.5 159 F: TGGTCTTGGGTGCAAATCTG 61

R: CCCTTCCCATTGATTCCTTC 60

FHT 1 MDC000829.287 169 F: GCGTGATTGGCTACGTGTAA 59

R: TCGATTCGACTCTCGCACTA 59

MdTTG1 1 MDC001845.293 223 F: AATGAGACGAAATGTCCATCG 59

R: CGGTGTTATCAGTTCACCAAAA 59

UFGT 1 MDC020818.61 249 F: CCAAAACCAAAGCATTCCAA 60

R: GCATATTCGTGTTCTTGAAACC 58

DFR 1* 3 MDC012112.258 177 F: CTAGCCGAGTCAAACCAAGC 59

R: ACTGCTGGTCCGAAAAGAAA 59

FHT/FLS* 5 MDC005520.264 225 F: CCTGAGTCTTGGGCACCTTA 59

R: TTGGCACAAACGAGCAATAG 59

F3’H 5 MDC000463.206 183 F: CACATTGGTGGAGAATGGTG 59

R: GCTTCCGTTCCAGCTAAGATT 59

CHI 12 MDC016452.88 224 F: CCACGGAGGAGTTTCTTGTC 59

R: CATTCGGGTATCCTGCACTT 59

FLS* 12 MDC020724.428 218 F: GTTGGGCTGATGAAACTCGT 59

R: AGTTGAATTTGGGCCTCCAT 60

F3’5’H 14 MDC011050.253 220 F: CACAGAGAATGGATGGGACA 59

R: AACCACCTGCAATCAATCAC 58

CHS 15 MDC009830.388 292 F: TGGAGGACGAAGGAAATACG 59

R: CAACGATGGCGTTCAAAAGT 60

MYB110a 17 MDC013323.290 240 F: CTCTCCCTCATCCCAGAACA 59

R: TGCTGACTCCATTTCTTACTGC 59

MYB110b 17 MDC035405.20 212 F: CTTCGGGCTTATTTGGGTTT 60

R: TTTGCCCCTTCAAAGATCAG 59

HCT/HQT 1 17 MDC015889.298 219 F: CTCCAAATGCAGATGAGGAA 58

R: ATGGTGACTCCTACCGTCCA 60

*: enzymes which could not be mapped.
a: F3’H: flavonoid 39-hydroxylase; F3’5’H: flavonoids 3’,5’-hydroxylase; FHT: flavanone 3-b-hydroxylase; UFGT: UDP-glucose 3-glucosyltransferase; DFR: dihydroflavanol 4-
reductase; FLS: flavonols synthase; CHI: chalcone isomerase; CHS: chalcone synthase; HCT/HQT: shikimate/quinate hydroxycinnamoyltransferase.
doi:10.1371/journal.pone.0107103.t001

QTL Analysis for Apple Polyphenol Content

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e107103



each linkage group. Moreover, the selection for scab and powdery

mildew resistance did not affect the QTL detection of phenolic

compounds except in strongly distorted regions (on LG1, LG11

and LG17). Therefore, it is possible that the pre-selection of

seedlings may have reduced the number of QTLs detected in the

analysis.

Marker polymorphism and genetic map construction
The proportion of SSR markers polymorphic for X5210 and

X8402 (52.3 and 41.8%, respectively) was comparable with

previous study [54]. The proportion between monomorphic, not

amplified or unreadable, and polymorphic SNP markers was

similar to that of Micheletti et al. with a transferability rate of

40.9% between different apple cultivars [55]. Among the 184

polymorphic SNP markers, 48% were kept for the parental map

construction, with sizes comparable to reference maps [39,42,54].

New QTL identified and validation from previous studies
Our study reports for the first time on new genetic regions

controlling the mean polymerization degree (DPn) of procyanidins

in apple. QTLs were detected on the LG12, LG14 and LG16 on

the female map and on the LG1 and LG15 on the male map

(Table 3). Only those on LG15 and LG16 co-localized with QTLs

for the flavanol content, supporting an independent regulation for

the flavanol concentration and the flavanol polymerization in

apple. The polymerization degree of flavanols is particularly

interesting for apple since it modifies organoleptic properties of

procyanidins: low DPn (,5) affect the bitterness of apple, while

high DPn (6,DPn,10) affect the astringency [1]. Moreover,

molecular and genetic mechanisms involved in the synthesis of

procyanidins remain unknown [17]. This study is therefore a first

step opening new perspectives to understand mechanisms implied

in the polymerization of flavanols.

Moreover, this study has identified many QTLs for flavanols

and dihydrochalcones not yet detected in previous studies in

dessert apple. Nine main regions were detected for the flavanol

content on LG3, LG6, LG10, LG12, LG15 and LG16 of the

female map and on LG1, LG4, LG7 and LG15 of the male map.

In Chagné et al. [34] and Khan et al. [35] studies, the most

important QTLs for the flavanol content was detected at the top of

the LG16 (above the cluster detected on the female map), where a

gene homologous to leucoanthocyanidin reductase (LAR) was

identified in the support interval. This region was not detected in

our study. We suppose that the parents of our population were

homozygous for this QTL, which may explain the fact that we did

not identify it during the QTL analysis. Since no marker distortion

was observed at the top of this LG, we can affirm that the

important selection performed on the population is not responsible

for the absence of this QTL. For dihydrochalcones, several QTLs

were detected in the X52106X8402 progeny on LG1, LG3, LG5,

LG12 and LG15. In previous works, only two QTLs were

identified by Khan et al. for phloridzin quantified in skin (on

LG16) and flesh (on LG15) [35].

The comparison with previous works published by Chagné et al.
[34] and Khan et al. [35] has also shown two stable and conserved

regions across studies for the 4-p-coumaroylquinic and 4-

caffeoylquinic acids on LG14 and the 5-caffeoylquinic acid on

LG17. For the QTLs on LG17, the proportion of explained

phenotypic variation was particularly high in all three surveys

(19% in Khan et al. study, from 10 to 46% in Chagné et al. study,

and from 16 and 27% in our study).

To recap, this study has identified 23 new regions for the DPn,

flavanols, flavonols, dihydrochalcones and anthocyanins content

and confirmed five regions, three for hydroxycinnamic acids on

Table 2. Broad sense genetic heritability of mean polymerization degree and phenolic compounds quantified in fruits harvested
in 2008 (F08) and 2009 (F09) and in juices prepared in 2009 (J09) and 2010 (J10).

Heritability F08b F09b J09b J10b

(2)-epicatechin 0.96 0.94 0.80 0.61

(+)-catechin 0.97 0.77 0.79 0.79

procyanidin B1 0.98 0.96 0.78 0.79

procyanidin B2 0.95 0.89 0.84 0.93

other procyanidins 0.96 0.92 na na

DPn flavanolsa 0.89 0.96 na na

5-caffeoylquinic acid 0.92 0.95 0.87 0.77

4-caffeoylquinic acid na na 0.80 0.87

4-p-coumaroylquinic acid 0.96 0.93 0.88 0.80

avicularin 0.58 0.57 0.13 0.59

hyperin 0.60 0.62 0.57 0.39

isoquercitrin 0.80 0.65 na na

quercitrin 0.88 0.74 0.70 0.68

reynoutrin 0.71 0.68 na na

rutin 0.72 na 0.52 0.56

phloridzin 0.90 0.89 0.83 0.79

phloretin xyloglucoside 0.88 0.92 na 0.75

ideain na 0.77 na na

a: DPn: mean polymerization degree.
b: na: not available.
doi:10.1371/journal.pone.0107103.t002
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LG1, LG14 and LG17, one for dihydrochalcones on LG15, and

one for flavonols on LG17.

Comparison between fruit and juice
QTL detection performed in fruit and juice yielded similar

result for all classes of phenolic compounds except for flavonols:

there are more QTL detected in fruit than in juice. Previous

studies have shown that the phenolic content of cider is greatly

dependent on the environmental conditions in which apple trees

grow [56–57] and the conditions of fruit storage and pressing

[36,58]. In this study, the lowest extractability observed for

flavonols [36], mainly explain the higher number of QTLs

detected in fruit than in juice.

For flavanols, the higher number of regions detected in juice is

due to the higher number of procyanidins quantified individually

in this material.

Putative candidate genes identification
Identification of candidate genes underlying QTLs remains

often complicated and time-consuming. Using data from the apple

genome sequence, it was possible to screen a first set of candidate

genes including enzymes involved in the biosynthesis of phenolic

compounds and few transcription factors. This approach, very

selective, allowed us to identify several interesting candidates that

remain to be validated. Among them, we identified and mapped

four genes homologous to shikimate/quinate O-hydroxycinnamoyl
transferase (HCT/HQT) under the QTL confidence interval for

the 5-caffeoylquinic acid on the LG17. Two of them were assigned

with a very high significance by BLAST (min e-value of 0). The

presence of a major gene like HCT/HQT controlling the synthesis

of 5-caffeoylquinic acid seemed particularly relevant since this

region was detected both in female and male maps, with very high

proportion of explained phenotypic variation. HCT/HQT genes

were described to catalyze the formation of p-coumaroylquinic

acid from the 4-coumaroyl-CoA (Figure 1) [15]. This compound is

the precursor of caffeoylquinic acid via the p-coumarate 39-

hydroxylase (C3’H). Then, caffeoylquinic acid may be used as a

substrate by HCT to form caffeoyl-CoA. Conversely, caffeoyl-CoA

can be used by HQT to form caffeoylquinic acid (Figure 1) [20].

Because they are directly related to this compound, and

considering the high proportion of variability explained by these

QTLs, HCT/HQT genes are very good candidates.

Similarly, a gene homologous to flavonoid 39-hydroxylase
(F3’H), responsible for the hydroxylation on the third position of

the B ring of flavonols, dihydroflavonols or flavanones, was

identified and mapped under the quercetin glycosides cluster on

LG1 (Figures 1 and 2). If this enzyme is up-regulated, the

formation of quercetin could be favored compared to kaempferol

(compound for which QTLs were detected on LG1 in the Khan

et al. study [35]). Inversely, if it is down-regulated, the degradation

of kaempferol is lower and this class of compounds could be

favored compared to quercetin. However, F3’H genes belong to a

multigenic family and validation tests are needed to confirm the

role of the F3’H gene identified in the confidence interval of this

QTL in the biosynthesis of flavonols.

A homologue of UDP-glucose 3-glucosyltransferase (UFGT)

gene was identified under QTLs for flavanols on LG1. This gene is

described to catalyze the formation of anthocyanidins-3-O-b-D-

glucoside from anthocyanidins and UDP-D-glucose (Figures 1 and

2). This colocation with flavanol QTLs may be explained by the

competition of this enzyme with anthocyanidin reductase (ANR)

for anthocyanidins as a substrate to form either cyanidin glycosides

(with UFGT) or flavanol monomers (catechin and epicatechin).

Indeed, ectopic expression of apple MdANR genes in tobacco
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Figure 2. Main interesting clusters of quantitative trait loci (QTL) for phenolic compounds in fruit and juice. Main QTL clusters
obtained are represented with black bars on the right of the corresponding linkage groups (LG). Putative candidate genes identified in silico and their
relative position on the map are specified on the left of the LG. Genetically mapped candidate genes are indicated on the right of the LG and
underlined.
doi:10.1371/journal.pone.0107103.g002
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increases the procyanidins content and decreases the anthocyanin

content in flowers [59]. In the same way, the silencing of

anthocyanidin synthase (ANS) in apple has shown a drastic

reduction in the anthocyanin content [60]. However, in this last

study, the epicatechin content was increased whereas this

compound is also dependent of the ANS activity. Authors

supposed a residual ANS activity associated with kinetic compe-

tition between ANR and UFGT. An alternative biosynthetic

pathway to epicatechin from catechin or procyanidins was also

suggested [60]. The studies of Han et al. [59] and Szankowski et al.
[60] have also shown a modification in the transcriptional level

and/or in the enzymatic activities of almost all structural enzymes

of the polyphenolic pathway, as well as the MYB transcription

factor in tobacco. These results suggest a complex feedback of

biosynthetic enzymes that remains to be clarified to evaluate

clearly the impact of each enzyme on the polyphenol pathway.

Transcription factors involved in the regulation of phenolic

compounds in apple have been much less studied. A MYB gene

located on LG9 (with three alleles MYB1 [28]/MYBA [29]/

MYB10 [30]), two other MYB genes called MYB110a and

MYB110b located on LG17 [31], two bHLH (MdbHLH3 on

LG11 [32] and MdbHLH33 on LG15 [30,33]) and a WD40

(MdTTG1 on LG1 [33]) transcription factors involved in the

anthocyanin pathway have been previously identified. In the

present study, the clustering of four of these transcription factors

(MdTTG1, bHLH33, MYB110a and MYB110b) with regions

grouping many QTLs detected for several phenolic groups

(hydroxycinnamic acids and flavanols on LG1, flavanols and

flavonols on LG15 and hydroxycinnamic acids and flavonols on

LG17) suggests a more extended involvement of these transcrip-

tion factors in gene regulation, not only restricted to anthocyanins

pathway (Figure 2).

This candidate gene mapping approach was based on an in
silico identification and a genetic mapping of genes potentially

involved in the polyphenol pathway and its regulation. Focusing

on a limited number of genes, some other possible functions

remain to be investigated, like additional transcription factors,

small regulatory RNA (miRNA) and other genes which could

affect the catalytic activity of enzymes or phenolic compounds

transport or stability. However, this study contributed to highlight

a large number of candidate genes for most of the major QTLs. It

also highlights the complexity of the biosynthesis of these

compounds by showing the absence of major expected gene of

the biosynthesis under major QTLs like the ANR on LG16 and

the HCT/HQT on the LG17. Following a fine mapping approach

of the QTL of interest, a functional validation can now be

undertaken, using sequencing methods, QRT-PCR, and transgen-

esis. QTL detection based on the level of expression of these genes

(eQTL) would also permit further in depth understanding of the

phenolic compounds biosynthesis.

Potential use in marker assisted selection
This study has opened new ways for breeders to select new

varieties with specific phenolic compounds affecting the taste of

cider. QTLs detected on LG1 for flavanols, LG5 for dihydrochal-

cones, LG15 for flavonols and LG16 for DPn show high stability

between years and materials (fruit and juice), with high proportion

of explained phenotypic variation. QTLs detected in this study on

LG14 and LG17 for hydroxycinnamic acids were also identified in

previous studies on dessert apple. Candidate genes identified

under these QTLs reinforce their interest for breeding programs.

Conclusion

This study is the first performed on a cider apple progeny,

highlighting QTLs responsible for the variability of major phenolic

compounds involved in cider organoleptic characteristics as well as

the main polymerization degree of procyanidins. These QTLs are

the first detected in apple and represent a new step to understand

the mechanism of procyanidin biosynthesis, which appears to be

independent from the synthesis of flavanols. This study has also

confirmed the importance of two regions involved in the

biosynthesis of hydroxycinnamic acids on LG14 and LG17. Other

important regions were newly detected in this study on LG1, LG5

and LG15 for flavanols, dihydrochalcones and flavonols, respec-

tively. Moreover, the identification of candidate genes performed

in silico has shown interesting targets for future studies aiming to

better understand the biosynthesis of phenolic compounds.
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54. Celton J-M, Tustin DS, Chagné D, Gardiner SE (2009) Construction of a dense

genetic linkage map for apple rootstocks using SSRs developed from Malus
ESTs and Pyrus genomic sequences. Tree Genetics and Genomes 5: 93–107.

55. Micheletti D, Troggio M, Zharkikh A, Costa F, Malnoy M, et al. (2011) Genetic
diversity of the genus Malus and implications for linkage mapping with SNPs.

Tree Genetics and Genomes 7: 857–868.

56. Ubi BE, Honda C, Bessho H, Kondo S, Wada M, et al. (2006) Expression
analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and

temperature. Plant Science 170: 571–578.
57. Jakopic J, Stampar F, Veberic R (2009) The influence of exposure to light on the

phenolic content of ‘Fuji’ apple. Scientia Horticulturae 123: 234–239.

58. MacLean DD, Murr DP, DeEll JR, Horvath CR (2006) Postharvest variation in
apple (Malus x domestica Borkh.) flavonoids following harvest, storage, and 1-

MCP treatment. Journal of Agricultural and Food Chemistry 54: 870–878.
59. Han Y, Vimolmangkang S, Soria-Guerra RE, Korban SS (2012) Introduction of

apple ANR genes into tobacco inhibits expression of both CHI and DFR genes
in flowers, leading to loss of anthocyanin. Journal of Experimental Botany 63:

2437–2447.

60. Szankowski I, Flachowsky H, Li H, Halbwirth H, Treutter D, et al. (2009) Shift
in polyphenol profile and sublethal phenotype caused by silencing of

anthocyanidin synthase in apple (Malus sp.). Planta 229: 681–692.

QTL Analysis for Apple Polyphenol Content

PLOS ONE | www.plosone.org 16 October 2014 | Volume 9 | Issue 10 | e107103

http://www.genome.jp/kegg/

