
HAL Id: hal-01123419
https://hal.science/hal-01123419v2

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The membrane-associated form of as1- casein interacts
with cholesterol-rich detergent-resistant microdomains

Annabelle Le Parc, Edith Honvo Houeto, Natascha Pigat, Sophie Chat, Joelle
Léonil, Eric Chanat

To cite this version:
Annabelle Le Parc, Edith Honvo Houeto, Natascha Pigat, Sophie Chat, Joelle Léonil, et al..
The membrane-associated form of as1- casein interacts with cholesterol-rich detergent-resistant mi-
crodomains. PLoS ONE, 2014, 9 (2), pp.e115903. �10.1371/journal.pone.0115903�. �hal-01123419v2�

https://hal.science/hal-01123419v2
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

The Membrane-Associated Form of as1-
Casein Interacts with Cholesterol-Rich
Detergent-Resistant Microdomains
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Abstract

Caseins, the main milk proteins, interact with colloidal calcium phosphate to form

the casein micelle. The mesostructure of this supramolecular assembly markedly

influences its nutritional and technological functionalities. However, its detailed

molecular organization and the cellular mechanisms involved in its biogenesis have

been only partially established. There is a growing body of evidence to support the

concept that as1-casein takes center stage in casein micelle building and transport

in the secretory pathway of mammary epithelial cells. Here we have investigated

the membrane-associated form of as1-casein in rat mammary epithelial cells. Using

metabolic labelling we show that as1-casein becomes associated with membranes

at the level of the endoplasmic reticulum, with no subsequent increase at the level

of the Golgi apparatus. From morphological and biochemical data, it appears that

caseins are in a tight relationship with membranes throughout the secretory

pathway. On the other hand, we have observed that the membrane-associated form

of as1-casein co-purified with detergent-resistant membranes. It was poorly

solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially

insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the

release of the membrane-associated form of as1-casein. These experiments reveal

that the insolubility of as1-casein reflects its partial association with a cholesterol-

rich detergent-resistant microdomain. We propose that the membrane-associated
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form of as1-casein interacts with the lipid microdomain, or lipid raft, that forms within

the membranes of the endoplasmic reticulum, for efficient forward transport and

sorting in the secretory pathway of mammary epithelial cells.

Introduction

During lactation, the mammary epithelial cells (MECs) synthesise and secrete

substantial quantities of milk-specific proteins and other components such as

lipids and lactose in a polarised fashion, from their apical surface into the alveolar

lumen that they surround. Except in primates, the main milk proteins are the

caseins, a family of acidic phosphoproteins (as1-, as2-, b- and k-casein; for review

see [1]). During their transport through the secretory pathway, caseins interact

with calcium and calcium phosphate, and progressively self-aggregate to organize

into a supramolecular structure, the casein micelle, which is released by exocytosis

into the milk (see [2] and references therein). The chief physiological function of

the casein micelle is supplying proteins, phosphate and calcium to neonates. In

addition to its functional values, casein micelle production by the MEC is

obviously of interest due to its economic importance for food industry.

Casein micelles have been the subject of research for decades, and disparate

models of their internal structure have emerged, largely from morphological

observations and biochemical and physical studies in vitro (for review see [3]).

For many years, the hypothesis that caseins would be clustered into small spherical

subunits that would be further linked together by calcium phosphate was widely

accepted. This theory led to the submicelle model of the internal structure of the

casein micelle. In recent years, models that refute the concept of discrete subunits

within the casein micelle have emerged. One of these is the tangled web model,

first proposed by Holt [4], and extended by Horne [5]. In the latter, caseins self-

assemble primarily via electrostatic and hydrophobic forces to form a

homogeneous network of casein polymers bound through interaction with

calcium phosphate nanoclusters. Regardless of the model, k-casein which is highly

glycosylated is believed to position preferentially near the micelle surface, forming

the so-called outer hairy layer of k-casein at the protein-water interface, thereby

stabilizing the structure and preventing it from aggregating. However, the detailed

intrinsic organisation and the mechanisms involved in the formation of this

structure have not been fully established. This is not trivial since it is well known

that the mesostructure of the micelle determines the techno-functional

characteristics of the milk protein fraction and impacts milk processing.

Casein micelles vary widely in size, compactness, and in protein and mineral

composition across species, as well as occasionally among animals of the same

species. The four major caseins are heterogeneous, their structural diversity being

amplified in a given species due to genetic polymorphisms and variations in post-

translational modifications. On the other hand, very little of the primary sequence
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of each of the caseins is fully conserved between species, making the caseins one of

the most evolutionarily divergent families of mammalian proteins. Despite this

high component heterogeneity, casein micelles are found in all mammalian milks

as far as we know. Also, they seem quite similar at the ultra structural level [6].

Their structure as a whole is therefore believed to be analogous across species.

Also, it has been reported that casein micelles form even in the absence of as1- or

ß-casein [7, 8]. Interactions between the various caseins and minerals during

micelle biogenesis within the secretory pathway of the MEC might, therefore,

involve rather the general physico-chemical and biochemical characteristics of

these components. Of note, however, these characteristics are sufficiently specific

to avoid direct incorporation of whey proteins into the native casein micelle.

Both biochemical [7, 9–12] and morphological [13, 14] information strongly

suggests that aggregation of the caseins is initiated in the endoplasmic reticulum

(ER) and gradually proceeds during their transport to the apical surface. We

believe that we must exploit this spatio-temporal dimension of casein micelle

biogenesis to obtain new insight about the intrinsic organization of the native

casein micelle and the mechanisms implicated in their elaboration, and therefore

study their construction within the secretory pathway of MECs. With this aim, we

recently investigated the primary steps involved in casein interaction in the rough

ER of both rat and goat MECs [15]. The highlights of this work are threefold.

First, we have observed that the majority of both as1- and ß-casein, which are

cysteine-containing caseins in rat, was dimeric in the ER, as have suggested our

previous study on milk caseins [10]. Second, non covalent interactions have also

been observed in this compartment for the immature ER form of as1-casein which

is not phosphorylated (phosphorylation of the caseins occurs in the Golgi

apparatus). In contrast, immature ß-casein is poorly aggregated in the ER. Finally,

our experiments reveal the existence of a membrane-associated form of as1-casein

within the secretory pathway of MEC. We have found that protein dimerization

via the disulphide bond greatly potentialize this interaction of as1-casein with the

membranes. Of note, bovine as1-casein, which does not contain cysteine, is also

known to dimerize at physiological ionic strength and pH [16]. Since as1-casein is

required for the efficient export of the other caseins from the ER [7], we believe

that its membranous form may play a key role in the early steps of casein micelle

biogenesis and/or casein transport in the secretory pathway. This conclusion is

also supported by the observation that modification of the relative proportion of

as1-casein due to low or lack of expression invokes the accumulation of the other

caseins in the ER coupled to an ER stress response, notably signalled by an

enhanced expression of ER-resident proteins [7, 17].

In the present study, we further investigate the molecular basis of as1-casein

association with membranes of the secretory pathway, with emphasis on its

potential incorporation into detergent-resistant membranes (DRMs) microdo-

mains [18], an interaction which may be a prerequisite for the formation,

transport and sorting of casein micelle to the apical plasma membrane domain of

the MEC.
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Materials and Methods

Animals and antibodies

Wistar rats raised in our institute (Nutrition et Régulation Lipidique des

Fonctions Cérébrales, INRA, Jouy-en-Josas, France) were euthanatized by

decapitation at mid-lactation. Animal welfare and conditions for animal handling

were in accordance with the guideline of the European Community for

experimental animal use (Directive n˚ 86/609/EEC) and experiments were

approved by the French Ministry of Agriculture and Forestry and the Ministry of

Research and Technology (agreement n˚ A78725). E. Chanat owns an
accreditation for animal experimentation, level 1 (licence n˚ 78–62). Antibodies
against mouse whole milk proteins (RAM/MSP) were obtained from Nordic

Immunological laboratories (Tilburg, The Netherlands) and used at a dilution of

1:2500 for immunoblotting. Rabbit polyclonal antibodies against calnexin (Cnx)

were purchased from StressGen Biotechnologies Corp. (Victoria, BC, Canada) and

used at a 1:1000 dilution. Rabbit polyclonal antibodies against ERLIN2 (ER lipid

raft associated 2) were from Sigma and used at 1:2500 dilution. Mouse

monoclonal antibody to protein disulfide isomerase (PDI) was from Enzo Life

Sciences (clone 1D3) and used at 1:5000 dilution. HRP-conjugated secondary

antibodies were obtained from goat (anti-rabbit, Jackson Immunoresearch Lab.,

Inc., Avondale, PA, USA) or from sheep (anti-mouse, Sigma–Aldrich) and used at

a dilution of 1:5000 or 1:2000, respectively. Unless otherwise indicated, chemicals

were obtained from Sigma–Aldrich or Research Organics.

Metabolic labelling

Metabolic labelling of mammary fragments was performed essentially as

previously described [11], except that [3H]leucine was used. Briefly, dams were

euthanatized and mammary glands were excised bilaterally and transferred to ice-

cold 0.25 M sucrose. Samples were dissected from the connective tissue and

muscles, finely chopped into <1–2 mm3 pieces using scissors on an ice-cold

plastic pad, and further minced using a homemade multi-mounted razor blade

device. Fragments were preincubated for 30 minutes in leucine-free DMEM under

an atmosphere of 95% O2/5% CO2, and then pulse-labelled for 3 minutes in a

small volume (5 ml/g of fragments) of leucine-free DMEM containing 1.85 MBq/

ml (50 mCi/ml) L-[3,4,5-3H(N)]leucine (3,7 to 5,56 TBq/mmole, Perkin Elmer,

Boston, MA, USA), all at 37 C̊. To end the labelling, fragments were quickly

diluted in a 10-fold volume of pre-warmed complete DMEM and filtered on a Cell

Strainer (100 mm, Becton Dickinson France, SA, Le Pont-de-Claix, France). To

monitor the transport of labelled secretory proteins out of the ER, fragments were

distributed into 20 ml Erlen (<250 mg per experimental condition) containing

10 ml of complete DMEM and chased under gentle rotary shaking at 37 C̊, for the

indicated times.

At the end of either the pulse or the chase, tissue fragments were poured into

Cell Strainers which were transferred into 6-well cluster plates containing ice-cold
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Tris buffered saline (TBS, 25 mM Tris-HCl pH 7.4, 4.5 mM KCl, 137 mM NaCl,

0.7 mM Na2HPO4). Mammary fragments were extensively washed with ice-cold

TBS and homogenised at 4 C̊ in 1.5 ml 10 mM HEPES buffer pH 6.7 containing

250 mM sucrose, 1 mM EDTA, 1 mM magnesium acetate and an aliquot (10 ml/

ml) of a protease inhibitor cocktail (Sigma-Aldrich), with three strokes of a tissue

grinder (AA2 Teflon/glass, Thomas Scientific). The homogenate was centrifuged

for 10 minutes at 1000 g, at 4 C̊, and the resulting supernatant, referred to as the

post-nuclear supernatant (PNS), was collected. Protein concentrations in PNS

were estimated. Aliquots of the PNSs (50 mg protein) were analysed by SDS-

polyacrylamide gel electrophoresis (PAGE) followed by fluorography.

Preparation of PNS and rough ER microsomal fraction

Mammary gland pieces were prepared with the use of scissors as above and

washed 3 times for 10 minutes in 0.25 M sucrose at 4 C̊ to remove milk

constituents, and further minced using a homemade multi-mounted razor blade

device. All subsequent steps were performed at 4 C̊. Tissue was homogenized in a

20 ml Teflon-glass homogenizer (BB, Thomas scientific) for 3 strokes. The

homogenate was filtered through a piece of 150 mm polypropylene mesh (ZBF,

Rüschlikon, Switzerland) and centrifuged at 8700 g in a Beckman JS 13.1 rotor for

13 minutes. The resulting supernatant is referred to as PNS. Membrane-bound

organelles were sedimented from the PNS by centrifugation at 110,000 g for 1

hour. Total rough ER microsomes were prepared from the PNS by differential

centrifugation followed by sucrose density gradient, as described by Paiement et

al. for liver tissue [19], with the minor modifications reported in Le Parc et al.

[15]. The final rough ER microsomal pellet was resuspended in 2 ml of 2 mM

imidazole pH 7.4, 0.25 M sucrose, and aliquots were stored at 280 C̊. The rough

ER microsomal fraction was previously characterized [15]. Protein concentration

in the fractions was determined.

Membrane and sucrose flotation gradient

All steps were performed at 4 C̊, and all buffers were supplemented with a

protease inhibitor cocktail (Sigma-Aldrich). Aliquots of the microsomal fraction

(100 mg protein) or of the membrane-bound organelles prepared by centrifuga-

tion (110,000 g for 1 hour) from the aliquots of PNS (100 mg protein) were

diluted <5–10 fold (final volume: 250 ml) in either the absence of saponin in

10 mM Hepes pH 7.4 or in the presence of saponin (0.1%, w/v) in non-

conservative conditions, i.e. a slightly basic pH (25 mM Hepes-KOH pH 7.4), the

presence of a calcium chelator (20 mM EDTA) and salts (150 mM NaCl), plus a

small quantity of mild detergent (0.3% v/v Tween 20) and of a reducing agent

(5 mM DTT) or in carbonate buffer at pH 11.2 (100 mM Na2CO3 pH 11.2, 1 M

KCl, 2 mM EDTA, 5 mM DTT). Samples were subjected to a 30 minutes

incubation followed by centrifugation at 110,000 g for 1 hour. The resulting

supernatants were collected and the membrane pellets were washed for
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15 minutes in 10 mM Hepes pH 7.4 and pelleted as above. The carbonate

supernatant was neutralised using 1 N HCl after the addition of a trace amount of

phenol red. Proteins in supernatants were subjected to TCA precipitation (10%

final concentration).

Membrane pellets were resuspended in 500 ml of HNE buffer (25 mM Hepes-

KOH pH 7.4; 150 mM NaCl, 2 mM EDTA) and incubated for 30 minutes at 4 C̊.

Samples were adjusted to 60% sucrose with 1.5 ml of 80% sucrose in HNE buffer

and placed at the bottom of a Beckman Ultra-Clear SW55 TI tube and overlaid

with 2 ml of 40% and 500 ml of 10% sucrose in HNE. Tubes were centrifuged for

15 hours at 35,000 g. Top to the bottom, fractions of 1 ml were collected; the

volume of the last fraction was 500 ml. The pellet was solubilized in

electrophoresis sample buffer, and the proteins in the fraction were subjected to

TCA precipitation.

Proteins in the gradient fractions, in the gradient pellet, and in half of the above

supernatant were analysed by SDS-PAGE followed by immunoblotting.

Detergent lysis and differential centrifugation

All steps were performed at 4 C̊, and all buffers were supplemented with a

protease inhibitor cocktail. Aliquots of the microsomal fraction (50 mg protein) or

of the membrane-bound organelles prepared by centrifugation (110,000 g for 1

hour) from aliquots of PNS (50 mg protein) were diluted <5–10 fold (final

volumes: 150 ml) in non-conservative buffer containing 0.1% (w/v) saponin.

Samples were subjected to a 30 minutes incubation followed by centrifugation at

110,000 g for 1 hour. Membrane pellets were resuspended in HNE buffer, in the

absence or in the presence of one of the following detergents: 1% Tween 20, 0.5%

Lubrol WX (Lubrol 17A17, Serva) or 1% Triton X-100 (TX-100). Detergent

concentrations are in weight-volume percentage. Samples were incubated for

30 minutes at 4 C̊ and centrifuged as above. Proteins in the supernatant were

subjected to TCA precipitation. Thirty percent of the pellet and supernatant were

analysed by SDS-PAGE followed by either immunoblotting or Coomassie blue

staining.

In some experiments, detergent resistant membrane pellets were subjected to a

flotation sucrose gradient as described above. In this case, 2 (microsomes) or 4

(membrane-bound organelles prepared from PNS) times higher amount of

material were analysed.

Methyl-ß-cyclodextrin treatment

Aliquot of PNS or of the microsomal fraction were diluted at least 10 fold in ice-

cold non-conservative buffer without Tween 20, supplemented with 10 ml of a

protease inhibitor cocktail (Sigma-Aldrich), in the presence of the indicated

concentration (0–50 mM) of methyl-ß-cyclodextrin (mßCD, Sigma-Aldrich).

Samples were incubated for 30 minutes at 37 C̊ and centrifuged at 110,000 g.

Proteins in the resulting supernatant were subjected to TCA precipitation and the
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membrane pellet was directly solubilized in electrophoresis sample buffer before

analysis by SDS-PAGE followed by immunoblotting.

Electrophoresis, immunoblotting and quantification

Samples were analysed by SDS-PAGE using 12% gels according to Laemmli,

except that the sample buffer contained 10 mM EDTA. Gels were stained,

destained and processed for fluorography as previously described [20].

Immunoblotting was as described in Le Parc et al. [15]. The intensity of the ECL

signal for relevant protein bands or the amounts of [3H]leucine-labelled caseins

were quantified from X-ray film scans (300 dpi) using the ImageJ software

(Wayne Rasband, NIH, USA, http://rsb.info.nih.gov/ij/). The background noise

was estimated in the proximal area of the film and subtracted from the integrated

density of the protein band. For PDI and ERLIN2, ECL signal was digitalised

using ImageQuant LAS 4000 from GE Healthcare Life Sciences.

Protein concentrations were determined using the Peterson procedure [21]

with bovine serum albumin as the standard.

For statistical analysis, we used the Friedman’s test.

Electron microscopy

Tissues were fixed with 2% glutaraldehyde in 0.1 M Na cacodylate buffer pH 7.2,

for 3 hours at room temperature. Samples were then postfixed with 1% osmium

tetroxide containing 1.5% potassium cyanoferrate, gradually dehydrated in

ethanol (30% to 100%) and embedded in Epon (Delta Microscopy, Labège,

France).

Thin sections (70 nm) were collected onto 200 mesh cooper paladium grids,

and counterstained with lead citrate before examination with a Zeiss EM 902

transmission electron microscope at 80 KV (MIMA2 - UR 1196 Génomique et

Physiologie de la Lactation, INRA, plateau de Microscopie Electronique, 78352

Jouy-en-Josas, France). Microphotographies were acquired using MegaView III

CCD camera and analysed with the ITEM software (Eloïse SARL, Roissy CDG,

France).

Results

The membrane-associated form of as1-casein is present in all

compartments of the secretory pathway of MEC

In our previous work, we showed the existence of a membrane-associated form of

as1-casein in the ER and in more distal compartments of the secretory pathway of

MECs [15]. To better characterise this molecular form of as1-casein and to obtain

additional evidence for its existence in post-ER compartments, notably the Golgi

apparatus, we used metabolic labelling coupled with SDS-PAGE analysis, on rat

mammary tissue. The immature ER forms of the caseins, which are not yet

phosphorylated, and the mature forms, which appear upon phosphorylation in
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the Golgi apparatus, can be easily resolved by SDS-PAGE [11, 15, 22]. Here, we

chose [3H]leucine labelling to achieve direct quantitative comparison of as1- and
ß-casein (27 leucine residues in each). In order to investigate the membrane-

associated form of as1-casein in the Golgi apparatus, we first determined the

kinetics of arrival of newly synthesised caseins in this compartment by monitoring

their kinetics of maturation (Fig. 1A). Indeed, after a 3 minute pulse, newly

synthesised caseins which were still in the ER were under their fast migrating

immature forms. Conversion to their more slowly migrating forms occurred with

a tK of <4.0 minutes for as1-casein and <6.5 minutes for ß-casein and

maturation was virtually complete by 10 minutes of chase for the two proteins.

These kinetics of maturation were slightly faster than that previously observed for

rat casein labelled with [35S]methionine/cysteine mix [11]. On the other hand, the

delay in the timing of the half-maturation of ß-casein, as compared to that of as1-
casein, is in agreement with previous data [11, 12, 22] and with our report

showing that the phosphorylation of as1-casein and ß-casein occurs in the Golgi

apparatus and the trans Golgi network, respectively [9].

We then used this information to study the membrane-associated form of as1-
casein specifically that found in the ER and in the Golgi apparatus. With this aim,

mammary gland fragments were either pulse-labelled for 3 minutes or pulse-

labelled and chased for 5 minutes. Membrane-bound compartments prepared

from the corresponding post-nuclear supernatant (PNS) were then permeabilised

with saponin in non-conservative conditions, i.e. a slightly basic pH (pH 7.4), the

presence of a calcium chelator and salts, plus a small quantity of mild detergent

and of a reducing agent. We previously demonstrated that casein micelles are

destroyed in these conditions and that only membrane-associated proteins,

including the membrane-associated form of as1-casein, are recovered in the

membrane pellet after centrifugation [15]. As shown in Fig. 1B (Fig. 1B, table left

panel), the proportion of total [3H]leucine-labelled mature caseins (supernatant

plus pellet) measured for the two chase times after incubation with saponin in

non-conservative conditions is very similar to that calculated directly from the

PNS samples (Fig. 1A, graph). This result indicates that exposure to non-

conservative conditions is not deleterious for one of the molecular forms of the

two caseins. On the other hand, the relative amount of both immature and mature

ß-casein is obviously much lower than that observed in the PNS (Fig. 1, compare

autoradiograms). This was due to the fact that a relative high amount of ß-casein

was released from membrane-bound organelle upon freeze/thawing of the PNS

(data not shown). These results agree with our previous observation that ß-casein

is mostly under soluble form in the early secretory pathway [15]. As expected, a

non-negligible proportion of [3H]leucine-labelled immature as1-casein (<18–

21% of total) remained associated with the membranous fractions after pulse or

pulse followed by chase (Fig. 1B, right panel). These data are in agreement with

our previous immunoblotting data (see Figure five A in [15]). After 5 minutes of

chase, the proportion of [3H]leucine-labelled mature as1-casein recovered with

the membranous fraction (<16% of total) was not significantly different to that of

the immature form measured after pulse (Friedman’s statistical test). As for ß-
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casein, a single band at the level of the mature form was hardly discernible in the

membrane pellet. These data confirmed that the association with membranes

mainly concerns as1-casein.

Fig. 1. A membrane-associated form of as1-casein is also present in the Golgi apparatus of rat MECs.
(A) Time course for the arrival of newly synthesised caseins in the Golgi apparatus. Rat mammary gland
fragments were pulse-labelled for 3 minutes with [3H]leucine and chased for the indicated times. At the end of
the various chase periods, a PNS was prepared from the cells and analysed via SDS-PAGE and fluorography,
followed by quantification of the immature (im.) and mature (m.) forms of both as1- and ß-casein (cas). The
amount of the mature form of the caseins was expressed as percent of total (sum of immature and mature
forms). The mean ¡ s.d. from three independent experiments is shown. (B) Relative proportions of
membrane-associated forms of the caseins in the ER and the Golgi apparatus. Rat mammary gland
fragments were either pulse-labelled for 3 minutes with [3H]leucine or pulse-labelled and chased for
5 minutes. Aliquots of the PNS prepared from the cells were subjected to centrifugation and the resulting
membrane pellet was resuspended and incubated for 30 minutes in non-conservative buffer in the presence
of saponin. After centrifugation, supernatants (S) and pellets (P) were analysed via SDS-PAGE and
fluorography, followed by quantification of the immature (im.) and mature (m.) forms of both as1- and ß-casein.
The amount of the mature form of the caseins (Table in panel B) was expressed as percent of total (sum of
immature and mature forms). The amount of the various forms of the caseins in pellet (bar graph) is expressed
as percent of total (sum of pellet and supernatant). The mean ¡ s.d. from three independent experiments is
shown. Representative fluorograms are shown. Relative molecular masses (kDa) are indicated.

doi:10.1371/journal.pone.0115903.g001
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Morphological analysis of rat MECs revealed that the premicellar casein

aggregates that start to form in the Golgi apparatus, following phosphorylation of

the caseins in this compartment, were often found to interact with the Golgi

membrane via fine filamentous extensions (Fig. 2). Such particulates were already

present in the less distended cis cisternae of the Golgi; they were either free in the

lumen or in close interaction with the saccular membrane (Fig. 2A, C and D). As

to the rough ER, the narrowness of its lumen, the greater concentration of

electron-dense material in this compartment, and the fact that it is obviously

more difficult to establish a link between this particulate material and what could

be the first aggregates of immature caseins, did not allow us to draw any clear

conclusion from these observations on the interaction of these proteins with the

ER membranes, even in favourable areas where the ER was slightly dilated

(Fig. 2B, white arrowheads). Of note, however, particulates were found to interact

with the luminal leaflet of the membranes of purified rough ER microsomes [15].

Casein aggregates increase in size and become more compact in the trans Golgi

cisternae or in newly-formed secretory vesicles (Fig. 2 and Fig. 3A–C), two

compartments that are not easily distinguishable in the MECs. However, multiple

examples of close contact between larger casein aggregates and the membranes of

the immature vesicles were found (Fig. 3A–C). Casein aggregation further

proceeds during vesicular transport to the apical cell surface, and casein micelles

with their typical honeycomb appearance were present in mature secretory

vesicles together with interlaced structures and irregular linear fine aggregates

(Fig. 3D–G). Interestingly, the latter structures (Fig. 3D and G), as well as casein

micelles, were also often seen in interaction with the vesicular membrane via root-

like extensions of electron-dense material (Fig. 3 E–F). These observations,

together with our biochemical data, suggest that caseins interact with the

membranes of all compartments of the secretory pathway, possibly via the

membrane-associated form of as1-casein.

as1-Casein remains associated with a membrane fraction after

extraction with non-ionic detergents

Having demonstrated the existence of a membrane-associated form of as1-casein,

a putative anchor for the association of casein aggregates with the membranes of

the secretory pathway, we wished to determine the molecular basis of this

interaction. With this aim, we investigated the possible resistance of the

membrane-associated form of as1-casein to membrane solubilisation with mild

non-ionic detergents. Indeed, a correlation has been found between detergent-

resistant membranes (DRMs) and membrane microdomains, or rafts, that are

believed to play a key role in membrane traffic (for review see [23]). To investigate

the possibility that as1-casein interacts with DRMs, membrane-bound organelles

were first subjected to permeabilisation by saponin in non-conservative

conditions to remove soluble luminal proteins, and sedimented membranes were

further extracted with detergents on ice. DRMs were prepared by centrifugation.
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As shown in Fig. 4, some proteins were recovered in the supernatants with all

detergents (Fig. 4, Protein staining), for both purified rough microsomes

(Fig. 4A) and membrane-bound organelles prepared from PNS (Fig. 4B), but TX-

100 was much more effective in disrupting lipid-protein interactions. In fact, with

ER membranes, the proteins with a relative molecular mass greater than 50 kDa

were quantitatively extracted by 1% TX-100. In most other cases, however, the

vast majority of proteins was recovered in pellet, the pellets having very similar

total protein patterns. The distribution of mature and immature as1-casein in the

detergent insoluble membrane pellet and supernatant was analysed and compared

Fig. 2. Appearance of the caseins in the Golgi region of lactating rat MECs. Mammary gland fragments
from rat at mid-lactation were fixed and processed for electron microscopy. Golgi stacks, immature secretory
vesicles (iSV) and other various distended elements of the Golgi region contain electron-dense particles
loosely aggregated into interlaced structures or irregular linear clusters (arrows). These particles are also
observed in distended rough ER components (see panel B, white arrowheads). Black arrowheads point to
examples of close contact between electron-dense material and membranes of the compartments of the
secretory pathway. Spherical compact casein micelles (CM) are found in mature secretory vesicles and in the
lumen (Lu) of the acini (see panel B). N: nucleus; m: mitochondrion. Size of the bars is indicated.

doi:10.1371/journal.pone.0115903.g002
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to the detergent resistance of a true transmembrane ER protein, namely calnexin

(Cnx). The immunoblots show that, Cnx was not extracted by Tween 20 (Fig. 4,

Immunoblot, Cnx) while a substantial proportion of as1-casein, notably of the

immature form, was recovered in the supernatant under these conditions. In

contrast, Lubrol largely solubilized Cnx, whereas as1-casein was still partly

recovered in the membrane pellet. Finally, TX-100 further solubilised as1-casein

Fig. 3. Appearance of the caseins in immature and mature secretory vesicles. Mammary gland
fragments from rat at mid-lactation were fixed and processed for electron microscopy. Large aggregates of
electron-dense particles are found in immature secretory vesicles (see A–C) together with interlaced
structures and irregular linear clusters (arrows). Spherical compact aggregates presenting the typical
honeycombed texture of casein micelles (CM) are observed in mature secretory vesicles (see D–G).
Arrowheads point to examples of close contact between the electron-dense material of the interlaced
structures or casein micelles and the membranes of the secretory vesicles. ER: endoplasmic reticulum; m:
mitochondrion. Size of the bars is indicated.

doi:10.1371/journal.pone.0115903.g003
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Fig. 4. Comparison of membrane-associated- as1-casein solubilities in various detergents. A purified
rough microsome fraction (A) or membrane-bound organelles from a PNS (B) were incubated under non-
conservative conditions in the presence of saponin and centrifuged. The resulting membrane pellets were
resuspended in HNE buffer in the absence (Control) or in the presence of the indicated detergents, and
incubated for 30 minutes at 4˚C. After centrifugation, supernatant (S) and pellet (P) were analysed via SDS-
PAGE followed by either Coomassie blue staining (Protein staining) or immunoblotting (Immunoblot) with
antibodies against either mouse milk proteins, Cnx or ERLIN2. Immature and mature as1-caseins were
quantified by densitometry. For each condition, the amount of as1-casein recovered in the supernatant under
the control condition was subtracted from that measured under other conditions, and the proportion of the
immature or mature form in the pellet was expressed as percent of the total (sum of pellet and supernatant).
The mean ¡ s.d. from four independent experiments is shown. Detergent-treated samples were compared to
control two-by-two for either immature or mature as1-caseins using the Friedman’s test and statistical
significance is indicated (*p,0.05). For Cnx and ERLIN2 representative immunoblots from two independent
experiments are shown. Relative molecular masses (kDa) are indicated. im. as1-cas: immature as1-casein; m.
as1-cas: mature as1-casein; TX-100: Triton X-100.

doi:10.1371/journal.pone.0115903.g004
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and entirely Cnx. These results with Cnx agreed with earlier observation [24]. As

to ERLIN2 (ER lipid raft associated 2) which has been described as an ER lipid raft

protein [25], it was recovered in pellet except with TX-100 treatment. Of note,

ERLIN2 was better solubilised from purified microsomal membranes than when

whole cell membranes were analysed. Concerning as1-casein, we noticed a

tendency to recover a smaller proportion of the immature form of the protein in

the membrane fraction, as compared to the mature form. This differential

recovery was more pronounced in the analysis of the rough microsomes where

immature caseins predominate. One possible explanation for this finding is that

the latter fraction contained a relative higher proportion of mature casein

originating from contaminating casein micelles from milk than the purifying

organelle fraction prepared from PNS, due to the procedure for the rough

microsomes purification. However, as will be confirmed below, quantification

clearly showed that, overall, the immature and mature forms of as1-casein did not

differ significantly (Friedman’s test) with respect to their resistance to detergent

extraction (Fig. 4A and B, graph).

The membrane-associated form of as1-casein interacts with DRMs

To further investigate the possibility that the membrane-associated as1-casein
interacts with DRMs, we first developed an experimental procedure to analyse

more specifically the content of subcellular membranes and of DRMs. We

designed a sucrose density step gradient in which the membrane samples were

adjusted to 60% sucrose and overlaid with 40 and 10% sucrose cushions (flotation

in typical linear 40–5% sucrose gradient, e.g. [24], was not entirely satisfactory, see

Fig. five in [15]). The top fractions 1–3 were the floating membrane fractions (see

Fig. 5B, bottom of the central panel).

To validate this assay, we analysed the presence of the membrane-associated

form of as1-casein in membranes prepared from rough microsomes (Fig. 5A) or

PNS-derived membrane-bound organelles (Fig. 5B) permeabilised under non-

conservative conditions, or treated with carbonate at pH 11.2 to release the

ribosomes and proteins which are not integral to the membranes [26], all in the

presence of saponin and DTT. Without membrane permeabilisation, most of the

milk specific proteins were recovered in the gradient fractions, notably with the

membranes floating in fraction 3 and, for rough microsomes samples, also with

those sedimenting in the gradient pellet (Fig. 5A, control). The relative

distribution of membranes within the gradient was confirmed by the presence of

Cnx in fraction 3, and in the gradient pellet with intact rough microsomes samples

(Fig. 5, Cnx). In contrast, no Cnx was found in the gradient pellet after organelle

permeabilisation and extraction (Fig. 5, NC and pH 11). The protein band

putatively identified as protein disulphide isomerase (PDI, Fig. 5, asterisk; see the

ECL signal that co-migrates with this band after immunoblotting with a

monoclonal antibody against PDI) provided a convenient internal control for

membrane permeabilisation. Indeed, this protein was totally recovered in the

gradient under control conditions whereas most, if not all, was found in the
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Fig. 5. Purification of membrane-associated-as1-casein fraction from rat mammary gland tissue on
sucrose step gradients. A purified rough microsome fraction (A) or membrane-bound organelles from a PNS
(B), both prepared from rat mammary gland tissue, were incubated in the absence (Control) or in the presence
of saponin under non-conservative conditions (NC) or under carbonate buffer at pH 11.2 (pH 11). After
centrifugation, supernatants were collected and membrane pellets were subjected to flotation on a sucrose
step gradient (theoretical sucrose concentrations are indicated at the bottom of the central gel in panel B). Half
of the supernatant (Sup), gradient fractions collected from the top (1 to 5) and gradient pellet (P) were
analysed via SDS-PAGE followed by immunoblotting with polyclonal antibodies against either mouse milk
proteins. Representative ECL signals from 5 (microsomes) or 3 (PNS) independent organelle preparations are
shown. The distribution of Cnx and PDI was analysed within the above immunoblots. Relative molecular
masses (kDa) are indicated. im. as1-cas: immature as1-casein; m. as1-cas: mature as1-casein; im. ß-cas:
immature ß-casein; m. ß-cas: mature ß-casein; *: protein band with electrophoretic mobility identical to PDI.

doi:10.1371/journal.pone.0115903.g005
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supernatant after the membrane treatments. In line with this result, the large

majority of immunoreactive proteins, including the caseins, was found in the

supernatants (only half of the supernatants were analysed) after membrane

permeabilisation or carbonate extraction at pH 11.2 (Fig. 5, NC and pH 11). As

expected, however, a substantial proportion of as1-casein was found with the

floating membranes in fractions 2–3 of the gradients. In agreement with our

previous report [15], ß-casein was not detected within the gradient fractions after

saponin permeabilisation under non-conservative conditions. Note, however, that

some was still present in fraction 3 or in the pellet after carbonate extraction at pH

11.2. Similar observation was made for PDI from microsomes, and higher

amounts of as1-casein were detected in the bottom fractions of the gradients.

These results agreed with those in our previous report [15]. These experiments

involving membrane flotation without detergent treatment definitively demon-

strated the membrane association of as1-casein.
We then investigated whether the membrane-associated form of as1-casein is

associated with DRMs that are recovered as floating membranes in the sucrose

step gradient (Fig. 6). As observed previously in Fig. 5 and confirmed here, milk

proteins, including PDI, were recovered essentially in the light sucrose fractions

(fractions 1–3), in the absence of saponin permeabilisation followed by incubation

in control conditions (Fig. 6AB, Control, - Saponin). About 60–70% of immature

or mature as1-casein were found in these fractions (Fig. 6C). As expected, PDI as

well as ß-casein were released from the lumen of the membrane-bound

compartments when the membranes were first subjected to saponin permeabi-

lisation (Fig. 6AB, Control, + Saponin). However, about two-thirds of immature

or mature as1-casein were again observed in the floating membrane fraction

prepared from PNS (Fig. 6C). However, the proportion of immature as1-casein in

these fractions was reduced to <45% with microsomes, an increase of the

proportion of the soluble form of this casein being clearly visible in fraction 4 plus

5. In these experiments, we also attempted to determine whether saponin

treatment, which complexes membranous cholesterol, would influence membrane

flotation and detergent extraction. Whereas its effect on membrane lipids was

clearly highlighted by the release of soluble luminal proteins such as ß-casein and

PDI (see above), it appeared not to significantly affect the relative distribution of

membranes within the gradient fraction (Fig. 6A Control, ERLIN2). We

interpreted the slight variations in the distribution as being largely a result of small

deviations in the collection of fractions. For the same reasons, and because in

numerous instances the distributions of as1-casein appeared quite similar without

or with saponin treatment, we have not yet determined the possible effect of

saponin on the efficiency of extraction of membrane-associated as1-casein by the

different detergents (Fig. 6C, compare 2Saponin and +Saponin).
In contrast, DRM preparation by flotation on sucrose step gradient lent support

to the two effects of the detergent treatments. First, we confirmed the graded

solubilisation of membrane-associated as1-casein by Tween 20, Lubrol and TX-

100. This finding is well documented in Fig. 6C, in which a gradual transition of

membrane-associated as1-casein from the light sucrose fractions containing
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Fig. 6. Membrane-associated-as1-casein is associated with DRMs. A purified rough microsome fraction
(A) or membrane-bound organelles from a PNS (B) were incubated in the absence of saponin (2Saponin) or
under non-conservative conditions in the presence of saponin (+Saponin) and centrifuged. Supernatant was
removed and membrane pellets were resuspended in HNE buffer, in the absence (Control) or the presence of
the indicated detergents, and incubated for 30 minutes at 4˚C. Detergent-treated membranes were subjected
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DRMs under control conditions, namely fractions 1–3, toward the high-density

fractions (4–5 and pellet) containing detergent solubilised as1-casein clearly

occurs. The differential distribution was statistically significant between control

and TX-100 samples. Moreover, the relative efficiency of the extraction by these

detergents appeared to be of the same order of magnitude as that observed by

differential centrifugation in Fig. 4. The partial solubilisation of ERLIN2 by TX-

100 was also confirmed. Second, our data show that the above detergents

solubilised similar proportions of both the immature and mature forms of

membrane-associated as1-casein (Fig. 6C, compare immature and mature as1-

casein in PNS).

If as1-casein is associated with a DRM, the question arises whether cholesterol is

needed to maintain its structure and/or DRM association of as1-casein. To remove

cholesterol from subcellular membranes, PNS or microsome samples were treated

with methyl-ß-cyclodextrin (mßCD). When membranes were treated with 50 mM

mßCD at 37 C̊, most, if not all as1-casein was solubilized and recovered in the

supernatant (Fig. 7). Consistent with the pioneer report of Browman et al. [25],

ERLIN2 remained in the insoluble fraction in these conditions. We concluded

from these results that both the immature and mature membrane associated

forms of as1-casein interact with DRMs.

Discussion

Caseins are sorted to the apical domain of MEC for secretion. The current concept

is that proteins destined for the apical or basolateral plasma membrane are sorted

at the level of the trans-Golgi network on the basis of intrinsic sorting motifs (for

review see [27]). We reasoned that, if the association of as1-casein with membrane

has anything to do with the sorting and/or the efficiency of casein transport in the

secretory pathway, this interaction must be maintained, or even increased, in the

Golgi apparatus. Our finding that the mature phosphorylated form of as1-casein is

also present in a membrane-associated form is consistent with this hypothesis

[15]. To investigate this possibility further, we compared the behaviour of newly

to flotation on a sucrose step gradient (sucrose concentrations as indicated in Fig. 5 panel B). Half of the
supernatant (Sup), fractions collected from top to bottom (1–5) and gradient pellet (P) were analysed via SDS-
PAGE followed by immunoblotting with an antibody against mouse milk proteins. Representative ECL signals
from four experiments with three independent organelles preparations are shown. The distribution of ERLIN2
was analysed within the immunoblots shown in panel A. C. Quantification of membrane-associated-as1-casein
in DRMs. Immature (Microsomes), or immature and mature as1-caseins (PNS) were quantified via
densitometry. For each condition, the amounts of the indicated forms of as1-casein recovered in the various
fractions of the sucrose step gradient were measured and the proportion of the immature or mature forms of
as1-casein for each fraction was expressed as percent of the total (sum of gradient fractions and pellet). The
means ¡ s.d. from four experiments with three independent organelles preparations are shown. The
proportion of either immature or mature as1-caseins in each fraction of the gradient from TX-100-treated
samples was compared two-by-two to control data using the Friedman’s test and statistical significance is
indicated (*p,0.05). Relative molecular masses (kDa) are indicated. im. as1-cas: immature as1-casein; m. as1-
cas: mature as1-casein; im. ß-cas: immature ß-casein; m. ß-cas: mature ß-casein; TX-100: Triton X-100; *:
protein band with electrophoretic mobility identical to PDI. F: fraction; TX-100: Triton X-100.

doi:10.1371/journal.pone.0115903.g006
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synthesised as1- and ß-casein in the ER and in the Golgi apparatus, two steps of

the secretory pathway that can be easily identified on the basis of casein

phosphorylation/maturation. These experiments corroborated the differential

behaviour of as1- and ß-casein during the early steps of casein transport in the

secretory pathway. First, we confirmed here that the phosphorylation of ß-casein

is delayed as compared to that of as1-casein as we, and others, have observed

previously [9, 11, 12]. Secondly, and more importantly, we verified that ß-casein

was highly soluble within both the ER and Golgi lumina, compared to as1-casein.

When whole PNS was analysed (Fig. 1A), the mean ratio of total as1- to total ß-

casein (immature plus mature forms) was 0.52¡0.14. This is somewhat lower

than the ratio that can be calculated from the casein content in the milk of mouse

from published results [28]. However, the milk protein concentrations, as well as

the relative proportions of the caseins, vary greatly not only among mouse species,

but also among mouse strains [28, 29]. Moreover, reliable quantitative data on

casein composition are absent for rat. After freeze/thawing of the PNS and

centrifugation, we found a relative high amount of ß-casein in the resulting

supernatant (data not shown), and the above mean ratio calculated for the caseins

remaining in the membrane-bound organelle pellet was 2.07¡0.60 (Fig. 1B), i.e.

75% of ß-casein is released from these compartments during sample processing

because it is in a soluble form. Thirdly, we observed that the proportions of

[3H]leucine-labelled immature (0 minute chase, ER form) and mature (5 minutes

chase, Golgi form) as1-casein recovered with the membranous fraction (<16% of

total, in agreement with our previous experiments using immunoblotting [15])

Fig. 7. The DRMs containing as1-casein are sensitive to cholesterol depletion. Membrane-bound
organelles in PNS or purified rough microsomes fractions were incubated in non-conservative buffer without
Tween 20 and saponin, in the absence or the presence of the indicated concentration of mßCD for 30 minutes
at 37˚C. After centrifugation, supernatant (S) and pellet (P) were analysed via SDS-PAGE followed by
immunoblotting with antibodies against mouse milk proteins or ERLIN2. For each type of membranes, three
independent experiments are shown. The protein concentration in the analysis of the PNS 1 was twice lower
than for all other samples and most of the scans showing as1-casein signal were taken from overexposed films
for a better display of the large reduction of as1-casein present in the membrane pellet after cholesterol
extraction by mßCD. Relative molecular masses (kDa) are indicated. im. as1-cas: immature as1-casein; m. as1-
cas: mature as1-casein.

doi:10.1371/journal.pone.0115903.g007
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were not significantly different (Friedman’s statistical test). Altogether, these data

indicate that the proportion of membrane-associated as1-casein remains constant,

at least between the ER and the Golgi apparatus. This consistency suggests the

existence of an early sorting mechanism, prior to the maturation of caseins in the

Golgi apparatus.

Clearly, as1-casein is involved in the central stage of casein export from the ER.

Possibly, its membrane-associated form plays a key role in casein transport and/or

casein aggregation within the secretory pathway, where it might represent a

nucleation anchor for casein micelle formation and/or a link molecule for the

cytosolic secretion machinery. Pioneer studies concerning casein micelle

formation involved transmission electron microscopy (for review see [14]),

notably of rat mammary gland tissue (e.g. see [30]), and membrane connection of

casein micelles was noticed early [31]. A more recent and thorough analysis of

casein secretion in the mammary gland of rat also revealed the attachment of

premicellar casein aggregates to membranes of the Golgi apparatus of rat MECs

[13], but this observation has not yet been explained. At this stage, one cannot

exclude the possibility that these short protein fibre strands are not native

structures, but result from the processing of the samples for electron microscopy.

Nevertheless, these images corroborate our biochemical analysis. In the present

study, we clearly show that the connection of irregular linear clusters or of loose

interlaced aggregates of caseins with the membranes of the Golgi apparatus, as

well as of more mature casein micelle structures, with the membranes of the

secretory pathway is not a rare event. We are confident that, although less

obvious, such interactions also exist in the ER. Indeed, membrane-associated

particulates were observed in the lumen of purified rough microsomes prepared

from rat or goat MECs [15]. Others and we made similar observations in mice

[32–34] and rabbit [35, 36]. Surprisingly, electron microscopy data on the

formation of casein micelles in ruminants are scarce, both in cattle and goat.

However, the association of casein aggregates with membranes was also observed

in the latter species [7]. This result was consistent with our biochemical data, but

we could not estimate whether the lower proportion of membrane-associated as1-
casein found in goat [15] correlated with fewer occurrences of casein-membrane

interaction because the morphological approach do not allow for the reliable

quantitation of them. Note, however, that such interactions were still observed in

MECs that did not express as1-casein [7], indicating that this casein is not

exclusively responsible for the association of casein aggregates with membranes. In

line with this, it should be noted that preliminary experiments with goat rough

microsomes suggest that immature k-casein behaves towards membranes much as

immature as1-casein does (unpublished data). Moreover, similar proportions of

as1- and k-casein (<5–7%) were found with the membrane pellet after rabbit

MECs membrane extraction with carbonate at pH 11.2 (unpublished data). The

latter finding, however, was not confirmed with the use of saponin permeabi-

lisation in non-conservative conditions and, unfortunately, we do not yet have the

immunological tools to analyse the behaviour of k-casein in the rat experimental

system. Moreover, k-casein has three times less leucine, which made its
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quantification difficult in the present experiments using metabolic labelling. Given

the foregoing and that k-casein, in contrast to as1-casein, is believed to position

preferentially at the periphery of the micelle, we can not exclude that the

association of as1-casein with membrane is indirect and rather takes place through

its interaction with a membranous form of k-casein. However, investigation of the

role of k-casein in casein transport and casein micelle formation will be the

subject of a separate study.

Cell membranes are partially resistant to solubilisation with mild non-ionic

detergents in the cold. These DRMs are believed to be the biochemical remnants

of the cellular lipid rafts [37]; they are enriched with cholesterol and sphingolipids

[38]. Lipid rafts are thought to play a crucial role in the lipid-mediated sorting of

cargo, notably at the trans-Golgi network, for their delivery to the cell surface (for

review see [39]). Since the molecular interactions underlying the sorting of the

caseins for exocytosis are unknown, including or not association of caseins with

the membranes of the secretory compartments, it was important to determine

whether they associate with lipid rafts on their way to the apical plasma

membrane of MECs. We therefore ask whether they interact with DRMs. With the

mild non-ionic detergents used in this study, we observed a gradation of as1-
casein solubilisation similar to that observed for other DRM marker proteins [24].

However, a substantial proportion of membrane-associated as1-casein (25–30%)

remained with DRMs prepared with TX-100. In striking contrast, we confirmed

the solubilisation profile of Cnx, a transmembrane ER protein, being large with

Lubrol and complete with TX-100. Since the mature casein present in the rough

microsomes fraction appeared to be capable of better recovery in DRMs,

compared to the immature form, we suspected that part of that signal might be a

result of contaminating casein micelles. We therefore decided to prepare DRMs by

flotation on sucrose gradients. The use of a linear sucrose gradient has proved

unsatisfactory because MECs DRMs did not float as well as described by others

using cell lines (e.g. see [24]), in particular when an analysis of the rough

microsome samples was tried. This observation may have been largely due to the

fact that MECs synthesize and secrete extremely large quantities of proteins during

lactation. Thus, the membranes of the secretory pathway may be overloaded by

proteins involved in protein synthesis and folding, ribosomes, and the secretory

proteins themselves, preventing flotation using standard conditions. For MECs,

cellular membranes or detergent extracts were therefore brought to 60% sucrose

and were purified using flotation on a sucrose step gradient. Also noteworthy is

the fact that the procedure involving saponin permeabilisation under non-

conservative conditions was more effective to release proteins not integral to

membranes than saponin in combination with carbonate treatment at pH 11.2

(Fig. 5). We also found that pretreatment of the membrane-bound compartments

with saponin in non-conservative conditions was essential to avoid that a

substantial part of the non-integral proteins remains trapped into the network of

bilayered membranes and vesicular structures that results from detergents

solubilisation [40]. The results obtained with this experimental system strongly

suggested that the membrane-associated form of as1-casein is associated to a DRM
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of MECs. Further evidence for the existence of a cholesterol-dependent DRM

containing as1-casein was obtained when membranes were treated with mßCD,

which is known to selectively deplete biological membranes of cholesterol. Upon

mßCD treatment at 37 C̊, sedimentation of as1-casein with membranes was

drastically decrease.

The sorting function for lipid microdomains in the cargo trafficking from the

trans cisternae of the Golgi apparatus and the specific transport to the cell surface

has been largely documented (for review see [39]). Our data are consistent with

the occurrence of a membrane-associated form of as1-casein interacting with the

DRMs at an earlier stage of the secretory pathway, the cis Golgi or the ER, prior to

casein maturation in the Golgi apparatus. The somewhat recent realisation that

the sorting of, at least certain, secretory proteins occurs prior to exit from the ER

is consistent with this hypothesis. Muniz et al., found that, in yeast, GPI-anchored

protein markers are sorted from other secretory proteins in the ER, and packaged

into distinct ER-derived vesicles for forward transport to the Golgi apparatus [41].

More recently, the characterisation of proteins enriched in lipid rafts led to the

discovery of two proteins localised to the ER. These were found to be novel

members of the prohibitin family and were named ER lipid raft protein (erlin)-1

and -2 [25]. This report is consistent with the observation that the Shiga toxin B-

subunit remains associated with TX-100 DRMs during retrograde transport from

the plasma membrane, and persists in its target compartment, the ER [42]. Also,

PrPc, a GPI-anchored protein which is expressed in a wide spectrum of cell types

including MECs [43], has been found to associate as an immature precursor to

lipid raft already in the ER [44]. Another finding that has wide implications for

the mechanisms of protein sorting and exit from the ER is the observation that

apical, but not basolateral, secretory proteins are resistant to Tween 20

solubilisation during early stages in their biosynthesis in the ER [45]. The lipid

composition of these DRMs is compatible with the presence of the corresponding

lipid rafts in the ER. In the context of casein transport and casein micelle

formation, we hypothesize that the membranous form of immature as1-casein acts

as a ‘‘nucleus’’ for casein association/aggregation in the ER for the targeting of the

other caseins to the site of COP II vesicle formation and forward transport of the

casein aggregates to the apical membrane. Amazingly, it has been demonstrated in

both yeast and mammalian cells that loss of the GPI membrane anchor in marker

proteins, and the resulting deficiency in association with the lipid microdomains

in the ER, results in a reduced maturation rate and, therefore, slower transport of

the proteins to the Golgi apparatus [46–48]. We also observed that, in the absence

or with low amount of as1-casein, there is reduction of the transport of the other

caseins and their accumulation in distended ER cisternae [7]. The physiological

relevance of this observation has not been clarified, but we suggest that the

necessary interaction of as1-casein with lipid microdomains may be at the center

stage of the mechanism underlying the efficient transport and sorting of caseins.

The present study reveal that the insolubility of membrane-associated as1-
casein reflects its interaction with a cholesterol-rich detergent-resistant micro-

domain. We propose that the membrane-associated form of as1-casein interacts

Membrane-Associated as1-Casein Binds to Cholesterol-Rich Microdomains

PLOS ONE | DOI:10.1371/journal.pone.0115903 December 30, 2014 22 / 25



with the lipid microdomain, or lipid raft, that form within the membranes of the

ER, for packaging into COPII vesicles, efficient export from the ER, and forward

transport and sorting in the secretory pathway of mammary epithelial cells.
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