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Abstract

We analyze the behavior of a quantum system described by a one-dimensional asymmetric poten-

tial consisting of a step plus a harmonic barrier. We solve the eigenvalue equation by the integral

representation method, which allows us to classify the independent solutions as equivalence classes

of homotopic paths in the complex plane. We then consider the propagation of a wave packet

reflected by the harmonic barrier and obtain an expression for the interaction time as a function

of the peak energy. For high energies we recover the classical half-period limit.
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I. INTRODUCTION

The harmonic oscillator plays a central role in physics because it is exactly solvable and

provides a simple model for a host of physical phenomena. Besides the simplest case of the

one-dimensional free oscillator, modifications of the harmonic oscillator are of interest. A

typical variant is to confine the oscillator in a box. This system has been investigated in

one dimension1–5 and for arbitrary dimensions.6 The purpose of these investigations is to

calculate the corrections to the energy levels caused by the presence of infinite barriers at a

finite distance. This analysis has also been done for spherically symmetric potentials, such

as the hydrogen atom.4 In addition, the behavior of a wave packet propagating in a generic

power-law one-dimensional potential well has been considered in terms of its “collapse and

revival,” namely of its scattering over the well and its subsequent reforming.7,8 The truncated

harmonic oscillator has been used to study how the presence of discrete levels in the energy

spectrum affects tunneling through such a well.9

In the present paper we study the bound states and the propagation of a wave packet in a

one-dimensional potential consisting of a half-space harmonic oscillator plus a step. In Sec. II

we solve the Hamiltonian eigenvalue equation using the integral representation method,

which allows us to classify the independent solutions as equivalence classes of homotopic

paths in the complex plane. In Sec. III we calculate the energy of the bound states and

compare them with the standard harmonic oscillator and the half-space harmonic oscillator

with an infinite barrier. In Sec. IV we study the properties of the propagation of a wave

packet which, coming from infinite distance, is reflected by the harmonic barrier. Our

analysis is based mainly on the investigation of the delay time in the reflection, which can

be interpreted as the duration of the interaction with the harmonic barrier. We express the

interaction time as a function of the peak energy and study its asymptotic behavior. We

show that in the high energy limit the delay approaches the classical value, namely the half

period of the harmonic oscillator. Finally, we comment on how this behavior changes in the

presence of a stronger or weaker confinement.

The problem that we address has been studied by Mei and Lee2 to test the adequacy of

a perturbation scheme on an exactly solvable model. Our analysis, which has a different

purpose, has the advantage of being based on the integral representation method which can

be applied to a wider class of problems. In addition, we do not confine ourselves to the study
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of the bound states, but also investigate the motion of continuous spectrum wave packets.

II. THE STEP-HARMONIC POTENTIAL

Consider a particle subject to the one-dimensional potential:

U(x) =











U0 (x ≥ 0)

1

2
κx2 (x < 0),

(1)

where κ and U0 are real positive constants (see Fig. 1).

U0

U(x)

x

III

FIG. 1: The step-harmonic potential.

The proper and improper eigenfunctions of the Hamiltonian operator are ordinary solu-

tions of the eigenvalue equation outside of the discontinuity of the potential. Such solutions

must be continuous together with their first derivatives across the singularity.10,11 We will

solve the eigenvalue equation for x > 0 and x < 0.

For x > 0 the eigenvalue equation is

− ~2

2m

d2u(x)

dx2
+ U0u(x) = Eu(x), (2)

where m is the particle mass and E is the energy eigenvalue. The general solution of Eq. (2)

has the form:

u(x) =











Aeikx +Be−ikx (E > U0)

A′ekx +B′e−kx (0 < E < U0)
, (3)

where ~k ≡
√

2m|E − U0|.
We must choose A′ = 0. Otherwise, for 0 < E < U0, u(x) would diverge exponen-

tially for x → +∞ and therefore it would neither belong to L2(R) (i.e. the space of

the square summable functions over R), nor satisfy the eigenpacket condition for improper

eigenfunctions.10,11
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For x < 0 the eigenvalue equation is

d2u(y)

dy2
+ (ǫ− y2)u(y) = 0, (4)

where

y = αx, α ≡ 4

√

mκ

~2
, ǫ ≡ 2E

~

√

m

κ
, ω ≡

√

κ

m
. (5)

We set u(y) = F (y) exp (−y2/2) and obtain from Eq. (4) the following equation for F (y)

F ′′(y)− 2yF ′(y) + (ǫ− 1)F (y) = 0, (6)

which is the Hermite equation.13,14

The solutions of Eq. (6) are entire functions and can be found by the method of integration

by series. We prefer to employ the integral representation method.14 We start by looking

for solutions of Eq. (6) that have the form

F (y) =

∫

γ

dt f(t)e−t2+2ty, (7)

where γ is a path in the complex plane C and f is a suitable function which is holomorphic

in a region which contains the graph of γ. We substitute Eq. (7) into Eq. (6) and obtain
∫

γ

dt [4t2 + (ǫ− 1)]f(t)e−t2+2ty − 2

∫

γ

dt

(

d

dt
e2ty

)

tf(t)e−t2 = 0. (8)

Equation (8), after integration by parts of the second integral, can be written as
[

−2tf(t)e−t2+2ty
]

∂γ
+

∫

γ

dt [(ǫ+ 1)f(t) + 2tf ′(t)]e−t2+2ty = 0. (9)

From Eq. (9) it follows that Eq. (7) is a solution of Eq. (6) if
[

tf(t)e−t2+2ty
]

∂γ
= 0 and f(t) = t−

ǫ+1
2 . (10)

Therefore, we can write a solution of Eq. (6) in the form

F (γ)(y) =

∫

γ

dt t−
ǫ+1
2 e−t2+2ty, (11)

where γ must be chosen according to the first condition in Eq. (10) and such that the integral

in Eq. (11) is well defined. The classification of the appropriate γ’s allows us to classify all

solutions of Eq. (6).

The integrand in Eq. (11) is singular at t = 0. For ǫ = 2n + 1 (n = 0, 1, . . . ), the point

t = 0 is a pole of order n+ 1, otherwise it is a branch point.

In the following we distinguish two classes of paths, which correspond to two linearly

independent solutions of Eq. (6).
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Γ1

Γ2

Γ3

Re(t)

Re(t) Γ4

FIG. 2: Possible paths for ǫ = 2n+ 1 (n = 0, 1, . . . ).

A. The case ǫ = 2n+ 1

In this case we can rewrite Eq. (7) as

F (γ)
n (y) =

∫

γ

dt
e−t2+2ty

tn+1
, (12)

where the integrand is holomorphic on C but the origin. Possible choices of γ for which

the contour condition in Eq. (10) holds are shown in Fig. 2; Γ1 and Γ3 have a real part

that goes to infinity, Γ2 is a closed path circling the origin, and Γ4 is a closed path that

does not contain the origin. By virtue of Cauchy’s theorem, F
(4)
n = 0, and because the

paths can be deformed so that Γ1 + Γ3 = Γ2, the other three solutions satisfy the relation

F
(1)
n + F

(3)
n = F

(2)
n , where F

(j)
n is the solution corresponding to the path Γj (j = 1, 2, 3, 4).

Then we have, as expected, two linearly independent solutions for Eq. (6).

As an exercise, we show that the solution corresponding to Γ2, namely

F (2)
n (y) =

∮

dt
e−t2+2ty

tn+1
, (13)

corresponds to the Hermite polynomial of order n. By completing the square in the integrand

of Eq. (13), we find

F (2)
n (y) = ey

2

∮

dt
e−(t−y)2

tn+1
. (14)

We take advantage of Cauchy’s formula and rewrite Eq. (14) as

F (2)
n (y) =

2πi

n!
(−1)n ey

2 dn

dyn
(e−y2) =

2πi

n!
Hn(y), (15)

where Hn(y) is the Hermite polynomial of order n.14
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Im(t)

Re(t)

Γ1

Γ2

Γ3

FIG. 3: Possible paths for ǫ 6= 2n+ 1. Note that in this case Γ2 cannot be closed at infinity.

B. The case ǫ 6= 2n + 1

In the generic case ǫ ∈ R, ǫ 6= 2n+ 1, we rewrite Eq. (11) as

F (γ)
ǫ (y) =

∫

γ

dt
e−t2+2ty

tβ
, (16)

where β ≡ (ǫ+1)/2. If β is not a positive integer, t = 0 is a branch point for the multivalued

function tβ. In this case we must cut the complex plane, for example along the positive real

axis. In the latter case, the classes of possible paths are depicted in Fig. 3.

In the following we show that the solutions corresponding to Γ1 and Γ3 (F
(1)
ǫ and F

(3)
ǫ )

diverge as ey
2

for y = ±∞ and therefore the corresponding eigenfunction u(y) cannot be

either proper or improper. We are thus left with the solution corresponding to Γ2 [F
(2)
ǫ ] which

again diverges as ey
2

for y → +∞. It also diverges for y → −∞, but the corresponding u(y)

and its derivatives vanish more rapidly than any polynomial thanks to the presence of the

exp(−y2/2) factor.
According to standard results in the theory of integrals depending on a parameter, it is

easy to show that F
(γ)
ǫ (y) is an entire function. Furthermore, the derivatives of F

(γ)
ǫ are

obtained by differentiating with respect to y under the integral sign of Eq. (16). Thus we

obtain the relation
dmF

(j)
ǫ

dym
= 2mF

(j)
ǫ−2m. (17)

We next address the asymptotic behavior of two independent solutions, for example, F
(1)
ǫ

and F
(2)
ǫ .
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The Γ1 solution. We rewrite Eq. (16) for the path Γ1 by introducing the variable z = t−y:

F (1)
ǫ (y) = ey

2

∫

Γ1

dz
e−z2

(y + z)β
. (18)

The branch point is now z = −y and the cut is shifted as well. We extract |y| from the

integral in Eq. (18)16:

F (1)
ǫ (y) =

ey
2

|yβ|G1(y), (19)

where

G1(y) ≡
∫

Γ1

dz
e−z2

[sgn(y) + z
|y|
]β
. (20)

An elementary calculation shows that

lim
y→±∞

G1(y) = lim
y→±∞

∫

Γ1

dz
e−z2

[sgn(y) + z
|y|
]β

= −
√
π

sgn(y)β
, (21)

where we have taken the limit under the integral sign by virtue of the dominated convergence

theorem15 (see Appendix B). The asymptotic behavior of F
(1)
ǫ (y) for y → ±∞ is therefore

F (1)
ǫ (y) ∼ −

√
π
ey

2

yβ
. (22)

The corresponding eigenfunction u(1)(y) = F
(1)
ǫ (y) exp (−y2/2) cannot be either proper or

improper.

The Γ2 solution. The solution corresponding to Γ2 [F
(2)
ǫ (y)] has the form

F (2)
ǫ (y) =

∫

Γ2

dt
e−t2+2ty

tβ
, (23)

where, as shown in Fig. 3, Γ2 circles around the branch point in an anti-clockwise sense.

This solution has different behavior for y → +∞ and y → −∞.

Asymptotic behavior for y → +∞. By virtue of Cauchy’s theorem we can deform Γ2 to

split the integral in Eq. (23) into a sum of two integrals over the paths Γ1 and Γ3:

F (2)
ǫ (y) =

∫

Γ1∪Γ3

dt
e−t2+2ty

tβ
. (24)

We again introduce z = t− y and extract yβ from the integral. We obtain

F (2)
ǫ (y) =

ey
2

yβ
G2(y), (25)
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δ3

δ1

Re(t)

δ2

r

Im(t)

FIG. 4: A standard trick in contour integration.

where

G2(y) ≡
∫

Γ1

dz
e−z2

(1 + z
y
)β

+

∫

Γ3

dz
e−z2

(1 + z
y
)β
. (26)

Thanks to the dominated convergence theorem we find

lim
y→+∞

G2(y) = −2ie−iπβ
√
π sin(πβ). (27)

The asymptotic behavior of F
(2)
ǫ (y) for y → +∞ is thus

F (2)
ǫ (y) ∼ −2ie−iπβ

√
π sin(πβ)

ey
2

yβ
. (28)

Note that, if ǫ = 2n+ 1, Eq. (28) is incorrect because G2(y) → 0 for y → +∞. We already

know that, in this case, F (2)(y) is as a polynomial of degree n.

Asymptotic behavior for y → −∞. By taking advantage of Cauchy’s theorem, we deform

and split Γ2 in the 3 sub-paths shown in Fig. 4. We choose for simplicity r = 1; from Eq. (23)

we obtain

F (2)
ǫ (y) = Iβ(y)− 2ie−iπβ sin(πβ)

∫ ∞

1

dt
e−t2+2ty

tβ
, (29)

where

Iβ(y) ≡ i

∫ 2π

0

dθ ei(1−β)θe− cos(2θ)−i sin(2θ)+2y cos θ+2iy sin θ. (30)

For y < 0 and t > 0 the following inequality holds

t−βe−t2+2ty < t−βe−t2 , (31)

and, moreover, t−β exp(−t2) is integrable in [1,+∞). Therefore, the integral on the right-

hand side of Eq. (29) vanishes for y → −∞ by virtue of the dominated convergence theorem.

In contrast, for Iβ(y) we have

|Iβ(y)| ≤
∫ 2π

0

dθ
∣

∣

∣
ei(1−β)θe− cos(2θ)−i sin(2θ)+2y cos θ+2iy sin θ

∣

∣

∣
=

∫ 2π

0

dθ e− cos(2θ)e2y cos θ, (32)
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so that |Iβ(y)| ≤ 2πe2|y|−1. Therefore, for y → −∞, the absolute value of F
(2)
ǫ (y) is domi-

nated by 2πe2|y|−1, and

uII(y) = F (2)
ǫ (y)e−y2/2 (33)

is rapidly decreasing. Hence it is square summable on the positive real axis. Thus, it

follows that for ǫ 6= 2n + 1 the full-space harmonic oscillator does not admit proper or

improper eigenfunctions. More general theorems12 allow one to obtain our results indirectly,

for example, by studying the asymptotic behavior of the power series expansion of the

solutions of Eq. (4). Here we have adopted a more direct approach.

III. EIGENFUNCTIONS AND ENERGY LEVELS

From the results of Sec. II we can write the energy eigenfunctions as

E < U0 u(x) =











AFǫ(αx)e
−
α2x2

2 (x < 0)

Be−kx (x > 0)
(34)

E > U0 u(x) =











CFǫ(αx)e
−
α2x2

2 (x < 0)

Deikx + Ee−ikx (x > 0),
(35)

where we have dropped the superscript from F
(2)
ǫ . The integration constants A, . . . , E must

be chosen such that u(x) and its first derivative are continuous at x = 0 (the junction

conditions).

A. The case E < U0

If the energy is smaller than the step height U0, the junction conditions imply that

B − Fǫ(0)A = 0 (36a)

kB + αF ′
ǫ(0)A = 0. (36b)

The condition for the existence of a nontrivial solution is the vanishing of the system de-

terminant. We define J(β) ≡ Fǫ(0) [see Eq. (A1)]. In Appendix A we obtain the following

expression for J(β) [see Eq. (A3)]:

J(β) =
sin(πβ)

ieiπβ
Γ

(

1− β

2

)

. (37)
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The recurrence relation for the derivatives of Fǫ, Eq. (17), can be rewritten in terms of J(β)

as

F ′
ǫ(0) = 2J(β − 1). (38)

Equation (38) implies that the junction conditions can be rewritten as

− 2αJ(β − 1) = kJ(β), (39)

or, equivalently, as

Γ

(

1− β

2

)

Γ

(

1− β

2

) = −
√

β0 − β

2
, (40)

where β0 = U0/(~ω) + 1/2. By using the relation13

Γ(z)Γ(1− z) =
π

sin(πz)
, (41)

we can rewrite Eq. (40) as

Γ

(

β + 1

2

)

Γ

(

β

2

) cot
(π

2
β
)

= −
√

β0 − β

2
, (42)

For a given value of β0 Eq. (42) is an implicit relation determining the energy levels. The

advantage of Eq. (42) is that the singular behavior is contained in the cotangent function.

For 0 ≤ U0 < ~ω/2 (1/2 ≤ β0 < 1) the step is too small to allow for the existence of

discrete energy levels. The first level (the ground state) appears for β0 = 1 at the value

E0 = ~ω/2, which is the ground state of the full-space harmonic oscillator. For 1 ≤ β0 < 3

there is only one level, whose energy grows with increasing β0 starting from its minimum

value ~ω/2. When β0 crosses the value 3 a second level appears at the energy E1 = 5~ω/2.

By further increasing β0 (and hence U0) the subsequent levels appear as U0 crosses the values

Ek = ~ω(2k+1/2) (k ∈ N), corresponding to the (k+1)th even level of the oscillator. Thus,

for a fixed value of β0 such that 2k+1 < β0 < 2k+3 there are exactly k+1 bound states with

energies En (n = 0, 1, . . . , k) satisfying the inequalities ~ω(2n+ 1/2) < En < ~ω(2n+ 3/2).

An example with k = 1 is shown in Fig. 5. Each En is a monotonically increasing function

of U0 which asymptotically approaches the value ~ω(2n + 3/2) (the (n + 1)th odd state of

the oscillator) as U0 → ∞.

10



-2 -1 0 1 2 3 4 5 6 7

β

β0

−

√

β0

2

1√
π

FIG. 5: The solid and the dashed lines represent respectively the left- and the right-hand side of

Eq. (42). The intersections determine the energy levels. Here β0 = 4.5.

The (unnormalized) eigenfunctions corresponding to the eigenvalue En are

un(x) =











Fǫn(αx)e
−
α2x2

2 (x < 0)

J(βn)e
−knx (x ≥ 0),

(43)

where the βn are the solutions of Eq. (42); ǫn = 2βn − 1, ~kn =
√

2m(U0 − En), and

En = ~ωǫn/2.

B. The case E > U0

The junction conditions on the eigenfunctions of Eq. (35) are

D + E − CFǫ(0) = 0 (44a)

ik(D − E)− CαF ′
ǫ(0) = 0, (44b)

implying the normalized (with respect to k) improper eigenfunctions are given by

uǫ(x) =
1√
2π











Π(β)Fǫ(αx)e
−
α2x2

2 (x < 0)

e−ikx + ζ(β)eikx (x ≥ 0),
(45)
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where, as usual, 2β ≡ ǫ+ 1, ~k ≡
√

2m(E − U0), 2E ≡ ~ωǫ, and

Π(β) ≡ 2
[

J(β) + i
√

2
β−β0

J(β − 1)
]−1

, (46)

ζ(β) ≡
J(β)− i

√

2
β−β0

J(β − 1)

J(β) + i
√

2
β−β0

J(β − 1)
=

Γ

(

1− β

2

)

− i
√

2
β−β0

Γ

(

2− β

2

)

Γ

(

1− β

2

)

+ i
√

2
β−β0

Γ

(

2− β

2

) , (47)

where we have used Eq. (A1). Note that |ζ(β)| = 1. As expected, the continuous part of

the spectrum (E > U0) is simple.

IV. REFLECTION AND DELAY

To study reflection phenomenon, we consider the following superposition of continuous

states:

ψ(x, t) =

∫ ∞

0

dk c(k)uǫ(k)(x)e
−

i
~
E(k)t. (48)

From Eq. (45) we have

ψ(x, t) =
1√
2π











∫∞

0
dk c(k)Π(β(k))Fǫ(αx)e

−
α2x2

2
−

i
~
E(k)t (x < 0)

∫∞

0
dk c(k)

[

ζ(β(k))eikx + e−ikx
]

e−i
E(k)
~

t = ψref + ψin (x > 0)
. (49)

We write ψin and ψref in the form:

ψin(x, t) =
1√
2π

∫ +∞

0

dk |c(k)|e−i[kx+Ω(k)t−γ(k)], (50)

ψref(x, t) =
1√
2π

∫ +∞

0

dk |c(k)|ei[kx−Ω(k)t+δ(k)+γ(k)], (51)

where we have defined

eiδ(k) ≡ ζ(β(k)) and Ω(k) ≡ E(k)

~
=
U0

~
+

~k2

2m
. (52)

If c(k) is sufficiently regular and non-vanishing only in a small neighborhood of k̃, then ψin

and ψref represent wave packets that move according to the equations of motion10,11

xin = − dΩ

dk

∣

∣

∣

∣

k=k̃

t+
dγ

dk

∣

∣

∣

∣

k=k̃

= −~k̃

m
(t− t0) = − p̃

m
(t− t0), (53)

for the “incoming” wave packet, and

xref =
dΩ

dk

∣

∣

∣

∣

k=k̃

t− dγ

dk

∣

∣

∣

∣

k=k̃

− dδ

dk

∣

∣

∣

∣

k=k̃

=
p̃

m

[

(t− t0)−
m

p̃

dδ

dk

∣

∣

∣

∣

k=k̃

]

, (54)
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FIG. 6: Plots of the delay time τ (in units of T/2, where T =
√

κ/m is the period associated to

the harmonic oscillator) versus the “energy” β of the incoming wave packet for six values of the

step height β0. (a) β0 = 1.5, (b) β0 = 2, (c) β0 = 2.5, (d) β0 = 3.5, (e) β0 = 4, and (f) β0 = 4.5.

for the reflected “outgoing” one.

The solution represents a particle of well defined momentum p̃ = ~k̃ which approaches

the origin from the right, interacts with the harmonic potential (at t = t0), and is totally

reflected. The phase shift results in a delay in the time the wave packet bounces back, which

is caused by the interaction with the confining harmonic barrier. Because the phase shift δ

depends only on k through β, we can write the delay as

τ(β̃) =
1

ω

dδ

dβ

∣

∣

∣

∣

β=β̃

, (55)

where β̃ = β(k̃).

We prove that

lim
β→∞

δ′(β) = π, (56)

lim
β→β0

δ′(β) =































+∞ β0 ∈
⋃

k∈N

(2k, 2k + 1)

−∞ β0 ∈
⋃

k∈N

(2k + 1, 2k + 2)

0 β0 ∈ N = 1, 2, . . . ,

(57)
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where the prime denotes the derivative with respect to β. To this purpose, note that by

employing Eq. (41) δ′(β) can be cast in the form:

δ′ (β) =

1

2

√
β − β0 sin (βπ)

[

1

β − β0
+Ψ

(

β

2

)

−Ψ

(

β + 1

2

)

+
2π

sin (βπ)

]

(β − β0) Γ (β/2)

Γ (β/2 + 1/2)
√
2
sin2

(

βπ

2

)

+
Γ (β/2 + 1/2)

√
2

Γ (β/2)
cos2

(

βπ

2

)
, (58)

where Ψ is the Digamma function (that is, the logarithmic derivative of the Gamma

function).13 In Fig. 6 we plot τ versus β for different values of β0. Note the resonances

located at β ≃ 3, 5, 7, 9, . . . , corresponding to the formation of metastable states at the re-

spective energies E ≃ 5~ω/2, 9~ω/2, 13~ω/2, 17~ω/2, . . . . These states have lifetimes which

decrease as the corresponding energies increase and move farther away from the threshold

energy U0. Conversely, as U0 increases, the lifetime of the resonance closest to the height of

the step becomes progressively longer and then infinite when the resonance turns into the

next bound state. This behavior is evident in Fig. 6, in which the first three plots correspond

to values of β0 for which there is only one bound state. In the successive three plots the

resonance at β = 3 has disappeared, having turned into the second bound state.

It is simple (using steepest descent or Stirling’s formula, for example) to show that

Γ(z + 1/2)

Γ(z)
=

√
z

[

1 +O

(

1

z

)]

, (59)

for z ≫ 1. By using one of the integral formulas for the Digamma function,13 we can also

show that

lim
z→∞

[

Ψ (z)−Ψ

(

z +
1

2

)]

= 0. (60)

Thanks to Eqs. (59) and (60) it is straightforward to derive Eqs. (56) and (57). In particular

Eq. (56) implies that

lim
β→∞

τ(β) =
π

ω
=
T

2
. (61)

The wave packet undergoes half an oscillation during the interaction with the harmonic

potential before being reflected, which results in a delay of half a period compared with

the reflection from a perfect mirror (that is, when the confining barrier is an infinite wall).

Thus, as expected, the high energy limit reproduces the classical behavior.
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V. CONCLUSIONS

The main features of the discrete part of the spectrum can be summarized as follows.

For sufficiently small U0 (the height of the step) there is no discrete spectrum. When U0

increases and approaches the value ~ω/2 from below, there appears a resonance at energy

E0 ≃ ~ω/2. This resonance converts into a bound state when U0 reaches the value ~ω/2

and the corresponding eigenfunction is proportional, at x < 0, to the eigenfunction of the

ground state of the free harmonic oscillator and is flat otherwise. By further increasing

the height of the step the ground state energy increases monotonically with U0 and, as

U0 → ∞, approaches asymptotically from below the first odd level 3~ω/2 of the full-space

harmonic oscillator. A new discrete energy level appears at each energy Ek = ~ω(2k+ 1/2)

(k ∈ N) whenever U0 crosses the value Ek. In the limit of infinite U0 (leading to the half-

space oscillator), the energy levels become the odd levels of the oscillator itself, as expected

from the symmetry of the problem. Loosely speaking, the levels are born as “even” and,

upon increasing the height of the step, end up as “odd” (see Fig. 5). This behavior is not

peculiar to the step problem associated with the harmonic oscillator, but is typical of the

corresponding step variant of every symmetric confining potential.

The continuous spectrum is simple and extends from U0 to ∞. A wave packet coming

from infinity collides with the confining harmonic branch and is thereby entirely reflected.

The interaction with the potential results in a delay of the reflected packet which, as is

well known for problems of this kind, is proportional to the derivative of the phase shift

of the plane wave component evaluated at β̃ = β(k̃). This delay can be interpreted as the

interaction time with the harmonic barrier. When the confining part of the potential is

infinite (U(x) = +∞ at x < 0) the delay vanishes, and the reflection on a perfect mirror is

instantaneous. The desirable feature of our example is that we can derive an exact analytic

expression for the delay [Eq. (58)] as a function of the step height and of the peak energy

of the incoming packet.

Although these characteristics are typical of the step variants of all symmetric confining

potentials, the harmonic oscillator potential is “more equal” than the others. It is the only

analytic (except possibly at x = 0), convex or concave locally bounded symmetric and

confining potential that gives rise to classical isochronous oscillations and thus to evenly

spaced energy levels.17,18 In our step variant of the problem we recover both these features
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in the limit U0 → ∞, when the potential reduces to the half-space harmonic oscillator. Thus,

it is possible that the harmonic potential is the only confining barrier that displays a constant

nonvanishing interaction time in the limit of high energies. For steeper barriers we expect the

interaction time τ to vanish at high energies, while for milder potentials we expect the delay

to become infinite in this limit, in accordance with the corresponding classical behavior.

Similarly, we expect that, as U0 → ∞, the spacing between two neighboring discrete levels

approaches infinity in the former case and zero in the latter.

In a forthcoming paper we corroborate this conjecture by analyzing two examples using

the integral representation method. This method can be employed to analyze a wide class

of “step-something” potentials in which the harmonic part is replaced by another type of

barrier. We encourage readers to investigate, for example, the step-linear (sl) and the step-

exponential (se) potentials

Usl(x) =











U0 (x ≥ 0)

−Mx (x < 0)
(62)

Use(x) =











U0 (x ≥ 0)

Me−x/σ (x < 0)
, (63)

where M , σ, and U0 are real positive constants.
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Appendix A: Calculation of J(β)

In this appendix we prove Eq. (37). According to the definition given in Sec. III we have

J(β) ≡ F (2)
ǫ (0) =

∫

Γ2

dt e−t2t−β , (A1)

where 2β ≡ ǫ + 1. Assume β ∈ C. For |β| ≤ R, the integrand function in Eq. (A1) is

bi-continuous and holomorphic with respect to β in any compact disc. Furthermore, its

absolute value is bounded by a summable positive function: |e−t2t−β| ≤ e−2ℜ(t2)|t|2R. These
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2

FIG. 7: The path Γ2 and its transformed one Γ′
2 after the change of variable u = t2. When we take

into account the presence of the cut, we must choose 0 ≤ arg(u) < 2π on the first sheet (dashed

line), and 2π ≤ arg(u) < 4π on the second one (solid line), that is, we choose the positive square

root on the first sheet, and the negative one on the second.

properties imply that the integral in Eq. (A1) is uniformly convergent. Therefore, J(β) is

an entire function. If we change the variable in Eq. (A1) to u = t2, we must cut the complex

plane and define t =
√
u on its complete Riemann surface, which is composed of two sheets.

The new path Γ′
2 is shown in Fig. 7.

On both sheets of the u-plane, there is an integral along a straight line and an integral on

a semi-loop. It is easy to show that the integral on the semi-loop vanishes when shrunk to

a point, provided that β ∈ (−∞, 1). The integrals along the straight lines can be deformed,

using Cauchy’s theorem, to become integrals along the positive real axis. We thus have

J(β) = −1

2

∫ ∞

0

du e−uu−
β+1
2 +

1

2
e
i4π

(

−
β+1
2

)

∫ ∞

0

du e−uu−
β+1
2 , (A2)

which we can write as

J(β) =
sin(πβ)

ieiπβ
Γ

(

1− β

2

)

. (A3)

Because the poles of the Gamma function in Eq. (A3) are cancelled by the zeroes of the

sine, the right-hand side is an entire function so that Eq. (A3) holds on the entire complex

plane by analytic continuation.

Appendix B: Taking limits under the integral sign

For convenience we give here a very useful elementary theorem which we have used in

the paper:

Theorem 1: The dominated convergence theorem. Let fk : R → R be summable

on an interval I, that is,
∫

I
fk < ∞, ∀k ∈ N. Moreover, let fk converge almost everywhere

17



to a function f∞ : R → R. Suppose that there exists a positive I-summable function

g : R → R+ that dominates every fk (that is, |fk(x)| ≤ g(x) ∀k ∈ N). It follows that f∞ is

I-summable and that we can take the limit under the integral, that is,

lim
k→∞

∫

I

dx fk(x) =

∫

I

dx lim
k→∞

fk(x) =

∫

I

dx f∞(x). (B1)

It is noteworthy that, in our case, we do not need to invoke Lebesgue integration and the

dominated convergence theorem, and our calculations are based on Riemannian integration.

Even though Riemann integration theory lacks theorems regulating the interchange between

limit and integration operations, the following theorem is sufficient for our purposes:15

Theorem 2. Let fn be a sequence of functions defined on [a,∞) and Riemann integrable

on [a, b] for all b > a. Assume that (i) fn(x) → f∞(x) almost everywhere in [a,∞), f∞ being

Riemann integrable on every finite interval. (ii) There exists a positive function g defined

on [a,∞) such that
∫∞

a
g is convergent and |fn(x)| ≤ g(x) for all n. Then

∫∞

a
fn →

∫∞

a
f∞.

Note that, in this theorem, the integrability of the limiting function is part of the hypothesis,

whereas in the dominated convergence theorem it is a consequence of the theorem itself.
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