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Abstract

Economic analysis addresses risk and long-term issues with dis-
counted expected utility, focusing on optimality. Viability theory is
rooted on satisfying sustainability constraints over time, focusing on
feasibility. We build a bridge between these two approaches by es-
tablishing that viability is equivalent to an array of degenerate in-
tertemporal optimization problems. First, we focus our attention on
the deterministic case. We highlight the connections between the via-
bility kernel and the minimum time of crisis. Carrying on, we lay out
stochastic viability, turning the spotlight onto the notions of viable
scenario and maximal viability probability. Our conceptual results
bring the viability approach closer to the economic approach, espe-
cially in the stochastic case and regarding efficiency. We discuss the
possible use of viability as a theoretical framework for biodiversity
conservation, ecosystem management and climate change issues.
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1 Introduction

Dealing with environmental issues — such as biodiversity conservation, ecosys-
tem based fisheries management or climate change — requires us to account
for conflicting objectives, dynamics, long-term, irreversibility and uncer-
tainty. The issue of decision-making under uncertainty and risk has been
widely addressed in the economic literature, back to the fundament of ex-
pected utility theory axiomatized by von Neuman and Morgenstern [1947].
However, the expected utility framework was soon criticized on empirical
grounds (e.g., the Allais [1953] and Ellsberg [1961] paradoxes), and a huge
literature has developed to propose alternatives (e.g., [Kahneman and Tver-
sky, 1979, Tversky and Kahneman, 1992], to name a few).

Dynamic and long-term issues have also received a particular focus in
the economic literature, especially in growth theory [Koopmans, 1965]. Re-
garding environmental issues, the discounted utility approach is criticized in
the sustainability debate: this widespread neo-classical criterion may lead
to unsustainable economic trajectories in models of optimal growth with
environment [Heal, 1998], mainly because of discounting. The discounted
utility criterion neglects long-run utility, and is qualified as a “dictatorship
of the present” by Chichilnisky [1996]. The sustainability debate has thus
been marked by the introduction and analysis of other criteria [Heal, 1998],
including maximin [Solow, 1974].

Howarth [1995] emphasizes that, under uncertainty, a deontological ap-
proach should be used to address the sustainability issue, and sustainability
conditions should be imposed as prior constraints on the maximization of
a social welfare function. Using physical quantities to deal with the sus-
tainability issue, due to its long-term perspective, is an alternative approach
to expected utility [Mäler, 2002]. This approach is the one favored to deal
with the climate change issue in practice, as illustrated by the Kyoto pro-
tocol which defines physical targets in quantitative terms (co2 emissions).
Hence many studies consider explicit constraints on ghg (greenhouse gases)
emissions or concentrations instead of damage functions as, for instance, in
Chakravorty et al. [2008]. In biodiversity conservation, physical constraints
are usually prefered to utility evaluations. As an example, the International
Council for the Exploration of the Sea (ICES) precautionary approach [ICES,
2004] aims at conserving fish stocks and fisheries on the grounds of several
indicators including spawning stock biomass and fishing mortality. In this
context, reference points not to be exceeded for these bioeconomic indicators
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stand for management objectives.
When sustainability objectives are defined using indicators (quantitative

measurements having an economic or physical meaning) and thresholds (lim-
its not to be exceeded), the problem of the regulator in coping with all the
objectives simultaneously is to avoid crisis situations. Hence, sustainability
appears closer to a “satisficing” problem than to an optimizing problem (see
the discussion by Krawczyk and Kim [2009]).1 The concept of “stewardship”,
mentioned in the Stern Review, also stresses similar issues:

The notion of “stewardship” can be seen as a special form of
sustainability. It points to particular aspects of the world, which
should themselves be passed on in a state at least as good as that
inherited from the previous generation. [Stern, 2006]

If, from an intergenerational equity perspective, the constraints defined
by these indicators and thresholds have to be satisfied over time, such sus-
tainability problems can be studied in the mathematical framework of vi-
ability theory [Béné et al., 2001, Martinet and Doyen, 2007, Baumgärtner
and Quaas, 2009, Péreau et al., 2012, Cissé et al., 2013, Hardy et al., 2013].
A major mathematical instrument of the viability analysis is the so-called
viability kernel [Aubin, 1991]. It is composed of all initial states, if they exist,
from which economic development paths respecting the constraints can start
under appropriate sequences of decisions. Focusing on such a geometrical
tool is not traditional in economic analysis. We claim that the mathematical
framework of viability theory, with its concepts and methods, is well suited
to account for the major ingredients related to “stewardship”, “satisficing”,
or, more broadly, of “sustainability”. Our ambition is not to scrutinize the
possible acceptances and differences between “stewardship”, “satisficing”,
“sustainability”, etc. We just propose one mathematical formalism that can
capture the essence of these concepts.

Placed in the discussion on risk, viability can be interpreted in a stochas-
tic framework as the requirement to keep indicators above given thresholds
with a high probability [Morris and Doak, 2003, De Lara and Doyen, 2008,
Baumgärtner and Quaas, 2009, Doyen and De Lara, 2010, Doyen et al., 2012,
Gourguet et al., 2013, Mouysset et al., 2014]. This interpretation revolves

1The word satisficing inspired by Simon [1957] and bounded rationality does not here
refer to a situation of limited information in the decision process but as an alternative to
optimality.
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around the psychological process of “aspiration assessment”: Lopes claims
that “sensible people often base their choices on the probability of coming
out ahead” [Lopes, 1996], that is, to achieve at least a certain level with high
enough probability. When stakes are high, as life and death issues illustrated
in Dubbins and Savage [1965], this is a fairly “reasonable” approach. We will
discuss those points in the conclusion.

In this paper, we examine how the viability approach, and especially
stochastic viability, addresses conflicting objectives, uncertainty, dynamic
processes and long-term issues. Our contribution is twofold. First, from
a theoretical point of view, we provide a criterion-like description of the
viability approach, which allows us to stress its links with the usual economic
approach of (expected) discounted utility. In fact, the equivalence is not
with one but with several degenerate optimization problems: we provide a
description of time additive and time multiplicative criteria, and interpret
each kind of formulation. Second, we argue that stochastic viability is a
relevant approach to deal with dynamic problems under uncertainty, and
thus to cope with long-run environmental issues such as climate change,
biodiversity conservation or natural resources management.

The paper is organized as follows. In Sect. 2, we describe both the usual
discounted utility and the viability approach in the deterministic setting.
We emphasize their conceptual differences, and the implications of these
differences for natural resource management issues. In Sect. 3, we depict
both approaches in a stochastic framework. We highlight that, when time
and risk interact, the differences between approaches reduce and are sources
of complementarity, at least to address sustainability issues. We conclude
with a discussion in Sect. 4.

2 Deterministic intertemporal problem

As stated in the introduction, natural resources management and environ-
mental issues are dynamic in nature. To address these issues, we use a
dynamic modeling framework from control theory. We consider management
of dynamic systems in discrete time; we indeed want to avoid technical diffi-
culties related to continuous time, and concentrate on conceptual issues.
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2.1 Dynamic bio-economic model

We consider the following control dynamical system in discrete-time,

x(t+ 1) = Gt

(
x(t), c(t)

)
, t = t0, . . . , T − 1 , x(t0) = x0 , (1)

where the time index t is discrete (t ∈ N is an integer), with t0 the initial time
and T the horizon, which may be finite (T < +∞) or infinite (T = +∞).
The state x(t) is a vector belonging to X = Rn; usually, the components
of the state vector x(t) represent stocks; such stocks can include renewable
resources (typically abundance, biomass of species), man-made reproducible
capital, or pollution stocks; the vector x0 ∈ X is the initial state for the
initial time t0. The control c(t) ∈ C = Rp represents decisions, such as
extraction or harvesting effort, investment, consumption, emissions. The
mappings Gt : X × C → X, for t = t0, . . . , T − 1, stand for the dynamics
representing the evolution of the state through time. Examples encompass
population dynamics, ecosystem dynamics, economic models with capital
and labor, or pollution accumulation-absorption models. We now proceed
by laying out a model in biodiversity management.

A two-species fisheries model

We consider a fisheries dynamical model with two species, each targeted by a
specific fleet. Each species is described by its biomass: the two–dimensional
state vector (x1, x2) represents the biomasses of both species. The two–
dimensional control vector (c1, c2) comprises the harvesting effort for each
species, respectively, each lying in [0, 1]. The discrete-time control dynamical
system we consider is given by

{
x1(t+ 1) = x1(t)R1

(
x1(t), x2(t)

)(
1− c1(t)

)
,

x2(t+ 1) = x2(t)R2

(
x1(t), x2(t)

)(
1− c2(t)

)
.

(2)

The two functions R1 : R
2 → R andR2 : R

2 → R represent biological growth
factors.

As an example of application, in De Lara et al. [2012], the Peruvian
anchovy-hake system is modeled as a prey-predator system, where the an-
chovy growth rate is decreasing in the hake population. We describe this
interaction by the following discrete-time Lotka-Volterra system
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x1(t + 1) = x1(t)

R1

(
x1(t),x2(t)

)

︷ ︸︸ ︷
(
R −

R

κ
x1(t)− αx2(t)

) (
1− c1(t)

)
,

x2(t + 1) = x2(t)
(
L+ βx1(t)

)

︸ ︷︷ ︸

R2

(
x1(t),x2(t)

)

(
1− c2(t)

)
,

(3)

where R > 1, 0 < L < 1, α > 0, β > 0 and κ = R
R−1

K, with K > 0 the
carrying capacity for the prey. The variable x1 stands for anchovy biomass
and x2 for hake biomass. The purpose of this compact model is not to provide
biological “knowledge” on the Peruvian upwelling ecosystem, but rather to
capture the essential features of the system in what concerns decision making.

2.2 Outputs/indicators

Main outputs of system (1) are given by so-called indicators Ik
t

(
x(t), c(t)

)
,

k = 1, . . . , K. An indicator Ik
t : X× C → R is a state and control function

having economic or environmental meaning.2 From a sustainable develop-
ment point of view, the indicators are instantaneous measurement of quan-
tities that characterize some aspects of sustainability (biodiversity, catches,
rents, co2 emissions, consumption, etc.). Note that an indicator can be
reduced to the simplest form, being only one of the stocks or one of the
decisions (consumption for instance).

In what follows, when we turn the spotlight upon welfare economics for-
mulations, we will consider that the indicators are directly the components
of a utility function U , forging the value U

(
I1
t

(
x(t), c(t)

)
, . . . , IK

t

(
x(t), c(t)

))

at time t. The utility function is thus implicitly relying on time, state and
control. For example, in fisheries management, the utility can be derived
both from fish stocks (as biodiversity or ecosystem services indicators) and
catches, that are important economic indicators. In a climate change con-
text, the utility can be derived both from consumption and from a climate
indicator.

2When the horizon T < +∞, the indicator Ik
T only maps the state space X towards R

because there is no decision at time T . However, for the sake of homogeneity of notations,
we will write Ik

T

(
x(T ), c(T )

)
for Ik

T

(
x(T )

)
.
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2.3 Maximal intertemporal discounted utility

In an intertemporal framework, one purpose of economic analysis is to iden-
tify optimal intertemporal decisions paths to be applied from a given initial
state.

The usual criterion in economics is the discounted utility, that is, the
discounted sum of present and future utilities

max
c(·)

T∑

t=t0

1

(1 + δ)t
U
(
I1
t

(
x(t), c(t)

)
, . . . , IK

t

(
x(t), c(t)

))
, (4)

where δ > 0 is the discount rate, and c(·) denotes a control path c(·) =
(
c(t0), . . . , c(T − 1)

)
. For instance, in the two-species fisheries model intro-

duced in §2.1, we can maximize the discounted value of the catches.
A program such as (4) defines an optimal growth path in the terminology

of neo-classical economics [Koopmans, 1965]. In the long run, it can lead to
unsustainable situations, in the sense of a utility decreasing toward zero, in
particular in models with exhaustible natural resources [Dasgupta and Heal,
1974] or pollution.

2.4 The viability approach

Following the discussion in Sect. 1, suppose now that the decision maker’s
goal is not to maximize the discounted utility but to maintain given indicators
above viability thresholds:3

Ik
t

(
x(t), c(t)

)
≥ θkt , ∀k = 1, . . . , K , ∀t = t0, . . . , T . (5)

Recall that Ik
t : X×C → R is an indicator, namely a state and control func-

tion having economic or biological meaning; the real number θkt is a thresh-
old.4 Using these indicators and associated thresholds acting as constraints, a
viable development path is an economic path that meets the constraints (5),
that is, that meets the constraints Ik

t

(
x(t), c(t)

)
≥ θkt , for all k = 1, . . . , K

and at all times t = t0, . . . , T .

3Without loss of generality: a “bad” indicator, such as pollution, can be represented
by its negative value, so that the direction of the inequality holds.

4Since the indicator Ik
t and the threshold θkt are allowed to explicitly depend upon

time t, we can cover the case of absence of constraints (take Ik
t having constant value

greater than θkt ), or of final target constraint (take Ik
t (x, c) = 0 and θkt = 0 for all

t = t0, . . . , T − 1, but not for Ik
T (x, c) and θkT ).
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Viability kernel

The viability analysis describes the conditions on states (ecological and eco-
nomic endowments) and controls (economic decisions) for the resulting path
to be viable, that is, to respect all the constraints at all times, given the
dynamics of the system. The main mathematical instrument of the viabil-
ity analysis is the so-called viability kernel [Aubin, 1991]. It is composed of
all initial states from which viable trajectories can start, i.e., all states from
which there are intertemporal decisions resulting in trajectories which satisfy
the constraints. From the mathematical point of view, the viability kernel at
initial time t0 reads

Viab(t0) =







x0 ∈ X

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

there exist controls
(
c(t0), . . . , c(T − 1)

)

such that
∀k = 1, . . . , K , ∀t = t0, . . . , T

Ik
t

(
x(t), c(t)

)
≥ θkt

x(t + 1) = Gt

(
x(t), c(t)

)

x(t0) = x0







. (6)

A basic viability problem consists in characterizing this set. In particular, the
case when this kernel is empty is quite informative because it highlights the
(in)consistency between the different and possibly conflicting viability con-
straints [Martinet and Doyen, 2007]. However, handling such a geometrical
tool is not usual in economic analysis, which favors optimization approaches.
However, viability kernels can be computed by means of a dynamic pro-
gramming equation, that we label viable dynamic programming [De Lara and
Doyen, 2008], which has close ties with the classical dynamic programming
equation in dynamic optimization.

After illustrating viability kernels for the example introduced in §2.1, we
will show in §2.5 how a viability problem can be expressed as a (degenerate)
dynamic optimization problem, closer to usual economic representations and
efficiency.

A two-species fisheries model

In the two-species fisheries model introduced in §2.1, we consider the follow-
ing goals to be satisfied:

• preservation: for all t = t0, . . . , T ,

x1(t) ≥ x♭
1 , x2(t) ≥ x♭

2 , (7)
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where x♭
1 ≥ 0, x♭

2 ≥ 0 are minimal biomass levels, one for each species,

• production requirements: for all t = t0, . . . , T − 1,

c1(t)x1(t)R1

(
x1(t), x2(t)

)
≥ h♭

1 ,

c2(t)x2(t)R2

(
x1(t), x2(t)

)
≥ h♭

2 ,
(8)

where h♭
1 ≥ 0, h♭

2 ≥ 0 are minimal catch levels, one for each species.

Using viable dynamic programming, we can compute explicitly the via-
bility kernel [De Lara et al., 2012]. If the minimal biomass thresholds x♭

1, x
♭
2

and catch thresholds h♭
1, h

♭
2 are such that

x♭
1R1

(
x♭
1, x

♭
2

)
− x♭

1 ≥ h♭
1 and x♭

2R2

(
x♭
1, x

♭
2

)
− x♭

2 ≥ h♭
2 , (9)

the deterministic viability kernel is given by

Viab(t0) =






(x1, x2) ∈ R

2
+

∣
∣
∣
∣
∣
∣

x1 ≥ x♭
1, x2 ≥ x♭

2,

x1R1

(
x1, x2

)
− x♭

1 ≥ h♭
1,

x2R2

(
x1, x2

)
− x♭

2 ≥ h♭
2






. (10)

2.5 Viability as a degenerate optimization problem

Numerous formulations of viability problems in terms of optimality have been
provided. In the continuous time case, Aubin [1991] especially focuses on exit
time functions together with support or indicator functions for Hamiltonian
characterizations. Links with the maximin criterion are pointed out in Mar-
tinet and Doyen [2007] for the Dasgupta-Heal-Solow model, or in De Lara
and Doyen [2008] and Doyen and Martinet [2012] for a more general frame-
work. We now present alternate equivalent forms of the viability problem (6)
and give their interpretation. These forms will be formulated as optimization
problems, although degenerate ones with no unique solution in general. This
degeneracy generally makes the numerical resolution tricky. This is why our
purpose is conceptual and not numerical. However, such a connection be-
tween viability and optimality also highlights the possibility to use dynamic
programming to tackle the viability problem, as detailed in De Lara and
Doyen [2008] and Doyen and De Lara [2010]. Such a temporal decomposi-
tion can be useful for analytical computations or numerical implementations
of viability solutions, especially in the uncertain case.
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Reformulating viability as an optimization problem under con-
straints

The first idea to embed the viability problem in an optimization formulation
is to consider the optimization of a null (or constant) criterion under the
viability constraints (5):

min
c(·) satisfying (5)

0 .

Such an optimization problem under constraints provides a viable path (x(·), c(·))
as soon as the initial state x0 belongs to the viability kernel Viab(t0). In other
words, the problem is not well posed outside the viability kernel, which is not
satisfying. Typically, if the viability kernel is empty, such an optimization
problem does not convey any information. Moreover, whenever the initial
state x0 belongs to the viability kernel Viab(t0), several solutions and viable
controls c(·) may exist as the zero criterion is not selective among the viable
paths. This points out the degeneracy of optimization problems underlying
viability issues.

Reformulating viability as an optimization problem without con-
straints

Viable states belonging to the viability kernel can be characterized by solving
optimization problems without constraints, using characteristic functions.5

We denote by 1A the characteristic function of the set A, which is equal to
one when its argument belongs to A, and to zero otherwise:

1A(a) =

{
1 if a ∈ A ,

0 if a 6∈ A .

Using this tool, the quantity 1[θk
t
,+∞[

(

Ik
t

(
x(t), c(t)

))

indicates whether

the constraint k is satisfied at the given time or not. Using this character-
istic function formulation, condition (5) can be described in multiplicative6

form, as
∏K

k=1 1[θk
t
,+∞[

(

Ik
t

(
x(t), c(t)

))

= 1. If any of the indicator is below

5Such functions are also called indicator functions. Since we already use the term
“indicator” with another meaning, we choose to speak of characteristic functions.

6An equivalent additive form is
∑K

k=1

(

1− 1[θk

t
,+∞[

(

Ik
t

(
x(t), c(t)

)))

= 0, and the

minimum form is mink=1,...,K 1[θk

t
,+∞[

(

Ik
t

(
x(t), c(t)

))

= 1.
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the associated threshold, the characteristic function is equal to zero for this
indicator, and the product is nil. If all the constraints are respected, the
product is equal to one.

There are at least two different ways to describe the viability kernel in
optimality terms using the characteristic functions. On the one hand, one
can use a time-additive form, the criterion being to minimize the following
value7

T∑

t=t0

(

1−
K∏

k=1

1[θk
t
,+∞[

(

Ik
t

(
x(t), c(t)

))
)

, (11)

which counts the number of time periods during which (at least) one con-
straint is not respected along a given path. In an intergenerational perspec-
tive, it can be interpreted as the number of generations that do not achieve
the objectives. It is equal to zero when all the constraints are respected at
all times along the path defined by the given controls. This time-additive
form has an easy interpretation based on the time of crisis criterion intro-
duced by Doyen and Saint-Pierre [1997] and applied by Béné et al. [2001]
and Martinet et al. [2007] for renewable resource management or by Martin
[2004] to resilience issues. The optimal control problem associated with the
criterion (11), termed minimal time of crisis, corresponds to8

C(t0, x0) = min
c(·)

T∑

t=t0

(

1−
K∏

k=1

1[θk
t
,+∞[

(

Ik
t

(
x(t), c(t)

))
)

. (12)

It turns out that the viability kernel (6) of the problem is composed of
all initial states for which the minimal time of crisis (12) is nil:

Proposition 1 x0 ∈ Viab(t0) ⇐⇒ C(t0, x0) = 0 .

The proof follows almost by definition. Recall that our contribution is not
technical but conceptual: we aim at displaying conceptual proximity between
viability and optimality and we pave the way for a new criterion in the
stochastic case.

On the other hand, one can use a time-multiplicative form, the criterion
being to maximize the product upon time of the product of characteristic

7As we are summing nonnegative numbers, the given sum is mathematically well-
defined whether the time horizon is finite, i.e., T < +∞, or infinite, i.e., T = +∞.

8See footnote 7.
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functions9

V (t0, x0) = max
c(·)

T∏

t=t0

K∏

k=1

1[θk
t
,+∞[

(

Ik
t

(
x(t), c(t)

))

. (13)

As soon as one of the constraints is not respected at some time period, the
criterion is equal to zero. It is equal to one when all the constraints are
respected at all times, characterizing a viable state:

Proposition 2 x0 ∈ Viab(t0) ⇐⇒ V (t0, x0) = 1 .

Even if it has little economic meaning in the deterministic case, this form
will appear useful in the stochastic case that we address in the next section.

Both the criteria (12) and (13) provide the same information with respect
to the characterization of the viability kernel (6). Nevertheless, the multi-
plicative form only gives a Boolean information, whereas the minimum time
of crisis indicates, for states characterized by a strictly positive value func-
tion, the minimal number of crisis periods the economy is going to face. It
thus provides a meaningful information on what happens outside the viabil-
ity kernel, how to reach it and how to remain in it [Doyen and Saint-Pierre,
1997, Martinet et al., 2007, 2010]. Moreover, formulation (12), based on the
concept of time of crisis, satisfies the principle of dynamic programming.10

It thus provides a useful algorithm to compute the viability kernel, and also
the sets of minimal time of crisis. Martinet et al. [2010] describe such an al-
gorithm and apply it to the issue of recovering fisheries from crisis situations.

3 Stochastic intertemporal problem

In this section, we proceed to the parallel description of both discounted
utility and viability in a stochastic framework.

3.1 Uncertain dynamic bio-economic model

Consider the following discrete-time control uncertain dynamical system

x(t + 1) = Gt

(
x(t), c(t), w(t)

)
, t = t0, . . . , T − 1 , x(t0) = x0 , (14)

9As we are multiplying numbers belonging to [0, 1], the given product is mathematically
well-defined whether the time horizon is finite, i.e., T < +∞, or infinite, i.e., T = +∞.

10So does the time-multiplicative form (13).
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where w(t) ∈ W = Rq denotes an uncertainty which affects the dynamics
at time t. Typically, for biodiversity conservation or natural resources man-
agement issues, uncertainties can include environmental variability (weather,
availability of resources or growth rate for instance). For climate change, such
uncertainties might encompass uncertain emission mechanisms in the carbon
cycle or natural removal of atmospheric co2 to sinks. For the sake of sim-
plicity, the initial state x0 is here supposed to be deterministic and known,
although, if needed, x0 could be added to the uncertainties. We define a
scenario by

w(·) =
(
w(t0), . . . , w(T )

)
(15)

and the set of all scenarios by

Ω = W
T−t0+1 . (16)

From now on, we assume that the set Ω is equipped with a probability distribu-
tion11 P which measures the likelihood of (measurable) subsets of scenarios.12

The mathematical expectation with respect to P is denoted by E.

A two-species fisheries model with uncertainties

In the two-species fisheries model presented in §2.1, we now introduce two
terms w1 and w2 that correspond to uncertainties affecting each species
biomass, respectively, through the growth factors R1 and R2. The discrete-
time control dynamical system we consider is:

{
x1(t+ 1) = x1(t)R1

(
x1(t), x2(t), w1(t)

)(
1− c1(t)

)
,

x2(t+ 1) = x2(t)R2

(
x1(t), x2(t), w2(t)

)(
1− c2(t)

)
.

(17)

The difference between the deterministic model (2) and the uncertain model (17)
is the presence of the uncertainties variables w1 and w2 in the growth factors
R1 and R2.

11The probability P is defined on the Borel product σ-field of WT−t0+1. The mappings
Gt, I

1
t , . . . , I

k
t , and all decision rules ct (see below) are supposed to be measurable.

12The notation w(·) =
(
w(t0), . . . , w(T − 1)

)
still denotes a generic point in Ω; however,

it may also be interpreted as a sequence of random variables when w(·) is identified with
the identity mapping from Ω to Ω.
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The extension of the prey-predator model of the Peruvian anchovy-hake
system exposed in §2.1 is

x1(t+ 1) = x1(t)

R1

(
x1(t),x2(t),w1(t)

)

︷ ︸︸ ︷
(
w1(t) +R −

R

κ
x1(t)− αx2(t)

) (
1− c1(t)

)

x2(t+ 1) = x2(t)
(
w2(t) + L+ βx1(t)

)

︸ ︷︷ ︸

R2

(
x1(t),x2(t),w2(t)

)

(
1− c2(t)

)
.

(18)

3.2 Outputs/indicators

Main outputs of system (14) are given by indicators 13 Ik
t

(
x(t), c(t), w(t)

)
, for

k = 1, . . . , K and t = t0, . . . , T . In the uncertainty framework, an indicator
Ik
t : X × C × W → R is a state, control and uncertainty function having

economic or environmental meaning.

3.3 Decision rules

We define a decision rule c as a sequence of mappings ct : X → C, for
t = t0, . . . , T −1. A decision rule is a (state) feedback which assigns a control
c = ct(x) ∈ C to any state x for any time t = t0, . . . , T − 1. With such a
definition, we implicitly assume that the state is at least partially measured.14

Given a decision rule c, a scenario w(·) ∈ Ω, an initial state x0 ∈ X and an
initial time t0, the solution state path x(·) = (x(t0), . . . , x(T )) is well defined
as the solution of the discrete-time dynamic equation

{
x(t+ 1) = Gt

(
x(t), c

(
t, x(t)

)
, w(t)

)
with x(t0) = x0

c(t) = ct

(
x(t)

)
, t = t0, . . . , T − 1 .

(19)

The solution control path c(·) =
(
c(t0), c(t0+1), . . . , c(T−1)

)
is the associated

decision path where c(t) = ct

(
x(t)

)
.

13When the horizon T < +∞, the Ik
T only maps the state space X × W towards R

because there is no decision at time T . However, for the sake of homogeneity of notations,
we will write Ik

T

(
x(T ), c(T ), w(T )

)
for Ik

T

(
x(T ), w(T )

)
.

14As a consequence, we do not consider the case where only a corrupted observation of
the state is available to the decision-maker (as it may nevertheless be the case in practical
situations).
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3.4 Discounted expected utility

There are plenty of criteria to make choices under risk [see, for instance,
Savage, 1972], but less attention has been paid to criteria for dynamical
problems mixing time and risk. The usual criterion in economics is the
discounted expected utility, which is the discounted sum of present and future
utilities

max
c

E

[
T∑

t=t0

1

(1 + δ)t
U
(
I1
t

(
x(t), c(t), w(t)

)
, . . . , IK

t

(
x(t), c(t), w(t)

))

]

, (20)

where x(t) and c(t) are the solution state and control paths given by (19).
Criterion (20) is built upon two well axiomatized theories, the discounted

intertemporal utility [Koopmans, 1965] and the expected utility [von Neuman
and Morgenstern, 1947]. This approach is widely used and offers interest-
ing applicability properties as time consistency and dynamic programming.
However, discounting makes this criterion controversial for long-run issues
such as climate change (see the Stern Review [Stern, 2006] and the ongoing
debate [Philibert, 2006, Weitzman, 2007, Gollier, 2008, Sterner and Persson,
2008]).

3.5 Viable scenarios and viability probability

We now describe how the viability approach described in §2.4 can be extended
to the stochastic framework.15

We impose viability constraints in this uncertain case as follows

Ik
t

(
x(t), c(t), w(t)

)
≥ θkt , k = 1, . . . , K , ∀t = t0, . . . , T . (21)

For these constraints to make sense, we introduce the notion of a viable sce-
nario. A scenario w(·) is said to be viable under a given decision rule c if the
state and control paths driven by the decision rule, introduced in §3.3, satisfy
the constraints (21). In other words, if the given scenario w(·) materializes,
the economic path defined by this decision rule is viable.

15Mathematical materials for stochastic viability can be found in Aubin and Prato
[1998], Buckdahn et al. [2004] but they focus on the continuous time case. Contributions
for discrete time systems are [Doyen et al., 2007, Béné and Doyen, 2008, De Lara and
Doyen, 2008, De Lara and Martinet, 2009, Doyen and De Lara, 2010].
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For any decision rule c, initial state x0, and initial time t0, we define the
set Ωc,t0,x0

of viable scenarios by:

Ωc,t0,x0
=







w(·) ∈ Ω

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x(t0) = x0

x(t + 1) = Gt

(
x(t), c(t), w(t)

)

c(t) = ct

(
x(t)

)

Ik
t

(
x(t), c(t), w(t)

)
≥ θkt

k = 1, . . . , K
t = t0, . . . , T







. (22)

The set Ωc,t0,x0
is the set of scenarios for which the decision rule c would result

in viable economic trajectories. The larger the set, the larger the number
of scenarios along which the given decision rule succeeds in meeting the
viability constraints. Once a probability P is defined on the set of scenarios,
the viability problem becomes one of probability maximization, as follows.

We say that P (Ωc,t0,x0
) is the viability probability associated with the ini-

tial time t0, the initial state x0 and the decision rule c. Thus, the term refers
to the probability of satisfying viability constraints. Given initial time t0 and
initial state x0, the maximal viability probability is defined by

VP(t0, x0) = sup
c

P (Ωc,t0,x0
) . (23)

From that point of view, the stochastic viability approach aims at char-
acterizing the decision rules that maximize the probability to comply with
the constraints over time. It turns out that such maximal viability proba-
bility (23) can be characterized as the maximal expected value of the multi-
plicative criterion depicted in (13) for the deterministic case:

VP(t0, x0) = max
c

E

[
T∏

t=t0

K∏

k=1

1[θk
t
,+∞[

(

Ik
t

(
x(t), c(t), w(t)

))
]

. (24)

The concept of viability kernel can then be expanded through the maxi-
mal viability probability. At a given confidence level β ∈ [0, 1], the stochastic
viability kernel Viabβ(t0) is the set of initial states for which there exists a
decision rule that drives the trajectories within the viability constraints (21)
at least with probability β. It reads as follows [Doyen and De Lara, 2010]:

Proposition 3 x0 ∈ Viabβ(t0) ⇐⇒ VP(t0, x0) ≥ β .
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An informative case is provided by the confidence level β = 100% because,
whenever such viability kernel Viab1(t0) is not empty, we obtain robust viable
states and decision rules in the sense that the viability constraints (21) are
satisfied whatever the uncertainties occurring (up to a set of probability
zero). Such worst case and pessismistic approach can also be relevant for
precautionary approach as explained in Doyen and Péreau [2009].

A two-species fisheries model with uncertainties

We consider the model (17) with the following goals:

• preservation (minimal biomass levels): for all t = t0, . . . , T ,

x1(t) ≥ x♭
1 , x2(t) ≥ x♭

2 , (25)

• production requirements (minimal catch levels): for all t = t0, . . . , T−1,

c1(t)x1(t)R1

(
x1(t), x2(t), w1(t)

)
≥ h♭

1 ,

c2(t)x2(t)R2

(
x1(t), x2(t), w2(t)

)
≥ h♭

2 .
(26)

The stochastic viability kernels Viabβ(t0) can be computed numerically by
means of a dynamic programming equation associated with dynamics (17),
state constraints (25) and control constraints (26) [De Lara and Doyen, 2008].

When the dynamics is given by the Lotka-Volterra model (18) with nu-
merical values to be found in De Lara et al. [2012], and when the probability P

on the set Ω of scenarios is such that
(
w(t0), . . . , w(T − 1)

)
are independent

random variables (with uniform distribution on the set of observed empirical
uncertainties), we obtain the stochastic viability kernels displayed in Figure 1.

Practical and numerical issues

To end, we briefly touch upon practical and numerical issues. First, the
maximal viability probability and viable decision rules can theoretically be
obtained by dynamic programming [De Lara and Doyen, 2008, Doyen and
De Lara, 2010]. The dynamic programming equation can be solved for states
of low dimension (see an example in De Lara and Doyen [2008]). Second,
decision rules can be restricted to a subset and compared as was done in
Doyen et al. [2007] to analyze the impact of reserve size in fishery manage-
ment. Third, under specific properties such as monotonicity of dynamics and
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Figure 1: Stochastic viability kernels Viabβ(t0) (β = 0.2, 0.4, 0.6, 0.8, 0.9) for
the hake-anchovy fisheries model (17) with the viability constraints (25) and
(26)

outputs with respect to state and control variables, a maximal viable deci-
sion rule can be characterized and explicitly described, as in De Lara and
Martinet [2009], where a fisheries example with a state of dimension 18 is
treated.

4 Discussion and conclusion

When dealing with environmental issues, such as biodiversity management or
climate change, both risk and intertemporal issues are to be considered. The
main economic criterion combining risk and time is the discounted expected
utility. The controversy on the choice of the discount rate stands as an
important point in the debate on the economics of sustainability. However,
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even with a low discount rate, discounting is criticized as extinction of a
species can be optimal [Clark, 1990] or as long-run damages and benefits are
neglected due to exponential discounting.16

In practice, the climate change issue is tackled using quantities as emis-
sions targets, upper limit for long-run ghg concentration or mean tempera-
ture increment, namely using indicators and thresholds in our terminology.
Such an approach is also widespread in biodiversity conservation or natural
resources management, with minimal preservation thresholds for abundances.
As recalled in Sect. 1, the International Council for the Exploration of the Sea
(ICES) precautionary approach [ICES, 2004] aims at conserving fish stocks
and fisheries on the grounds of spawning stock biomass and fishing mortality.

The present paper points out how viability, and especially stochastic vi-
ability, can contribute to scientific environmental debates. Viability aims
at defining the conditions for sustainability constraints to be satisfied over
time. Using the stochastic viability approach to address sustainability issues
is interpreted as maximizing the probability to respect constraints, and to
avoid exceeding potentially dangerous thresholds.

Stochastic viability focuses on the decision rules that minimize the risk
to violate the constraints, and thus aims at avoiding related catastrophic
outcomes. Consider, for example, ecosystem management as inspired by
Population Viability Analysis [Morris and Doak, 2003] which minimizes ex-
tinction risks. In that case, stochastic viability would favor decision rules
such that constraints related to both biodiversity and ecosystem services are
satisfied with high probability. In other words, stochastic viability may be
seen as a method to control the tails of a damages distribution. Comparing
maximal viability probabilities for different potentially catastrophic issues
(climate change, nuclear energy, etc.) is one possible answer to the program-
matic conclusion by Weitzman [2007] on the importance of comparing tails
of distributions.

Acknowldgements. The authors are indebted to the Editor and to two
Reviewers for their useful comments.

16An exponential increase in relative prices may nevertheless compensate the exponential
decrease [Boiteux, 1976, Philibert, 1999, 2006, Sterner and Persson, 2008]
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Luc Doyen and Jean-Christophe Péreau. The precautionary principle as a ro-
bust cost-effectiveness problem. Environmental Modeling and Assessment,
14(1):127–133, 2009.

L.E. Dubbins and L.J. Savage. How to gamble if you must. Inequalities for
stochastic processes. McGraw-Hill Education, 1965.

21



D. Ellsberg. Risk, ambiguity, and the Savage axioms. Quartely Journal of
Economics, 75:643–669, 1961.

Christian Gollier. Discounting with fat-tailed economic growth. Journal of
Risk and Uncertainty, 37(2):171–186, December 2008.

S. Gourguet, C. Macher, L. Doyen, O. Thébaud, M. Bertignac, and
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