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Abstract

Species' interactions and the involvement of �shermen in several

�sheries may not be properly accounted for by regulatory schemes,

thus making regulation suboptimal. Being the only implementable in-

struments, the degree of ine�ciency of three second-best instruments

is assessed (by using a bioeconomic multispecies model) in terms of

their ability to get close to socially optimal e�ort and stock levels.

The type of regulation and the existing biological interaction are also

shown to result in di�erent impacts on e�ort re-allocation: a speci�c

regulation does not necessarily increase the pressure on the unregu-

lated species. Finally, we discuss how the choice of which second-best

policy to implement is situation-speci�c.
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1 Introduction

The last reports on the status of the world's �sheries point out the unceasing
decline of marine resources. Indeed, the 2010 FAO status report [14] shows
that 53% of monitored �sh stocks are fully exploited, while respectively 28%
and 3% are overexploited and depleted. Moreover, the 2010 UNEP report
[31] claims that there will be no �sh stocks left to catch by 2050 in the
world's oceans. This alarming situation questions the e�ciency of �sheries
management and highlights that measures taken so far may be suboptimal.
Although existing work has found that e�ciency requires a minimal market-
related information (Arnasson [3]) or depends on ecosystem-based consider-
ations (Grafton et al. [19]), there have been no attempt to assess their role
in management failure. In this paper, we especially try to examine to which
extend �shermen's behavior, given their potential implications in di�erent
�sheries and given the existence of ecological interactions, may impact on
the e�ciency of some market-based instruments.

A substantial literature has emerged on management instruments like
restrictions on �shing time, gear restrictions, entry license, (transferable)
catch quotas, landing fees or e�ort taxes (among others, Anderson [2], Costa
Duarte [11], Weitzman [35]). Market-based instruments have been stud-
ied extensively since they potentially may lead to improve on the e�ciency
of �sheries management (Cunningham et al. [12]). However, many FAO
reports [14] show that most �sheries are still overexploited, which raises a
legitimate question about the measures implemented. Some studies highlight
that government may deliberately implement suboptimal �sheries manage-
ment because of issues such as the social climate, which may impede on
the performance of market-based instruments (Arnasson [4]). As such, these
schemes are typically second-best. Karpo� [22] stresses that, if existing reg-
ulatory practices are interpreted as the outputs of a political system used to
redistribute wealth among �sheries, then their persistent suboptimality may
be rationalized. Others point out the multi-purpose nature of �shing activ-
ities and that priority may be employment rather than economic e�ciency
considerations (Hanesson for the Norwegian case [21] or Boude et al. [7] for
the case of the European community).

Apart from these socio-economic hurdles, some technical or practical ar-
guments may be raised to understand the failure of market-based instruments
to rebuilt resource stocks. First, Arnason [3] highlights that success depends
on the level of information available to the resource manager implement-
ing management instruments. Individual transferable quotas may lead to
e�ciency under minimal market-related information, while taxes/subisidies
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require a large amount of information on stocks. In this study, we claim
that regulators often overlook that �shermen may avoid regulations since
they may be involved in several �sheries. Moreover, even if scientists now
advocate an ecosystem-based approach to �sheries (Grafton et al. [19]) in
order to deal with ecologically-based externalities, biological interactions are
often ignored, and a large part of the literature still focuses on single-species
models to design management tools. All these reasons may, at least partially,
explain why most of regulatory measures are not su�cient and suboptimal.
The purpose of this paper is to study the e�ects of such second-best man-
agement systems, and to assess how they depend on the existing biological
relationship between species and on the economic characteristics of �sheries
driving e�ort allocation.

Issues of second-best management of interdependent species have received
some recent attention in the literature. Ashe et al. [5] empirically show that
lower quotas induce �shermen to target unregulated species. Boncoeur et al.
[6] show that the biological consequences of a marine protected area depends
on the biological relationship between species. Quaas and Requate [25], or
Agar and Sutinen [1] stress that myopic management of a species ignoring
potential spillovers may negatively a�ect unregulated species or more gener-
ally a�ect the success of the recovery process. All these results suggest that
one should re�ne the conclusions concerning the e�ect of second-best man-
agement on resource stocks; no study, to the best of our knowledge, explains
precisely how the type of biological interaction and the ability to reallocate
e�ort between �sheries a�ect the degree of ine�ciency of regulation schemes.
We aim at �lling this gap by analyzing �shermen's responses to suboptimal
regulatory systems and their incentives to reallocate �shing e�orts between
ecologically-interdependent species.

To proceed with the analysis, we consider a selective �sheries model,
where a �eet harvests two interdependent �sh species and boats have to be
allocated between both targeted species. The allocation of e�ort is especially
driven by market prices. We introduce three types of second-best taxation
schemes, ignoring either biological interactions or the fact that �shermen
involved in the �sheries may reallocate their e�ort from one sector to an-
other. More speci�cally, we use one landing tax (and one e�ort-based tax)
focused on only one species (or sector), thus not accounting for biological
interactions. We then introduce a �eet-based tax that ignores the potential
for e�ort redirection between the two �sheries. Moreover, di�erent types of
ecological interactions are considered. The predator-prey relationship has
been mostly analyzed in the literature (e.g. May et al. [23], Hannesson
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[20], Mesterton-Gibbons [24], Costa Duarte [11], Ussif and Sumaila [27]). A
few contributions consider other types of interactions, highlighting the spe-
ci�c features of the socially optimal policy (see Flaaten [16] for competitive
species, von dem Hagen and Wacker [32] or Wacker [33] for mutualistic re-
sources, and Fleming and Alexander [17] for a general overview). By contrast,
we consider all these di�erent types of interaction within the same setting.

Our contribution is three-fold. We �rst assess the impact of such man-
agement tools on the size of the �eet and on the allocation of boats between
species. An interesting counter-intuitive result is that �shermen do not nec-
essarily re-allocate their e�ort from the regulated species/�sheries to the
unregulated one. This reallocation is driven by the ecological relationship
and economic returns. For instance, we show that the pressure on the unreg-
ulated �sheries increases for mutualistic relationships under species-speci�c
taxation, that e�ort re-allocation is ambiguous under �eet-based taxation,
and that pressure decreases under the three taxation schemes when species
are competitive.

Second, we investigate how far away from the socially optimal outcome
those suboptimal measures could be. We surprisingly show that, under sec-
toral regulation, subsidies may be second-best due to biological interactions,
which contributes to widening the gap with the socially optimal stock levels.
Moreover, certain cases are highlighted where a species-speci�c regulation
makes things worse: compared to the case of open access, this regulatory in-
strument actually increases the gap with respect to socially optimal manage-
ment. The comparison is more ambiguous regarding the �eet-based taxation,
and depends on biological parameters. Finally, we characterize the type of
instrument that enables to get closest to the socially optimal levels, and we
show that conclusions depend mainly on the type of biological interaction.

The model is introduced in Section 2. The basics of the model are intro-
duced in Section 2, the open access equilibrium and socially optimal policy
are characterized in Section 3. Section 4 is focused on management policies:
the consequences of species-speci�c and e�ort management are analyzed in
sub-sections 4.1 and 4.2, respectively. Section 5 concludes.

2 A selective multi-species model

We assume that at every time t a global e�ort level Et must be allocated
between two �shing activities.1 If one interprets the global e�ort level as the

1Global e�ort denotes the overall capacity of �shing in all �sheries. It could refer to
the total number of boats or gears, to the global size of the �eet or to any other inputs.
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size of the �eet, a boat (seen as an e�ort unit) is used to harvest one or the
other �sh species: at time t a proportion λt ∈ (0, 1) of e�ort of the industry
is allocated to harvest species x and the remaining share (1−λt) is allocated
to harvest species y. We assume a simple form of harvest function where
(θ denoting the catchability coe�cient): (i) λtθEtxt denotes the quantity of
the x-species harvested at time t and (ii) (1 − λt)θEtyt corresponds to the
quantity of y-species that is harvested. Still interpreting the global e�ort level
as the overall number of boats (at time t), we can think of λE and (1− λ)E
as (respectively) the size of the x-species and y-species �shery sectors. The
industry faces the following instantaneous pro�t function:

Πt = pxλtθEtxt + py(1− λt)θEtyt − wEt (1)

where pi is the price of species i = {x, y} and w is the unit cost of e�ort E.

Under open-access the industry faces a free entry-exit procedure that
depends on the pro�t level. Following Smith ([29], [30]), we assume the level
of �shing e�ort changes continuously over time according to the following
equation:2

Ė = [pxθλtxt + pyθ(1− λt)yt − w]Et (2)

Finally, we assume the following population dynamics:

ẋ = xt (αx − axxt + γxyt − λtθEt) (3)

ẏ = yt (αy − ayyt + γyxt − (1− λt)θEt) (4)

where ax and ay are intraspeci�c competition (positive) parameters, and
the sign of interspeci�c interaction parameters γi (i = x, y) depends on the
ecological relationship: predation, competition or mutualism. The di�erent
cases are summarized in Table 1:

In the case of predator-prey interactions, the intrinsic growth rate for the
high trophic level i is assumed to be equal to zero, αi = 0, since the growth
of the predator population depends on the prey only.

We assume two conditions to ensure the stability of the system and the
coexistence of species under the di�erent types of interactions. First, we

2The temporal change in e�ort is usually assumed to be proportional to the net re-
turns (Smith ([29],[30]). Here, we assume that the rate of proportionality (the entry/exit
coe�cient) is equal to 1.
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Table 1: Populations Interactions

γx > 0 γx < 0
γy > 0 Mutualism Prey-predator relationship

with x the prey

γy < 0 Prey-predator relationship Competition
with x the predator

require that the standard Hawkins-Simon condition3 is satis�ed [33]:

axay − γxγy > 0 (5)

This condition requires that the combined intraspeci�c competition has to
be stronger than the combined ecological interaction: otherwise, for instance,
mutualistic species would grow inde�nitely. Second, following Chesson [8],
we require that intra-species competition regulates the growth resulting from
spillover e�ects. That is, for i, j = x, y, i 6= j, we have:

aiαj + γjαi > 0. (6)

These conditions are necessary and su�cient to ensure the existence and
stability of an interior steady state of the dynamical system without harvest
(see Chesson [8]), that is:

x̃ =
ayαx + αyγx
axay − γxγy

; ỹ =
axαy + αxγy
axay − γxγy

. (7)

In the case of a predator-prey relationship, the conditions hold automat-
ically at the equilibrium regarding the prey species, but condition (6) must
be satis�ed to ensure that the prey coexists with the predator.

For a given allocation of e�ort between the two �shing activities (that
we denote λ) we can now characterize the interior bioeconomic equilibrium
(that is, where the two species coexist) by setting ẋ = ẏ = Ė = 0, and we
obtain:

3This condition is commonly used to characterize an economy in which production
growth is proportional to the production levels. It is derived from the input-output anal-
ysis.
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x∗ =
pyθ(1− λ) [αx(1− λ)− αyλ]− w [(1− λ)γx + λγy]

θ [py(1− λ) (axpy(1− λ)− ayθ)− λpx ((1− λ)γx + λγy)]

y∗ =
w (ax(1− λ)− ayλ)− λpxθ [αx(1− λ)αx − λαy)]

θ [py(1− λ) (axpy(1− λ)− ayθ)− λpx ((1− λ)γx + λγy)]

E∗ =
λpxθ(αxγy − αyγx) + θpy(1− λ) (ayαx − axαy)− w (axγy − ayγx)

θ2 [py(1− λ) (axpy(1− λ)− ayθ)− λpx ((1− λ)γx + λγy)]

We have the following property:

Proposition 1 Under conditions (5) and (6), the interior bioeconomic equi-
librium, (x∗, y∗, E∗), is a saddle point.

We just prove the stability of the steady state. In the next section we will
build on this preliminary analysis in order to de�ne the targeted bioeconomic
equilibrium.

3 Open access equilibrium versus socially opti-

mal outcome

In Section 3 we characterize the targeted bioeconomic equilibrium, where the
e�ort allocation between species will be driven by pro�t maximization. Then
we characterize the socially optimal policy, and derive some preliminary im-
plications regarding the comparison of the size of the di�erent sectors.

3.1 The targeted bioeconomic equilibrium

So far we characterized the long-run resource stock and e�ort levels for a
given e�ort allocation. To close the characterization of the open-access bioe-
conomic equilibrium, the model requires a condition regarding the optimal
e�ort allocation between the two species, which aims at maximizing the in-
stantaneous �shing pro�t (1). Interpreting the situation as one where a �eet
is allocated between the di�erent �shing activities, conditions ẋ = ẏ = Ė = 0
characterize the long run open access stock and e�ort equilibrium levels, and
we �nally need to characterize the open access equilibrium allocation. Fol-
lowing Costa Duarte [11], this �nal condition is related to the allocation
decision variable λ, and states that the marginal revenue per unit of e�ort is
the same for both species. We have:

∂Π

∂λ
= 0⇔ θEt (pxxt − pyyt) = 0 (8)
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There is no incentive at the open access equilibrium to allocate an extra
unit of e�ort to harvest one particular species. The extra revenue from
�shing species x (because one additional vessel will be allocated to target it)
exactly covers the marginal loss of revenue coming from a decrease in the
e�ort allocation to harvest the other one. We obtain a targeted bioeconomic
equilibrium, which long-run stock levels are given by:

x̂ =
w

θpx
; ŷ =

w

θpy
(9)

We then deduce the e�ort level and share allocation (with αi = 0 if the
i-species is the predator):

Ê =
αx + αy + x̂(γy − ax) + ŷ(γx − ay)

θ
(10)

λ̂ =
αx + αy − axx̂+ γxŷ

αx + αy + x̂(γy − ax) + ŷ(γx − ay)
(11)

as well as:

λ̂Ê =
αx − axx̂+ γxŷ

θ
; (1− λ̂)Ê =

αy − ayŷ + γyx̂

θ
(12)

The above characterizations highlight that the equilibrium global e�ort
level Ê and the sectoral allocation depend explicitly on the ecological rela-
tionships.

3.2 The social optimum

In this section, we assume that a social planner chooses the social optimal
e�ort level and share allocation to maximize the present value of net social
bene�ts with respect to population dynamics (3) and (4), with δ denoting
the discount rate. The planner's problem is then:

max
E,λ

∫ ∞
0

(pxθλtEtxt + pyθ(1− λt)Etyt − wEt) exp−δt dt

ẋ = xt (αx − axxt + γxyt − θλtEt)
ẏ = yt (αy − ayyt + γyxt − θ(1− λt)Et)
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The current-value Hamiltonian is as follows:

H(xt, yt, µxt, µyt) = pxθλtEtxt + pyθ(1− λt)Etyt − wEt + µxtxt (αx − axxt
+ γxyt − θλtEt) + µytyt [αy − ayyt + γyxt − θ(1− λt)Et]

For an interior solution the optimality conditions are:

∂H

∂E
= pxθλtxt + pyθ(1− λt)yt − w − µxtθλtxt − µytθyt(1− λt) = 0 (13)

∂H

∂λ
= θEt (pxxt − pyyt)− θEt (µxtxt − µytyt) = 0 (14)

µ̇x = µxt [δ − αx + 2axxt − γxyt + λtθEt]− µytγyyt − pxθλtEt (15)

µ̇y = µyt [δ − αy + 2ayyt − γyxt + θ(1− λt)Et]− µxtγxxt − pyθ(1− λt)Et
(16)

From conditions (13) and (14), the shadow prices of the prey species, µx,
and that of the predator species, µy, are equal to the average of the monetary
value of the biomass stock level in the optimum, given the catchability coef-
�cient, net of the unit e�ort cost, µ̄x = pxθx̄−w

θx̄
and µ̄y = pxθȳ−w

θȳ
. Equations

(15) and (16) are modi�cations of the well-known �fundamental equation�
(Clark [9]). Looking for the long-run outcome, we set equation (15) equal to
zero; then, using (13) and (14) yields:

δ = αx − 2axxt + γxyt −
λθE(µx − px)

µx
+
µyγyyt
µx

(17)

The �rst two terms on the RHS of equation (17) are the standard steady-state
conditions. The last term models the two-species interaction and measures
the sensitivity of the growth of population y to a change in population x:
the feedback e�ect on productivity of the species results in an additional
marginal cost (or value depending on the type of interaction) of harvesting
species x. A similar condition holds for the second species:

δ = αy − 2ayyt + γyxt −
(1− λ)θE(µy − py)

µy
+
µxγxxt
µy

(18)

From conditions (13) to (16), we obtain the following long-run social
optimum:
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Proposition 2 The long run interior socially optimal policy is given by the
following conditions:

Ē =
αx + αy + x̄(γy − ax) + ȳ(γx − ay)

θ
; µ̄x =

pxθx̄− w
θx̄

λ̄ =
αx − axx̄+ γxȳ

αx + x̄(γy − ax) + ȳ(γx − ay) + αy
; µ̄y =

pxθȳ − w
θȳ

2pxθaxx̄
2 + x̄ [pxθ (δ − αx)− ȳθ (pxγx + pyγy) + w(γy − ax)]− δw = 0

2pyθayȳ
2 + ȳ [pyθ (δ − αy)− x̄θ (pyγy + γxpx) + w(γx − ay)]− δw = 0

According to Dockner [13], we can analyze the stability properties of this
equilibrium outcome. We �nd that:

Proposition 3 Under conditions (5) and (6), the equilibrium, {x̄, ȳ, Ē, λ̄},
is a saddle point.

We thus know that there exists a trajectory which converges to the long-run
outcome.

Before concluding this section, we compare the socially optimal outcome
and the targeted open access equilibrium. We can use the expression of
the two shadow prices, µ̄x and µ̄y, to compare the stock levels under sole
ownership and open access described by equations (9):

x̄− x̂ =
µ̄xw

θpx(px − µ̄x)
> 0 ; ȳ − ŷ =

µ̄yw

θpy(py − µ̄y)
> 0 (19)

Inequalities (19) imply that open access leads to the over-exploitation
of both species. Furthermore, the di�erence between stock levels under the
two extraction regimes depends only on the shadow price associated with
the resource considered. This suggests that the regulation of both species is
required in order to implement the �rst-best outcome.

However, the over-exploitation of both resources does not result from
excessively high �shing pressure. This is highlighted by the comparison of
sectoral sizes:

λ̄Ē − λ̂Ê =
−ax (x̄− x̂) + γx (ȳ − ŷ)

θ
(20)

(1− λ̄)Ē − (1− λ̂)Ê =
−ay (ȳ − ŷ) + γy (x̄− x̂)

θ
(21)

The comparison of sectoral sizes depends on the magnitude of over-
exploitation and on the ecological parameters modeling intra- and inter-
speci�c competition. The general conclusion can be stated as follows:
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Proposition 4 Depending on the type of biological interactions and the rel-
ative strengths of intra versus inter-speci�c competition for both species, the
size of the open-access sectors might be smaller than under socially optimal
management.

Without interaction, γi = 0 with i = {x; y}, the size of sectors under open
access is obviously larger than under socially optimal management. When
interacting species are considered, this conclusion does not hold generically.
Too much e�ort will be put on harvesting competitive species under open ac-
cess, as it intuitively expected. However, for the other types of relationships,
this now depends on the relative strengths of intra versus inter-speci�c rela-
tionships. With prey-predator interactions, the prey-�sheries sector is always
larger under open access, while the predator-�sheries sector may be smaller
under open access if the dependence on the prey o�sets the intra-species
competition. The comparison is more ambiguous for mutualistic species.
Nevertheless, we notice that the pressure on a species will be higher under
the socially optimal regime if inter-species interaction o�sets this species' in-
ternal competition. Moreover, the �shing pressure cannot be higher (under
socially optimal management) for both species.

To conclude this result highlights that, depending on species' interactions,
systematic decrease in the �shing pressure might not necessarily constitute
evidence of more e�cient regulation practices as it could be implemented
under suboptimal management. This further raises the question of induced
e�ort reallocation.

4 Management policies

The impact of di�erent second-best management policies is now discussed.
We introduce speci�cally a species-speci�c landing and e�ort tax, and a
global �eet-based regulation. This will enable us to assess economic e�-
ciency of each instrument and their potential for resource conservation. We
will �rst investigate the impact of taxation to determine how �shing e�ort is
reallocated between both existing activities. We then de�ne tax levels under
these suboptimal conditions. This will enable us to �nally analyze the extent
of regulation's impact.

4.1 Species/sector-speci�c regulation

We assume that a �shery manager imposes either a species-speci�c landing
tax, say on x, which is denoted by τx, or a species-speci�c e�ort tax, denoted
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by τf . In the rest of the paper, the �rst (respectively, second) scheme will
be referred to as the landing (respectively, sector-speci�c) tax. Moreover, we
will refer to regulated (resp. unregulated) species or sector for any type of
regulatory system. Regulated �shermen still act as if they had open access
to each �shery, but the tax will induce them to modify e�ort and harvest. In
the �rst scenario, the introduction of such a fee will modify equation (8) as:
(px − τx)xt − pyyt = 0. In the second one, the sector-speci�c fee will modify
condition (2) as : pxλθx + py(1 − λ)θy = λ(w + τw) + (1 − λ)w. We obtain
the corresponding expressions of the equilibrium stock levels:

x̂τx =
w

θ(px − τx)
, x̂τf =

w + τf
θpx

,

while the stock of unregulated species y remains at its open access level (as
given by (9)). We notice that the stock level of species x might increase or
decrease (depending on whether the fee corresponds to a tax or a subsidy).

We �rst analyze the impact of such regulatory structures on �shermen
behavior: we assess the e�ect of changes in the tax value on the long-run
e�ort level, on its allocation between �sheries sectors, and on the size of each
sector. This actually depends on the e�ect of stock variations (induced by the

change in the fee value) on each speci�c variable, Ẑ =
{
Ê; λ̂; λ̂Ê; (1− λ̂)Ê

}
:

∂Ẑτi
∂τi

=
∂Ẑτi
∂x
· ∂x̂τi
∂τi

with i = {x, f}

Let us assume that the fee is a tax4: as such we know that it positively
a�ects the stock level. The qualitative impact of the instrument will thus
only depend on the stock e�ect, which is characterized as follows:

∂Ê

∂x
= −(ax − γy)

θ
;
∂λ̂

∂x
=

(axay − γxγy) (ŷ − ỹ)

(θE)2
(22)

∂(λ̂Ê)

∂x
= −ax

θ
;
∂((1− λ̂)Ê)

∂x
=
γy
θ

(23)

Conditions (22) and (23) highlight that the impact of such regulatory schemes
depends on the intensity of intra/interspeci�c relations. More speci�cally, the

4This implies that the conclusions will be reversed if one does the comparative statics
assuming that the initial fee is a subsidy.
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e�ect on the allocation share depends on the di�erence between the stock level
of the unregulated species (ŷ) and its level without harvest (ỹ). Following the
intuition, we may expect that the potential marginal e�ort value of this stock
is higher than the marginal cost (otherwise there is no reason to catch this
species). Consequently, we may expect that ŷ− ỹ be negative, meaning that
a higher population density decreases (respectively, increases) the number of
boats that will be assigned to the regulated (respectively, unregulated) sector.
Despite the fact that e�ort redirection is straightforward, it does not mean
that the pressure on unregulated species increases. The resulting impact on
the size of both sectors also depends on changes in the global e�ort level.
The net e�ect depends on both inter and intra-species relationships. More
speci�cally, the net e�ect on the regulated sector will always be negative as
it only depends on the intra-species relationships. By contrast, it depends
on interspecies relationship for the unregulated sector. For instance, for
competitive species, global e�ort level decreases enough so that it o�sets the
increase in the e�ort share allocated to this sector (1− λ). This implies that
the decrease in the global e�ort level is the dominant e�ect compared to e�ort
reallocation to the unregulated sector. By contrast, with mutualistic species,
we may observe an decrease in the global e�ort level, while the number of
boats allocated to the unregulated sector increases. This thus implies that
e�ort reallocated to the unregulated sector is enough to counterbalance the
increase in the global e�ort level.

Proposition 5 A selective regulatory scheme always reduces the pressure on
the unregulated species under competitive relationships (due to the change in
the �eet level).
However, the pressure increases for mutualistic relationships because of a
strong e�ort redirection from the regulated sector to the unregulated sector.
For prey-predator relationship, results are similar to the competitive case if
the unregulated species is the predator, and are similar to the case of mutu-
alistic species otherwise.
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Table 2 summarizes the conclusions for a tax on either species x or the
x-species sector.

Table 2: Impact of a x-species/sector-speci�c tax

Predation Competition Mutualism
Share (λ) +/− +/− +/−
Total E�ort (E) if x is prey: +/− − +/−

if x is predator: −
x-species �shery activity (λE) − − −
y-species �shery activity if y is prey: − − +
((1− λ)E) if y is predator: +

If we now contrast these results with conditions (20) and (21), we notice
that a selective taxation scheme may increase the di�erence between the size
of a given sector under optimal management and under regulation. This
is speci�cally the case when biological parameters are such that the socially
optimal levels are higher than under open access (since taxation decreases the
pressure on the regulated species). This logically raises the question about
the e�ciency of these policies. We thus now assess the relative e�ciency of
such instruments by measuring how far away from the corresponding �rst-
best level a selective management policy could be, given that this policy is
only second-best. Let us �rst characterize the fees that either restore the
optimal stock level of the regulated species, x̂τx = x̄, or align the sectoral
allocation with the socially optimal level (when using a sector-speci�c tax),
λ̂τf Êτf = λ̄Ē. The �rst immediate conclusion is that a �shery manager
willing to impose a fee on landing species x to implement the socially optimal
stock level x̄ will use a tax rate equal to its own shadow price: τ ∗x = µ̄x > 0.
If the manager wants to regulate the proportion of e�ort level dedicated to
species x, the value of this fee is equal to the following expression5:

τ ∗f =
θpx [ax(x̄− x̂)− γx(ȳ − ŷ)]

ax
=
θ2px

(
λ̂Ê − λ̄Ē

)
ax

(24)

Equation (24) shows that the �scal scheme depends on the di�erence
between the size of the targeted sector under open access and its optimal
level. According to proposition 4, it can thus take the form of a tax or a
subsidy. More speci�cally, we derive the following conclusions:

5The proof of this characterization is provided in the proof of Proposition 6 in the
appendix.

14



Proposition 6 In the case of sector-speci�c regulations, the manager should
provide a subsidy to the targeted sector if the targeted species is a predator
highly dependent on the prey-species or for mutualistic species with a high
degree of interspeci�c dependency.
In all other cases, the manager should tax the targeted sector.

We can now analyze if these regulatory schemes enable the regulator to
reduce the di�erence between sectoral sizes under open access and under a
socially optimal regime. This will provide a measure of the relative e�ciency
of these two management policies.6 Let us compute again equations (20) and
(21) while accounting for taxation.

λ̄Ē − λ̂|τxÊ|τx =
γx(ȳ − ŷ)

θ
; (1− λ̄)Ē − (1− λ̂|τx)Ê|τx = −ay(ȳ − ŷ)

θ

λ̂|τf Ê|τf = λ̄Ē ; (1− λ̄)Ē − (1− λ̂|τf )Ê|τf = −(ȳ − ŷ)(axay − γxγy)
axθ

We notice that only the regulated sector reaches its optimal size under
a sector-based regulation. It is easily checked that the unregulated sector is
always larger than its optimal size because of a lack of self-regulation within
a given species, which yields a higher population density. This in turn allows
for higher harvest levels. The gap between the size of the regulated sector
(under a landing tax) and its optimal level results from the lack of interaction
of the regulated species with the unregulated one (since the stock level is
smaller under open access). The speci�c size of the gap depends on the type
of ecological interactions.

If we now contrast these di�erences with equations (20) and (21), we can
assess whether these instruments actually decrease the gap between the size
of the regulated (respectively, unregulated) sector under both management
regimes (compared to the case of no regulation). Proposition 7 highlights
that these mechanisms might actually have an unexpected, negative impact.

Proposition 7 An e�ort-speci�c tax, τf , closes the gap between the size of
the sector (targeted by regulation) under socially optimal and regulated open
access managements. It has an ambiguous impact regarding the unregulated
sector.

A species-speci�c landing tax, τx, only partially closes this gap for both
sectors (i) when species are competitive, (ii) if the regulated species is a prey,

6We do not need to analyze the e�ect on E or on λ in order to derive results on sectors.
For instance, regarding the species-speci�c tax, if (1 − λ̄)Ē < (1 − λ̂|τx)Ê|τx because

Ê|τx > Ē and species are mutualistic, then one necessarily has λ̄ > λ̂|τx .

15



or (iii) for mutualistic species which di�erential betweeen the intensity of
intra and interspeci�c relationship is su�ciently large. Otherwise, the gap
increases.

Proposition 7 highlights that these mechanisms enable to get close to the
socially optimal outcome (in terms of the size of �sheries sectors) for some
species, but that there are cases where they could also make the situation
worse. As a result, these mechanisms should be implemented (when �rst-best
management is not feasible) only in particular situations.

Moreover, it is interesting to notice that there exist some cases where
these mechanisms could further decrease the e�ort level dedicated to one
sector in situation where the pressure under open access was initially higher
than that under socially optimal management (and following regulation, the
pressure is further decreased). This is especially the case for mutualistic
species where the degree of self-retention is su�ciently high.

We �nally focus on the choice between both instruments. We actually
claim that a sector-speci�c regulation is more e�ective than a species-speci�c
taxation regarding the evolution of the regulated �sheries since this sector
becomes optimal. Regarding the unregulated sector, once again the conclu-
sion depends on the type of biological interactions. We have the following
expressions:

[
(1− λ̄)Ē − (1− λ̂|τx)Ê|τx

]
−
[
(1− λ̄)Ē − (1− λ̂|τf )Ê|τf

]
= −γxγy(ȳ − ŷ)

axθ

Speci�cally, for mutualistic and competitive species, a stock-based in-
strument, τx, performs better since the gap between the size of sectors under
both management regimes gets smaller. By contrast, for a prey-predator
relationship, a sector-speci�c instrument is more e�ective.

4.2 E�ort regulation

Now, let us assume that the social planner imposes a fee on the global ef-
fort level, τw. Equation (2) thus becomes : pxλθx + py(1 − λ)θy = w + τw.
Combining this last equation with (3) and (8), we obtain the following ex-
pressions:

x̂τw =
(w + τw)

θpx
, ŷτw =

(w + τw)

θpy

Unlike the case of a sector or species-speci�c regulation, both stock levels
are a�ected by the present scheme. More precisely, the stocks increase if a
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tax is imposed, and decrease otherwise. This in turn impacts on the global
e�ort level, the allocation share and the size of both sectors as follows:

∂Ẑτw
∂τw

=
∂Ẑτw
∂x
· ∂x̂τw
∂τw

+
∂Ẑτw
∂y
· ∂ŷτw
∂τw

with Ẑτw =
{
Êτw ; λ̂τw ; λ̂τwÊτw ; (1− λ̂τw)Êτw

}
.

As previously, let us assume that the fee is a tax, and focus on the impact
of changes in the two populations. Since we already computed the impact
of species x (see equations (22) and (23)), we now focus on the impact of
change in species y. We have:

∂Ê

∂y
= −(ay − γx)

θ
;
∂λ̂

∂y
=

(axay − γxγy)(x̃− x̂)

(θE)2 (25)

∂(λ̂Ê)

∂y
=
γx
θ

;
∂((1− λ̂)Ê)

∂y
= −ay

θ
(26)

Combining these equations with equations (22) and (23) and the impact of
the tax on the stock, we can assess the impact of this tax on the di�erent
variables characterizing the behavior of �shermen.

∂(Ê)

∂τw
=
px(γx − ay) + py(γy − ax)

θ2pxpy
(27)

∂(λ̂)

∂τw
=

(axay − γxγy)[px(x̃− x̂)− py(ỹ − ŷ)]

θ3E2pxpy
(28)

∂(λ̂Ê)

∂τw
=
γxpx − axpy
θ2pxpy

;
∂((1− λ̂)Ê)

∂τw
=
γypy − aypx
θ2pxpy

(29)

The impact of such mechanism is more ambiguous than that of the two
speci�c taxes, since it depends on combined e�ects resulting from the eco-
nomic variables and the biological parameters. We notice that its e�ect on
the allocation rate does not depend on biological interaction between species,
but only on the di�erence between the value (for each species) of the extra
population density if it is not harvested. Moreover, the size of the �eet and
the pressure on both sectors will always decrease when species are compet-
itive. Finally and perhaps more interestingly, we identify conditions under
which a �eet-based tax alleviates the pressure on either both species or on
only one. This is the aim of the next proposition.7

7Again the fee is assumed to be positive.
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Proposition 8 A �eet-based regulation scheme enables to either (i) reduce
the size of both sectors; (ii) reduce the size of the x-species sector and increase
that of the other sector if γy > 0 and py

px
> ay

γy
; or (iii) decrease the size of the

y-species sector and increase that of the other sector if γx > 0 and py
px
< γx

ax
.

Proposition 8 highlights that changes in harvesting pressure will depend on
the relative value of a species, and on the nature and intensities of inter
and intra-species relationships. Speci�cally, we observe that the pressure is
more likely to increase on species with a high relative price (pi/pj large)
and to decrease on the species that is highly important within the ecological
relationship (ai

γi
small). Table 3 summarizes the impact of an e�ort-based tax

instrument.

Table 3: Impact of e�ort-based tax

Predation Competition Mutualism
Share +/− +/− +/−
Total E�ort +/− − +/−
Fishery activity for x − − +/−
Fishery activity for y +/− − +/−

We now proceed with the characterization of the second-best optimal
e�ort-based scheme (implementing the �rst best e�ort level).

Proposition 9 If a �shery manager imposes an e�ort fee, the second-best
scheme is characterized by:

τ ∗w =
pxpyθ [(x̄− x̂)(γx − ax) + (ȳ − ŷ)(γy − ay)]

px(γy − ay) + py(γx − ax)

Thus, it is optimal to tax e�ort when species are competitive. For other types
of relationship, a tax is not always second-best. It is optimal to subsidize
e�ort if and only if the following conditions hold:

py
px

>
γy − ay
ax − γx

>
x̄− x̂
ȳ − ŷ

> 0. (30)

This result yields interesting insights, as it shows whether one should tax
or subsidize e�ort (via a license fee for instance) according to the type of
biological interactions. First, since x̄ > x̂ and ȳ > ŷ, τ ∗w will be positive
for competitive relationships. Second, the conclusion is ambiguous for other
relationships. While the rate will be positive for cases where γy ≤ ay and γx ≤
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ax (the intensity of the inter-species relationship is weaker than intra-species
competition), some quali�cation is needed when one or the other inequality
does not hold. Provided that the intensity of the inter-species relationship
is stronger than intra-species competition for one species, implementing the
socially optimal e�ort level will require subsidization as long as the price
ratio py

px
will be su�ciently high.8

Let us conclude the section with the assessment of the e�ciency of this
instrument by comparing the size of the sectors under regulation to that
under sole ownership:

λ̄Ē − λ̂τwÊτw =
ax (x̂τw − x̄) + γx (ȳ − ŷτw)

θ

(1− λ̄)Ē − (1− λ̂τw)Êτw = −
(
λ̄Ē − λ̂τwÊτw

)
The comparison is much more complicated than the one with a sector/species-

speci�c tax since both population stocks are a�ected, and the comparison
between stocks is ambiguous. However, we notice that if one sector is larger
than the socially optimal level, then the other sector will be smaller.

If we want to assess which instrument performs better, we can focus on
the sector harvesting the x-species.9 It is then easy to claim that the sector-
based regulation is the most e�cient one since the regulated sector reaches its
optimal size. Finally, comparing the species-speci�c tax with the e�ort-based
tax, we get:[

λ̄Ē − λ̂τwÊτw
]
−
[
λ̄Ē − λ̂τxÊτx

]
=
ax (x̂τw − x̄) + γx (ŷ − ŷτw)

θ

The sign is still ambiguous. Nevertheless, if we consider cases where (for
instance) we have x̄ > x̂τw and ŷτw > ȳ,10 then the e�ort-based regulation
performs better than the species-speci�c regulation for mutualistic species.
Indeed, the gap with respect to the socially optimal situation is smaller.
Once again, when �rst-best management is not possible, the choice of which
second-best policy to implement depends on the speci�cs of the situation.

8We provide conditions under which τ∗w takes on negative values in the appendix.
9Please note that the discussion focuses on the case of the x-species sector. It is useful

to keep in mind that, as said at the beginning of the analysis, an e�ort-based regulation
has a joint e�ect on the stocks of both species.

10The cases described do exist. For instance, if ai > γi, then it is easily checked that
x̄− x̂τw and ȳ − ŷτw have opposite signs.
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5 Conclusion

We analyze second-best management systems for multispecies �sheries. We
focus on emerging issues when a species (a sector) is left unregulated, or when
only the global e�ort level (not its allocation) can be controled. Using a model
of targeted �shing enables us to assess whether e�ort will be redirected from
regulated to unregulated species, and how this redirection is a�ected by the
nature of the biological interaction. It signi�cantly di�ers under competitive
or mutualistic relationships, or depending on whether the regulated species
is a prey or a predator. Among other counter-intuitive results, we show that
an e�ort-based management system (while it does not target a given species)
will induce a reallocation of e�ort to the predator species, but will release the
pressure on competitive ones. Finally, we characterize and contrast optimal
(second-best) regulatory schemes under the di�erent types of management.
Depending on the biological interaction, it consists in a tax or a subsidy. We
highlight how the characterization depends on the management system. We
evaluate the performance of second-best optimal schemes (with respect to
the socially optimal outcome) and �nally assess which is most appropriate
(in that it gets closer to the �rst best outcome).

All these results provide insights on the implications of incomplete regu-
lation schemes (which is a feature of most existing systems) as they show
how one should expect a change in the pressure on unregulated species, and
how this qualitatively depends on the nature of the biological interactions.
In the present paper we focused on open access regimes, and it would be
interesting to extend the analysis to the case of common property settings,
where strategic interactions may exist between resource users. This is left
for future research.
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Appendix

Proof of Proposition 1

As usual, focusing on the local stability of the dynamic system (2), (3) and (4) we can
derive the following Jacobian matrix :

J =

 −axx∗ γxx
∗ −Θλx∗

γyy
∗ −ayy∗ −Θ(1− λ)y∗

pxΘλE∗ pyΘ(1− λ)E∗ 0


Following Wirl [36], we know that it is su�cient to have tr(J) < 0 and det(J) < 0

for the equilibrium to be a saddle point. We easily observe that tr(J) = −axx∗−ayy∗ < 0.

It remains to check the sign of the determinant :
det(J) = −Θ2E∗x∗y∗ [(1− λ)py (ax(1− λ) + γyλ) + λpx (γx(1− λ) + ayλ)].
If species are mutualistically-dependent, then det(J) < 0. If species are in competition,
it is su�cient that −axγy ≥

λ
1−λ ≥ −

γx
ay
, which is possible under condition (5), to ensure

that det(J) < 0. For prey-predator relationship with x the prey, then it is su�cient that
λ

1−λ ≥ −
γx
ay

to ensure det(J) < 0.

Proof of Proposition 2

From conditions (13) and (14), we obtain µosx = pxθx̄−w
θx̄ and µosy =

pyθȳ−w
θȳ .

Then, using conditions (3) and (4), we �nd that

Ē =
x̄(sβ − a)− ξ + α− sȳ

θ
; λ̄ =

α− ax̄− sȳ
x̄(sβ − a)− ξ + α− sȳ

Finally, setting ẋ = ẏ = 0 (and using expressions (3) and (4)) enables to obtain the
implicit expressions of x̄ and ȳ as functions of Ē and λ̄.

Proof of Proposition 3

According to Dockner [13], we know if we have the trace of the jacobian matric Tr(J) > 0,
the sum of the principal minors Ω < 0 and the determinant det(J) > 0, we have the
su�cient conditions to observe saddle point stability properties.

J =


∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂µx

∂ẋ
∂µy

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂µx

∂ẏ
∂µy

∂µ̇x

∂x
∂µ̇x

∂y
∂µ̇x

∂µx

∂µ̇x

∂µy
∂µ̇y

∂x
∂µ̇y

∂y
∂µ̇y

∂µx

∂µ̇y

∂µy


|(x∗,y∗,µ∗

x,µ
∗
y)

The principal minors

Ω =

∣∣∣∣∣ ∂ẋ
∂x

∂ẋ
∂µx

∂µ̇x

∂x
∂µ̇x

∂µx

∣∣∣∣∣+

∣∣∣∣∣
∂ẏ
∂y

∂ẏ
∂µy

∂µ̇x

∂y
∂µ̇x

∂µy

∣∣∣∣∣+ 2

∣∣∣∣∣ ∂ẋ
∂y

∂ẋ
∂µy

∂µ̇x

∂y
∂µ̇x

∂µy

∣∣∣∣∣
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We notice that

Tr(J) = 2δ > 0 ; Ω = −axx∗(δ + axx
∗)− ayy∗(δ + ayy

∗)− 2x∗y∗γxγy < 0

det(J) = x∗y∗ (axay − γxγy) [(δ + axx
∗)(δ + ayy

∗)− γxγyx∗y∗] > 0

with axay > γxγy. Therefore, there needs no condition for the competitive and mutualistic
relationship. However, this requires that axx

∗(δ + axx
∗) + ayy

∗(δ + ayy
∗) > −2x∗y∗γxγy

for predation.

Proof of Proposition 4

The cases of competitive and of predator-prey relationships are straightforward. Since γx
and γy are negative in the case of competitive species, conditions (20) and (21) enable
to conclude the proof. Now, in the case of a predator-prey relationship, the prey-�shery
sector is easily checked to be always larger under open access. However, the following
condition (y denoting the predator species) ensures that the predator-�shery sector will
be larger under socially optimal management:

(1− λ̄)Ē > (1− λ̂)Ê ⇔ ȳ − ŷ
x̄− x̂

>
γy
ay

Regarding mutualistic relationships, let us analyze conditions to observe a larger pres-
sure under socially optimal management. From conditions (20) and (21), we obtain

λ̄Ē > λ̂Ê ⇔ ȳ − ŷ
x̄− x̂

>
ax
γx

(1− λ̄)Ē > (1− λ̂)Ê ⇔ γy
ay

>
ȳ − ŷ
x̄− x̂

This implies that
γy
ay
> ax

γx
⇔ γxγy−axay > 0, which contradicts condition (5). Therefore,

conditions (20) and (21) cannot be simultaneously positive. Speci�cally, if one has ȳ−ŷ
x̄−x̂ >

max
{
ax
γx

}
then the x-species sector is larger under socially optimal management. If one

has min
{
ax
γx

}
> ȳ−ŷ

x̄−x̂ then we obtain the same conclusion for species y. Under condition

(5) we deduce that max
{
ax
γx

}
= ax

γx
and min

{
ax
γx

}
=

γy
ay
, which concludes the proof.

Proof of Proposition 6

Since the optimal stock level is higher than the stock observed under open access, x̄ > x̂
and ȳ > ŷ, the sign of τf depends on the interactive term, γx. When γx is negative, τf is
positive. When γx is positive, the sign of τf could be positive or negative.

Proof of Proposition 7

Using equations (20) and (21), we check whether the di�erence between the open access
and socially optimal outcomes is larger than that between the regulated open access and
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socially optimal outcomes.(
λ̄Ē − λ̂Ê

)
−
(
λ̄Ē − λ̂τxÊτx

)
= −ax(x̄− x̂)

θ
< 0(

λ̄Ē − λ̂Ê
)
−
(
λ̄Ē − λ̂τf Êτf

)
= λ̄Ē − λ̂Ê[

(1− λ̄)Ē − (1− λ̂)Ê
]
−
[
(1− λ̄)Ē − (1− λ̂τx)Êτx

]
=

γy(x̄− x̂)

θ[
(1− λ̄)Ē − (1− λ̂)Ê

]
−
[
(1− λ̄)Ē − (1− λ̂τf )Êτf

]
=

axγy(x̄− x̂) + γxγy(ȳ − ŷ)

axθ

Proof of Proposition 8

The proof will follow from inspection of conditions (29). Under condition (5), we notice
that both conditions can be negative. Moreover condition (5) implies that ax

γx
≷ ay

γy
,

we thus obtain (in the case of mutualistic species) that inequality
py
px

>
ay
γy

implies that

the size of the x-species (respectively, y-species) sector decreases (respectively, increases).
Inequality

py
px<

γx
ax

implies that the size of the x-species (respectively, y-species) sector

increases (respectively, decreases).

Proof of Proposition 9

The proof is straightforward by simple inspection of the expression of τ∗w: conditions (30)
are necessary and su�cient to ensure that τ∗w has a negative value (keeping in mind that
axay − γxγy ≥ 0 implies that ax ≥ γx in the cases described in the proposition).

Cases where τ ∗w takes on negative values

It can be checked that, depending on the speci�c economic returns, the conditions ensuring
the use of subsidization are non degenerate. For instance, if w gets arbitrarily close to
zero, then x̂ and ŷ will get arbitrarily close to zero as well. Moreover, the socially optimal
stock levels get arbitrarily close to:

x̄ =
py(δ − αy)[pxγx + pyγy] + 2aypxpy(δ − αx)

(pxγx + pyγy)2 − 4axaypxpy
, ȳ =

x̄(pxγx + pyγy)− py(δ − αy)

2aypy
.

The ratio x̄−x̂
ȳ−ŷ gets arbitrarily close to

x̄

ȳ
=
py(δ − αy)[pxγx + pyγy] + 2aypxpy(δ − αx)

2axpxpy(δ − αy) + px(δ − αx)[pxγx + pyγy]
.

Then inequality
py
px
> x̄

ȳ is equivalent to:

pxpy{(αy − αx)(pxγx + pyγy)− 2axpy(δ − αy) + 2aypx(δ − αx)} > 0.

If the price of species x becomes arbitrarily small then the above inequality becomes:

(αy − αx)γy > 2ax(δ − αy)⇔ αy − αx
δ − αy

>
2ax
γy

.

Thus, cases where w and px have small enough (and appropriate) values correspond to
situations where τ∗w can take on negative values.
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