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Abstract: Native to West Africa, Spathodea campanulata (African tulip tree) is frequently 2 

viewed as a shade-intolerant invader. It commonly colonizes roadsides, human-disturbed 3 

forests and abandoned agricultural land in tropical islands, where it can then become 4 

dominant in secondary forests. Some authors have suggested that the seedlings may be shade-5 

tolerant and able to establish in closed forest, but the shade tolerance of seedlings has never 6 

been evaluated. We identified tolerated light environments of S. campanulata seedlings in wet 7 

forests in Hawaii by measuring photosynthetically active radiation (PAR) around naturally 8 

occurring seedlings (< 30 cm height) in the field. We also measured photosynthetic responses 9 

of seedlings to light under field and lab conditions, and determined seedling growth rates in 10 

sun and shade. Seedlings were found in shaded conditions in the field, and they consistently 11 

had positive net carbon gain at 50 µmol photons m
-2

·s
-1 

PAR, with an estimated mean 12 

compensation point below 10 µmol photons m
-2

·s
-1

, indicating high shade tolerance. The most 13 

frequent midday light environments of S. campanulata seedlings in the field were in the range 14 

around 50 to 200 µmol photons m
-2

·s
-1

 PAR, i.e., 2.5% to 10% of full sunlight. Among 15 

seedlings found growing in shade, minimum saturating light (Ek), determined from 16 

chlorophyll fluorescence, averaged 260 µmol photons m
-2

·s
-1

, suggesting that seedling 17 

maximum photosynthesis can occur at less than 13% of full sun. Growth rates of young 18 

seedlings in shade and sun were comparable. Widespread wind dispersal of seeds, seedling 19 

tolerance of low light, and our observations of some S. campanulata saplings establishing in 20 

rainforest without recent disturbance suggest that S. campanulata will be a persistent 21 

component of Hawaiian lowland rainforests. 22 

 23 

 24 

 25 
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Introduction 2 

Many studies show that invasive species can pose important threats to native biodiversity 3 

(Hierro et al. 2005, Mack et al. 2000) or cause major problems in natural ecosystems (Merlin 4 

and Juvik 1992), especially on tropical islands (Daehler 2005, Denslow 2003, Loh and 5 

Daehler 2007, Kueffer et al. 2010, Meyer and Florence 1996, Meyer 2004, Reaser et al. 6 

2007). The invasiveness of introduced plants in new geographic areas has been explained by 7 

characters such as competitive advantages under particular environmental conditions (Daehler 8 

2003, Mooney et al. 2005), or possession of novel chemical traits compared with the native 9 

flora in the introduction area (Callaway and Ridenour 2004). Certain invasive plants, such as 10 

Spathodea campanulata, have attracted particular interest because of their successful spread 11 

across numerous tropical islands (Labrada and DiazMedina 2009). 12 

Spathodea campanulata P. Beauv. (Bignoniaceae), commonly called African tulip 13 

tree, is widely naturalized in many Pacific islands and considered a threat to native 14 

biodiversity (Meyer 2000, Pacific Islands Ecosystems at Risk 2011), notably by creating a 15 

shading effect, which reduces native species richness under its canopy (Weber 2003). It is 16 

also reported as a serious agricultural weed, especially in coffee plantations (Labrada and 17 

DiazMedina 2009). Forests dominated by S. campanulata are frequently established in the 18 

lowland tropics on abandoned agricultural lands, deforested lands (Francis 2000, Labrada and 19 

DiazMedina 2009, Larrue 2011, Kress and Horvitz 2005) or in secondary rain forests (Bito 20 

2007). Spathodea campanulata has been highlighted by the Invasive Species Specialist Group 21 

as among ‘100 of the World’s Worst Invasive Alien Species’ (ISSG 2004). 22 

Most invasive plants affect secondary forests, particularly in environments already 23 

highly disturbed by humans (Martin et al. 2008), but some invasive plants are able to grow in 24 

later-successional forests that have experienced little or no recent disturbance (Martin et al. 25 
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2004, Meyer and Florence 1996, Rejmánek 1996). These shade-tolerant plants, many of 1 

which are trees, pose a serious threat to the persistence of native forests (Martin et al. 2008, 2 

2004, Meyer and Florence 1996). Therefore, it is especially important to identify potentially 3 

shade-tolerant plant invaders so that they can be targeted as priorities for prevention or 4 

control. 5 

Spathodea campanulata is often described as a shade-intolerant invader (Francis and 6 

Lowe 2000, Martin et al. 2008, Thompson et al. 2007) but there is some controversy in the 7 

literature. Lambrada and DiazMedina (2009) report that the wind-dispersed seeds of S. 8 

campanulata are able to breach the ‘barrier effect’ of large trees present in edges of the forest, 9 

and these authors observed S. campanulata seedlings in native forests in Cuba, including 10 

primary forests. Other authors have suggested that S. campanulata seedlings are shade-11 

tolerant and able to thrive without disturbance in rain forests (Anderson et al. 1992, Smith 12 

1985, Staples and Cowie 2001). Little quantitative information is available on shade tolerance 13 

of S. campanulata seedlings, although such information is important for understanding 14 

invasion patterns and potential. Francis (1990) reported that S. campanulata seedlings grew 15 

well in ~50% shade, developing true leaves within 2 months. Labrada and DiazMedina (2009) 16 

indicated that the shade or semi shade of coffee plantations is the most favourable light 17 

environment for S. campanulata seed germination in Cuba and noted that higher seed 18 

germination occurs in semi-shade (~50% shade) than in full sunlight, but no attempt was 19 

made to assess growth at lower light levels. In this study, we examined field distribution 20 

patterns and photosynthetic and growth capacities of S. campanulata seedlings on Oahu and 21 

Hawaii (Hawaiian Islands) in order to characterize and quantify the light environments under 22 

which S. campanulata seedlings are currently establishing and capable of growing.  23 

 24 

Materials and Methods 25 
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Field study sites 1 

The volcanic islands of Oahu and Hawaii (Hawaiian Islands) are found in the Pacific 2 

Ocean between 18°54′41″-21°42′34″ N, and 154°48′29″-158°16′46″ W. The island of Oahu 3 

ranges from sea level to 1,220 m asl with a land surface of 1,545.3 km²; the island of Hawaii 4 

occupies an area of 10,432 km² with a highest summit at 4,205 m asl (State of Hawaii Data 5 

Book 2004). Both islands have a leeward dry side and a windward wetter side exposed to the 6 

dominant north-eastern trade winds. The mean annual rainfall in the surveyed area of Oahu 7 

ranges from 2,001 to 2,750 mm, and from 3,551 to 4,400 mm for the Hawaii site 8 

(Giambelluca et al. 2011). 9 

The most important invasion of S. campanulata is observed between sea level and 226 10 

m asl on the windward coast of Oahu and up to 312 m asl in Hawaii, in the “moderately dry-11 

moist seasonal zone” and “lowlands rainforest zone” (Mueller-Dombois 2002). Study sites 12 

were located on the windward side, at the foot of the Ko’olau mountains (island of Oahu) and 13 

on the gentle downslope of Mauna Kea (island of Hawaii) in the lowland rainforest zone 14 

(Fig.1). In these wet forests, some native species remain (e.g., Psychotria mariniana 15 

(Rubiaceae), Freycinetia arborea (Pandanaceae), Metrosideros polymorpha (Myrtaceae), and 16 

Syzygium sandwicensis (Myrtaceae)), but the forests are now dominated by S. campanulata 17 

and other introduced trees species, e.g., Cecropia peltata (Urticaceae), Aleurites moluccana 18 

(Euphobiaceae), Cinnamomum burmannii (Lauraceae), Falcataria moluccana (Fabaceae), 19 

Psidium cattleianum (Myrtaceae), and Schefflera actinophylla (Araliaceae). 20 

<Figure 1. near here>  21 

 22 

Study species 23 

Spathodea campanulata is a large evergreen tree, 20-25 m in height (Keay 1957, Neal 24 

1948, Smith 1985) but sometimes reaching more than 30 m (Unwin 1920), with a dense 25 
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irregular crown and a trunk diameter of 0.5-1.75 m (Holdridge 1942, Little and Skolmen 1 

1989). This species grows rapidly (Francis 1990, Pacific Islands Ecosystems at Risk 2011; 2 

around 2 m per year in young stands (S. Larrue, personal observation)) and produces 3 

numerous red-orange flowers pollinated by bats and birds in its native range (Keay 1957). 4 

The species requires cross-pollination (Bittencourt et al. 2003); the fruit is a brown pod 5 

containing about 500 wind-dispersed seeds (Fosberg et al. 1993, Little and Skolmen 1989). 6 

Mature individuals of S. campanulata produce many pods, with 125,000 (Holdridge 1942) to 7 

290,000 (Francis and Rodríguez 1993) seeds kg
-1

 of pods. The species is mainly propagated 8 

by seeds, which can travel long distances (Francis 1990, Little and Skolmen 1989, Staples et 9 

al. 2000). 10 

The native geographic area of S. campanulata extends from the west coast of Africa to central 11 

Africa between 12°N and 12°S (Irvine 1961). The tropical climate of the native range of 12 

African tulip tree is warm and wet, with a monthly mean temperature of 27°C to 30°C and 13 

abundant rainfall (Francis 1990). Spathodea campanulata has a broad ecological range 14 

(Florence 1997, Francis 1990) and therefore has been successfully grown throughout the 15 

tropics (Bärtels 1993, Francis 1990). It can survive in areas with a dry season of 1-3 mo; 16 

successful reproduction is reported at a minimum of 1,300 mm of mean annual precipitation. 17 

Substrate can be basic or acid soils, from clayey soil to loamy sands, with poor to excessive 18 

soil drainage (Francis 1990). The species is frost sensitive (Eliovson 1969) and apparently 19 

needs nearly full sunlight for reproduction (Little and Skolmen 1989). 20 

In c. 1915, S. campanulata was introduced as an ornamental tree on Oahu (Staples and Herbst 21 

2005). It is currently naturalized in lowland coastal plains on the windward side of the islands 22 

of Kauai, Oahu, Molokai, Maui and Hawaii (Wagner et al. 1999). In the Hawaiian Islands, S. 23 

campanulata ranges from sea level up to 1,000 m asl (Smith 1985). It is also found from sea 24 

level to 1,200 m asl in Puerto Rico (Francis 1990) and up to 1,430 m asl in the main island of 25 
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Tahiti (Society Islands, French Polynesia) (Meyer, pers. comm.). In Hawaii, Smith (1985) 1 

reported major infestations in almost every rainforest in East Maui and along the valley of 2 

northern and eastern slopes of Kauai and Oahu. Loope et al. wrote (1992, p. 567): “It [S. 3 

campanulata] should be monitored and opportunistically controlled in conjunction with 4 

systematic control of strawberry guava and other rainforest weeds.” 5 

 6 

 7 

Plot-based seedling counts and photosynthetically active radiation 8 

Field studies were conducted from January-February, 2012. In forests with canopy 9 

dominated by S. campanulata, three 150 m
2
 field plots were delineated. In the plots, we 10 

counted (1) the number of seedlings (< 30 cm height) positioned in 1-m² quadrats (n = 150 11 

per plot), and (2) recorded the photosynthetically active radiation (PAR) in each 1 m
2
 quadrat 12 

(systematic random sample). The PAR was recorded with a 0.3-m line sensor (Fieldscout 13 

PARmeter, Spectrum Technologies) at the centre of every 1 m² quadrat at 40 cm above the 14 

ground (± 10 cm). The PAR measurements in the three plots were made between 12h00 and 15 

13h00 (i.e. near solar noon) during cloudless days. PAR was also measured in full sunlight at 16 

around 12h30 (± 3.5 µmol photons m
-2

·s
-1

).  17 

 18 

Interpolation of PAR  19 

In order to map the light environment and estimate the mean light environment in the 20 

three plots between 12h00 and 13h00, field light readings were entered into a Geographic 21 

Information System (see Figure 2; Geographic Information System Mapinfo Professional 22 

v.10, Interpolation Method). We then superimposed positions of the S. campanulata seedlings 23 

onto these plot maps and extracted the projected mid-day PAR value for each seedling. 24 

<Figure 2. near here>  25 

 26 
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Photosynthetically active radiation recorded along the line transect 1 

In order to quantify seedling establishment across a wider range of light environments 2 

(including mid-day full sun), S. campanulata seedlings were surveyed along an abandoned 3 

section of roadside (1,590 m of length, Old Auloa Road, Oahu; both ends of road transect: 4 

21°22’17.96” N-157°47’05.34” W, and 21°22’22.65”N-157°47’29.55”W). We recorded the 5 

PAR (between 12h00 and 13h00) above each S. campanulata seedling (< 30 cm height) 6 

encountered between 0 and 2 m from the roadside and compared the distribution of light 7 

readings at the seedlings to the distribution of available light environments along the roadside 8 

(random points ~ 30 cm above the ground).  9 

 10 

Correlation between spatial pattern of seedlings and PAR values 11 

In order to test any correlation between photosynthetically active radiation and the 12 

spatial pattern and abundance of S. campanulata seedlings, we conducted the following 13 

analysis: We compared the distribution of PAR readings among the three plots and along the 14 

line transect to the distribution PAR readings at S. campanulata seedlings using a 15 

Kolmogorov-Smirnov test (XLStat® software, version 2007.6). We then tested whether some 16 

light environments are more frequently colonized by seedlings than expected. We compared 17 

these results to the photosynthetic responses of S. campanulata seedlings in controlled light 18 

environments. 19 

 20 

Photosynthetic and growth responses of seedlings 21 

Ten seedlings were excavated from shaded or partially shaded environments located 22 

near the beginning of the survey transect. Seedlings were transported to the laboratory for 23 

photosynthetic measurements after allowing 2-5 days for recovery from any potential shock 24 

of transplantation. A chlorophyll fluorometer (PAM 2500, Heinz Walz GmbH) was used to 25 
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measure the minimum saturating light level (Ek) for ten seedlings. Additionally, 1 

photosynthetic measurements were made between 10h00 and 14h00 with a photosynthesis 2 

meter (CI 340, CID Bio-Science, Inc.) and light response curves were used to estimate the 3 

light compensation point (minimum light required for plant maintenance). In order to confirm 4 

results from lab-transported field seedlings, additional light response curves were recorded 5 

directly in the field for seven seedlings found growing naturally in shaded environments.  6 

To measure seedling growth rates in response to shade, lab-germinated seeds were 7 

transplanted into 16 cm conetainers containing a 3:1 mixture of Premier Promix Bx 8 

Mycorrhizae (Premier Tech Horticulture) and small black cinders (< 2.5 cm, Niu) with 9 

fertilizer (Osmocote 14-14-14 NPK, 0.055 g). Seedlings were placed on an outdoor bench in 10 

sun (n = 5, mean daily PAR 1300 µmol photons m
-2

·s
-1

, range 143 to 2156) or shade (n=6, 11 

mean daily PAR 138 µmol photons m
-2

·s
-1

, range 6 to 276) and grown under well-watered 12 

conditions until reaching the four-leaf stage (28-78 days, mean 56 days), at which time 13 

seedlings were harvested to determine relative growth rates, based on total dry mass. 14 

Results 15 

Plot characteristics and seedling abundance 16 

All three plots were dominated by mature S. campanulata with flowers and pods, 17 

although a few other introduced woody species were also recorded (Table 1). A total of 97 S. 18 

campanulata seedlings were found. Seedlings height ranged from 3 to 18 cm with a mean 19 

height of 10 cm. Among plots, S. campanulata seedling density ranged from 0.04 to 0.54-m² 20 

(Table 1). The local-scale light environment within the three plots, as characterized by mid-21 

day PAR measurements, ranged from 1% full sunlight (observed in all three plots) to 58.7% 22 

full sunlight (plot 3). Among the three surveyed plots, the median light environment ranged 23 

from 1% to 4.1% full sunlight (Table 1).  24 

<Table 1. near here>  25 
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 1 

Spatial pattern of seedlings and distribution of PAR values in the plots 2 

The overall distribution of seedlings among light environments differed significantly 3 

from the distribution of available light environments in the plots (Kolmogorov-Smirnov test, 4 

maximum distance = 0.541, P < 0.001). This difference in distributions was examined more 5 

closely by grouping PAR values into categories and plotting expected frequency of seedling 6 

occurrence (frequency of light environments in the plots) versus actual frequency of seedling 7 

occurrence among light environments in the plots (Figure 3). Within the lowest light ranges 8 

(< 20 µmol photons m
-2

·s
-1

), seedlings are under-represented, whereas they are well 9 

represented or over-represented at the midday ranges of 51-200 µmol photons m
-2

·s
-1 

(Figure 10 

3) suggesting that this latter range may be a preferred light environment. 11 

 12 

Seedlings and distribution of PAR values along the line transect 13 

Along the line transect, 255 S. campanulata seedlings were recorded, ranging from 4 14 

to 27 cm in height with a mean height of 12.5 cm. The midday PAR values above seedlings 15 

ranged from 0.4% to 100% full sunlight (1895 µmol photons m
-2

·s
-1

), and the median PAR 16 

was 193 µmol photons m
-2

·s
-1

. The midday light environments along the line transect 17 

estimated by 102 random points, ranged from 10 to 1319 µmol photons m
-2

·s
-1

.  18 

Along the line transect, the highest S. campanulata seedling densities occurred within 19 

the ranges of 50-150 µmol photons m
-2

·s
-1

midday PAR (Figure 4). The PAR readings from 20 

random points along the transect demonstrate the seedling dis-proportionately occupy low 21 

light environments (Figure 4). Among the observed 255 seedlings on the transect, only three 22 

seedlings were found in full sunlight (between 1888 and 1895 PAR).  23 

<Fig. 3 near here>  24 

<Fig. 4 near here>  25 
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 1 

Photosynthetic and growth rate measurements  2 

Field-collected seedlings averaged 7.6 cm tall (range = 3-14.5 cm) with an average of 3 

5.7 leaves (range = 4-8). Overall, net photosynthetic rates of the seedlings were relatively 4 

low, with a maximum of around 3 µmol CO2 m
-2

·s
-1

 (Figure 5). Nevertheless, seedlings 5 

consistently had positive photosynthetic rates down to 50 µmol photons m
-2

·s
-1

. The estimated 6 

compensation point was 10 µmol photons m
-2

·s
-1

 (x-intercept of Figure 5). The results of 7 

photosynthetic measurements on naturally established field seedlings growing in shade were 8 

similar: the estimated compensation point was around 10 µmol photons m
-2

·s
-1

, the net 9 

photosynthetic rates of the seedlings were around 2.5 µmol CO2 m
-2

·s
-1

 (Figure 6). 10 

Minimum saturating light (Ek) determined from chlorophyll fluorescence averaged 11 

260 µmol photons m
-2

·s
-1

 (range = 178-375 µmol photons m
-2

·s
-1

) and this corresponds 12 

closely with the minimum saturating light as seen from lab-transported seedlings (180-400 13 

µmol photons m
-2

·s
-1

, Figure 5) and field-measured seedlings (~150 µmol photons m
-2

·s
-1

, 14 

Figure 6). Average relative growth rate of sun-grown seedlings was not statistically greater 15 

than that of shade-grown (~10% full sun) seedlings (Figure 7). 16 

<Fig. 5 near here>  17 

<Fig. 6 near here>  18 

 19 

Discussion 20 

Our results show that seedlings in the field were tolerant of mid-day PAR levels of < 50 µmol 21 

photons m
-2

·s
-1 

(Figures 2-3), but the most frequent environment for S. campanulata seedlings 22 

was between 50 and 200 µmol photons m
-2

·s
-1 

(Figure 3 and 4). These results show that 23 

seedlings commonly colonize light environments between 2.5-10% of full sun in the field. 24 

Shade environments have been defined as 4%-10% of full sun (Denslow et al. 1990, Kitajima 25 
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1994, Baruch et al. 2000 Schumacher et al. 2008).  Therefore, we classify many of these S. 1 

campanulata seedlings as growing in shaded environments. Nevertheless, it must be 2 

acknowledged that mid-day point measurements of PAR provide only a rough snapshot of the 3 

daily light environment in the understorey. Seedlings may experience extreme fluctuation in 4 

light conditions from long periods of low light alternating with brief, unpredictable periods of 5 

high light during sunflecks (see e.g., Canham et al. 1990, Chazdon 1988, Leakey et al. 2005, 6 

Pearcy et al. 1994, Rijkers et al. 2000). Consequently, our mid-day PAR measurements may 7 

underestimate light availability to some S. campanulata seedlings during other parts of the 8 

day, while for other seedlings, our mid-day PAR estimates may represent maximum PAR 9 

availability, with lower PAR available in other parts of the day. Because of the inability of 10 

mid-day PAR measurements to capture potential variability in PAR throughout the day, it is 11 

important to also compare seedling photosynthetic responses to varying light availability. 12 

Shade-grown seedlings had net carbon gains from photosynthesis at very low light levels (50-13 

100 µmol photons m
-2

·s
-1 

PAR), and of particular interest was the fact that these shade-grown 14 

seedlings had low light saturation levels (Figures 4 and 5), suggesting that they would not 15 

benefit much from brief exposure to bright sunflecks. 16 

 17 

Many tree species with little to no shade tolerance are known to support a “seedling 18 

bank” in a shaded understory, but these seedlings do not survive for long (Kobe et al. 1995). 19 

Based on our measurements of net productivity (CO2 fixation) even at very low light levels, 20 

we expect long-term S. campanulata survival and slow growth under shaded forest 21 

conditions. In fact, in a separate field experiment, among freshly germinating seeds, seedling 22 

survival after one year under < 25% canopy openness averaged 38% (J. Bufford, unpublished 23 

data), which is high considering the many possible sources of early seedling mortality in the 24 

field. Furthermore, our observations in and around the field plots revealed evidence that a few 25 
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saplings (< 5 m) were able to emerge from the understory shrub layer in shaded environments 1 

(Table 1), though these represent only a small proportion of the potential establishment 2 

indicated by much higher seedling abundance (Table 1; see Plot 3). Our findings lead us to 3 

classify S. campanulata seedlings as shade-tolerant.  4 

Considering that saturating photosynthesis in the S. campanulata seedlings occurred at 5 

around 260 µmol photons m
-2

·s
-1

, it is remarkable that a few seedlings were also found in 6 

completely open conditions on the line transect (Fig. 4). However, these full sun conditions 7 

likely existed only for a short time around mid-day, as tall vegetation surrounding these 8 

seedlings would have shaded them before and after mid-day. There is an overall inverse 9 

correlation between the number of seedlings and mid-day PAR values along the line transect 10 

(Spearman’s, rs= -0.356, p <0.0001) implying that full sun is a non-preferred environment. 11 

Lambrada and DiazMedina (2009) reported that the greatest abundance of young S. 12 

campanulata was recorded in areas of abandoned coffee plantations, which indicates that the 13 

shade or semi-shade conditions of these plantations is a suitable habitat for S. campanulata 14 

growth. Overall, these results suggest that a minimum level of shade is beneficial for S. 15 

campanulata germination and early seedling growth, although it seems likely that larger 16 

plants can take advantage of higher light conditions. For example, in a separate field 17 

experiment, one plant in a sunny environment was observed to flower within one year after 18 

germination, while no S. campanulata seedlings in the shade reached maturity within a year 19 

(J. Bufford, unpublished data). 20 

We have assumed that light environment is an important factor in early recruitment of 21 

S. campanulata seedlings, but other causal factors such as disease or seed dispersal patterns 22 

might be correlated with light environments and might therefore contribute to observed 23 

patterns of S. campanulata recruitment and invasion. Low soil water availability may also 24 

contribute to the low number of S. campanulata seedlings in high light environments. 25 
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However, potted seedlings grown in full sunlight and watered regularly took as long or longer 1 

to develop (compared to shaded plants) (Figure 7), and these sun-grown seedlings generally 2 

had smaller, discolored leaves, with lower chlorophyll content (J. Bufford, unpublished data). 3 

It seems likely that temperature stress and/or reduced humidity become an important 4 

limitation under higher PAR conditions. We observed no signs of seedling predation at our 5 

field sites, while herviory at other field sites on Oahu averaged < 10% of leaf area (J. Bufford, 6 

personal observations). 7 

Given that our plots were dominated by adult Spathodea, observed S. campanulata 8 

seedling densities might be considered rather low, ranging from 0.04 to 0.54 seedlings m
-2

 9 

(Table 1). In plots 1 and 2, light availability was very low (1 to 1.4% of full sun respectively; 10 

see Table 1) and the ground was nearly bare, with no seedlings other than S. campanulata. 11 

These plots show the limited recruitment of S. campanulata (i.e., seed germination and 12 

established seedlings) in such extremely shaded environments. In contrast, in plot 3, the mean 13 

mid-day light environment was 4.1% of full sun (Table 1) and the ground was covered by 14 

herbaceous plants 0.4 to 0.6 m in height. In this plot, the ‘low density’ of S. campanulata 15 

seedlings may be explained by high competition for space at ground level. 16 

 17 

This research demonstrated the frequent occurrence and persistence of S. campanulata 18 

seedlings in shaded environments in Hawaii.  Both photosynthetic rates and growth rates 19 

indicate that S. campanulata seedlings can maintain growth at low light levels (1-5% of full 20 

sun).  Light availabilities at the forest floor of lowland mesic forest in Hawaii were previously 21 

measured in the range of 1.5-3.8% of full sun (Pearcy 1983), implying vulnerability to 22 

invasion, but light availability in the understory of different tropical rainforests can vary 23 

significantly (Brenes-Arguedas et al. 2011, Chazdon and Fetcher 1984, Condit et al. 2000, 24 

Torquebiau 1988, Wright and Schaik 1994) and may be as low as 0.48% in some regions of 25 
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the world (e.g., Chazdon and Fetcher 1984). Nevertheless, the demonstrated ability of S. 1 

campanulata seedlings to maintain net carbon assimilation rates under very low light, 2 

together with the plant’s strong capacity for dispersal by wind,  should be considered in 3 

managing S. campanulata and assessing its risk of invading forests across the tropics.   4 

 5 
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FIGURES AND CAPTIONS 1 

 

 

 

 

 

Figure 1. Location of study sites on the islands of Oahu and Hawaii (Hawaiian Islands). 
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Figure 2. Spatial pattern of seedlings (mean height 10 cm) and photosynthetically active 

radiation (PAR) in closed forests (plots 1 and 2) and tree grove (plot 3) near solar noon as 

estimated by interpolation (GIS Mapinfo Professional v.10). 
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Figure 3. Distribution of light environments in the plots as compared to distribution of 

Spathodea campanulata seedlings (mean height 10 cm) among those light environments (n = 

97 seedlings).  
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Figure 4. Distribution of light environments (random points) along a 1.5-km line transect as 

compared to distribution of Spathodea campanulata seedling (mean height 12.5 cm) 

frequency (n = 255 seedlings).  
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Figure 5. Light response curve for Spathodea campanulata seedlings (mean height 7.5 cm). 

Error bars indicate ± 1 SE (n = 10 seedlings). 
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Figure 6. Light response curve for Spathodea campanulata seedlings (n = 7 seedlings; mean 

height 11 cm) naturally established in shade (mid-day PAR ranging from 1-150 µmol photons 

m
-2

·s
-1

). 
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Figure 7. Average relative growth rate from seed to seedling with four true leaves in shaded 

(10% light) and full light environments. Seedlings were grown in containers with ample 

water. There was no statistical difference in growth rates between environments. Error bars 

indicate SE. 
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TABLE 

 

Table 1. Characteristics of the plots (150 m²) with GPS coordinates, elevation, dominant 

trees, number and density of seedlings, and light environment. 

 

 

 

 

Plots 1. Closed forest (Plot 1) 2. Closed forest (Plot 2) 3. Trees grove (Plot 3)

Central Elevation 126 m 123 m 117 m 

Central GPS point 21°22.22'05"N / 157°47'30.40"W 21°22.22'30"N / 157°47'29.75"W 19°52'0.576"N / 155°06'41.95"W

Dominant trees (> 15 m)

Spathodea campanulata (Bignoniaceae) 14 18 7

Leucaena leucocephala (Mimosaceae) 2

Trees species under canopy (1-5 m)

S. campanulata 3 3 4

Hibiscus tiliaceus (Malvaceae) 1

Syzygium cumini (Myrtaceae) 1 1

Persea americana (Lauraceae) 2 1

Cinnamomum burmannii (Lauraceae) 1 1

Psidium guajava (Myrtaceae) 1

Light environment in the plots

Perception of visual light environment Deep shade Deep shade Shade

Range of PAR  (µmol photons/m2/s) 0 - 77.9 0 - 139.6 0 - 1,107

Median PAR (PAR full sun: 1,884 ± 3.5 (100%)) 19.4 (1%) 27.3 (1.4%) 77.3 (4.1%)

Seedlings in the plots

Total of S. campanulata  seedlings (mean height 10 cm) 6 11 80

Density (Seedlings/m²) 0.04 0.07 0.54

Range of PAR  (µmol photons/m2/s) 11.7 - 109 1 - 61.1 1.4 - 412.8

Median PAR of the seedlings 45.9 37.2 76.5


