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An experimental comparison of hybrid algorithms for Bayesian network structure learning

We present a novel hybrid algorithm for Bayesian network structure learning, called Hybrid HPC (H2PC). It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. It is based on a subroutine called HPC, that combines ideas from incremental and divide-andconquer constraint-based methods to learn the parents and children of a target variable. We conduct an experimental comparison of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning, on several benchmarks with various data sizes. Our extensive experiments show that H2PC outperforms MMHC both in terms of goodness of fit to new data and in terms of the quality of the network structure itself, which is closer to the true dependence structure of the data. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.

Introduction

A Bayesian network (BN) is a probabilistic model formed by a structure and parameters. The structure of a BN is a directed acyclic graph (DAG), whilst its parameters are conditional probability distributions associated with the variables in the model. The graph of a BN itself is an independence map, which is very useful for many applications, including feature selection [START_REF] Aliferis | Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation[END_REF][START_REF] Peña | Towards scalable and data efficient learning of Markov boundaries[END_REF][START_REF] Rodrigues De Morais | A novel Markov boundary based feature subset selection algorithm[END_REF] and inferring causal relationships from observational data [START_REF] Ellis | Learning causal bayesian network structures from experimental data[END_REF][START_REF] Aliferis | Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation[END_REF][START_REF] Aussem | Analysis of nasopharyngeal carcinoma risk factors with bayesian networks[END_REF][START_REF] Aussem | Analysis of lifestyle and metabolic predictors of visceral obesity with bayesian networks[END_REF][START_REF] Cawley | Causal and non-causal feature selection for ridge regression[END_REF][START_REF] Brown | A strategy for making predictions under manipulation[END_REF]. The problem of finding the DAG that encodes the conditional independencies present in the data attracted a great deal of interest over the last years [START_REF] Rodrigues De Morais | An efficient learning algorithm for local bayesian network structure discovery[END_REF][START_REF] Scutari | Learning bayesian networks with the bnlearn R package[END_REF][START_REF] Scutari | Bayesian network structure learning with permutation tests[END_REF][START_REF] Kojima | Optimal search on clustered structural constraint for learning bayesian network structure[END_REF][START_REF] Perrier | Finding optimal bayesian network given a super-structure[END_REF][START_REF] Villanueva | Optimized algorithm for learning bayesian network superstructures[END_REF][START_REF] Peña | Finding consensus bayesian network structures[END_REF].

Ideally the DAG should coincide with the dependence structure of the global distribution, or it should at least identify a distribution as close as possible to the correct one in the probability space. This step, called structure learning, is similar in approaches and terminology to model selection procedures for classical statistical models. Basically, constraint-based (CB) learning methods systematically check the data for conditional independence relationships and use them as constraints to construct a partially oriented graph representative of a BN equivalence class, whilst search-and-score (SS) methods make use of a goodness-of-fit score function for evaluating graphical structures with regard to the data set. Hybrid methods attempt to get the best of both worlds: they learn a skeleton with a CB approach and constrain on the DAGs considered during the SS phase. There are many excellent treatments of BNs which survey the learning methods (see [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques[END_REF] for instance).

Both CB and SS approaches have advantages and disadvantages. CB approaches are relatively quick, deterministic, and have a well defined stopping criterion; however, they rely on an arbitrary significance level to test for independence, and they can be unstable in the sense that an error early on in the search can have a cascading effect that causes many errors to be present in the final graph. SS approaches have the advantage of being able to flexibly incorporate users' background knowledge in the form of prior probabilities over the structures and are also capable of dealing with incomplete records in the database (e.g. EM technique). Although SS methods are favored in practice when dealing with small dimensional data sets, they are slow to converge and the computational complexity often prevents us from finding optimal BN structures [START_REF] Perrier | Finding optimal bayesian network given a super-structure[END_REF]. With currently available exact algorithms [START_REF] Koivisto | Exact bayesian structure discovery in bayesian networks[END_REF][START_REF] Silander | Simple approach for finding the globally optimal Bayesian network structure[END_REF] and a decomposable score like BDeu, the computational complexity remains exponential, and therefore, such algorithms are intractable for BNs with more than around 30 vertices on current workstations [START_REF] Kojima | Optimal search on clustered structural constraint for learning bayesian network structure[END_REF]. For larger sets of variables, the computational burden becomes prohibitive. With this in mind, the ability to restrict the search locally around the target variable is a key advantage of CB methods over SS methods. They are able to construct a local graph around the target node without having to construct the whole BN first, hence their scalability [START_REF] Peña | Towards scalable and data efficient learning of Markov boundaries[END_REF][START_REF] Rodrigues De Morais | A novel Markov boundary based feature subset selection algorithm[END_REF][START_REF] Rodrigues De Morais | An efficient learning algorithm for local bayesian network structure discovery[END_REF][START_REF] Tsamardinos | The max-min hill-climbing Bayesian network structure learning algorithm[END_REF][START_REF] Peña | Learning gaussian graphical models of gene networks with false discovery rate control[END_REF].

With a view to balancing the computation cost with the desired accuracy of the estimates, several hybrid methods have been proposed recently. Tsamardinos et al. [START_REF] Tsamardinos | The max-min hill-climbing Bayesian network structure learning algorithm[END_REF] proposed the Min-Max Hill Climbing (MMHC) algorithm and conducted one of the most extensive empirical comparison performed in recent years showing that MMHC was the fastest and the most accurate method in terms of structural error based on the structural hamming distance. More specifically, MMHC outperformed both in terms of time efficiency and quality of reconstruction the PC [START_REF] Spirtes | Causation, Prediction, and Search[END_REF], the Sparse Candidate [START_REF] Friedman | Learning bayesian network structure from massive datasets: the "sparse candidate" algorithm[END_REF], the Three Phase Dependency Analysis [START_REF] Cheng | Learning Bayesian networks from data: An information-theory based approach[END_REF], the Optimal Reinsertion [START_REF] Moore | Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning[END_REF], the Greedy Equivalence Search [START_REF] Maxwell | Optimal structure identification with greedy search[END_REF], and the Greedy Hill-Climbing Search on a variety of networks, sample sizes, and parameter values. Although MMHC is rather heuristic by nature (it returns a local optimum of the score function), MMHC is currently considered as the most powerful state-of-the-art algorithm for BN structure learning capable of dealing with thousands of nodes in reasonable time. With a view to enhance its performance on small dimensional data sets, Perrier et al. [START_REF] Perrier | Finding optimal bayesian network given a super-structure[END_REF] proposed recently a hybrid algorithm that can learn an optimal BN (i.e., it converges to the true model in the sample limit) when an undirected graph is given as a structural constraint. They defined this undirected graph as a super-structure (i.e., every DAG considered in the SS phase is compelled to be a subgraph of the superstructure). This algorithm can learn optimal BNs containing up to 50 vertices when the average degree of the super-structure is around two, that is, a sparse structural constraint is assumed. To extend its feasibility to BN with a few hundred of vertices and an average degree up to four, [START_REF] Kojima | Optimal search on clustered structural constraint for learning bayesian network structure[END_REF] proposed to divide the super-structure into several clusters and perform an optimal search on each of them in order to scale up to larger networks. Despite interesting improvements in terms of score and structural hamming distance on several benchmark BNs, they report running times about 10 3 times longer than MMHC on average, which is still prohibitive in our view.

Therefore, there is great deal of interest in hybrid methods capable of improving the structural accuracy of both CB and SS methods on graphs containing up to thousands of vertices. However, they make the strong assumption that the skeleton (also called super-structure) contains at least the edges of the true network and as small as possible extra edges. While controlling the false discovery rate (i.e., false extra edges) in BN learning has attracted some attention recently [START_REF] Armen | A unified approach to estimation and control of the false discovery rate in bayesian network skeleton identification[END_REF][START_REF] Peña | Learning gaussian graphical models of gene networks with false discovery rate control[END_REF][START_REF] Tsamardinos | Bounding the false discovery rate in local Bayesian network learning[END_REF], to our knowledge, there is no work on controlling actively the rate of false-negative errors (i.e., false missing edges).

In this study, we compare MMHC with a another hybrid algorithm for BN structure learning, called Hybrid HPC (H2PC). H2PC and MMHC share exactly the same SS procedure to allow for fair comparisons; the only difference lies in the procedure for learning the skeleton (i.e., the undirected graph given as a structural constraint to the SS search). While MMHC is based on Max-Min Parents and Children (MMPC) to learn the parents and children of a variable, H2PC is based on a subroutine called Hybrid Parents and Children (HPC), that combines ideas from incremental and divide-and-conquer CB methods. The ability of HPC and MMPC [START_REF] Tsamardinos | The max-min hill-climbing Bayesian network structure learning algorithm[END_REF] to infer the parents and children set of candidate nodes was assessed in [START_REF] Rodrigues De Morais | An efficient learning algorithm for local bayesian network structure discovery[END_REF] through several empirical experiments. In this work, we conduct an experimental comparison of H2PC against Max-Min Hill-Climbing (MMHC) on several benchmarks and various data sizes.

Preliminaries

Formally, a BN is a tuple < G, P >, where G =< U, E > is a directed acyclic graph (DAG) whose nodes represent the variables in the domain U, and whose edges represent direct probabilistic dependencies between them. P denotes the joint probability distribution on U. The BN structure encodes a set of conditional independence assumptions: that each node X i is conditionally independent of all of its non descendants in G given its parents Pa G i . These independence assumptions, in turn, imply many other conditional independence statements, which can be extracted from the network using a simple graphical criterion called d-separation [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[END_REF].

We denote by X ⊥ P Y |Z the conditional independence between X and Y given the set of variables Z where P is the underlying probability distribution. Note that an exhaustive search of Z such that X ⊥ P Y |Z is a combinatorial problem and can be intractable for high dimension data sets. We use X ⊥ G Y |Z to denote the assertion that X is d-separated from Y given Z in G. We denote by dSep(X, Y ), a set that d-separates

X from Y . If < G, P > is a BN, X ⊥ P Y |Z if X ⊥ G Y |Z.
The converse does not necessarily hold. We say that < G, P > satisfies the faithfulness condition if the d-separations in G identify all and only the conditional independencies in P , i.e., X ⊥ P Y |Z if and only if X ⊥ G Y |Z. We denote by PC G X , the set of parents and children of X in G, and by SP G X , the set of spouses of X in G, i.e., the variables that have common children with X. These sets are unique for all G, such that < G, P > satisfies the faithfulness condition and so we will drop the superscript G.

Constraint-based structure learning

The induction of local or global BN structures is handled by CB methods through the identification of local neighborhoods (i.e., PC X ), hence their scalability to very high dimensional data sets. CB methods systematically check the data for conditional independence relationships in order to infer a target's neighborhood. Typically, the algorithms run either a G 2 or a χ 2 independence test when the data set is discrete and a Fisher's Z test when it is continuous in order to decide on dependence or independence, that is, upon the rejection or acceptance of the null hypothesis of conditional independence. Since we are limiting ourselves to discrete data, both the global and the local distributions are assumed to be multinomial, and the latter are represented as conditional probability tables. Conditional independence tests and network scores for discrete data are functions of these conditional probability tables through the observed frequencies {n ijk ; i = 1, . . . , R; j = 1, . . . , C; k = 1, . . . , L} for the random variables X and Y and all the configurations of the levels of the conditioning variables Z. We use n i+k as shorthand for the marginal j n ijk and similarly for n i+k , n ++k and n +++ = n. We use a classic conditional independence test based on the mutual information. The mutual information is an information-theoretic distance measure defined as

M I(X, Y |Z) = R i=1 C j=1 L k=1 n ijk n log n ijk n ++k n i+k n +jk
It is proportional to the log-likelihood ratio test G 2 (they differ by a 2n factor, where n is the sample size). The asymptotic null distribution is χ 2 with (R -1)(C -1)L degrees of freedom. For a detailed analysis of their properties we refer the reader to [START_REF] Agresti | Categorical Data Analysis[END_REF]. The main limitation of this test is the rate of convergence to its limiting distribution, which is particularly problematic when dealing with small samples and sparse contingency tables. The decision of accepting or rejecting the null hypothesis depends implicitly upon the degree of freedom which increases exponentially with the number of variables in the conditional set. Several heuristic solutions have emerged in the literature [START_REF] Spirtes | Causation, Prediction, and Search[END_REF][START_REF] Rodrigues De Morais | An efficient learning algorithm for local bayesian network structure discovery[END_REF][START_REF] Tsamardinos | The max-min hill-climbing Bayesian network structure learning algorithm[END_REF][START_REF] Tsamardinos | Permutation testing improves bayesian network learning[END_REF] to overcome some shortcomings of the asymptotic tests. In this study we use the two following heuristics that are used in MMHC. First, we do not perform M I(X, Y |Z) and assume independence if there are not enough samples to achieve large enough power. We require that the average sample per count is above a user defined parameter, equal to 5, as in [START_REF] Tsamardinos | The max-min hill-climbing Bayesian network structure learning algorithm[END_REF]. This heuristic is called the power rule. Second, we consider as structural zero either case n +jk or n i+k = 0. For example, if n +jk = 0, we consider y as a structurally forbidden value for Y when Z = z and we reduce R by 1 (as if we had one column less in the contingency table where Z = z). This is known as the degrees of freedom adjustment heuristic. [START_REF] Aussem | Analysis of nasopharyngeal carcinoma risk factors with bayesian networks[END_REF] The Hybrid Parents and Children algorithm (HPC)

In this section, we present a brief overview of HPC. For further details, the reader is directed to [START_REF] Rodrigues De Morais | A novel Markov boundary based feature subset selection algorithm[END_REF][START_REF] Rodrigues De Morais | An efficient learning algorithm for local bayesian network structure discovery[END_REF] as well as references therein. HPC (Algorithm 1) can be viewed as an ensemble method for combining many weak PC learners in an attempt to produce a stronger PC learner. HPC is based on three subroutines: Data-Efficient Parents and Children Superset (DE-PCS), Data-Efficient Spouses Superset (DE-SPS), and Interleaved Incremental Association Parents and Children (Inter-IAPC), a weak PC learner based on Inter-IAMB [START_REF] Tsamardinos | Algorithms for large scale Markov blanket discovery[END_REF] that requires little computation. HPC may be thought of as a way to compensate for the large number of false negatives, at the output of the weak PC learner, by performing extra computations. It receives a target node T, a data set D and a set of variables U as input and returns an estimation of PC T . It is hybrid in that it combines the benefits of incremental and divide-and-conquer methods. The procedure starts by extracting a superset PCS T of PC T (line 1) and a superset SPS T of SP T (line 2) with a severe restriction on the maximum conditioning size (Z <= 2) in order to significantly increase the reliability of the tests. A first candidate PC set is then obtained by running the weak PC learner on PCS T ∪ SPS T (line 3). The key idea is the decentralized search at lines 4-8 that includes, in the candidate PC set, all variables in the superset PCS T \ PC T that have T in their vicinity. Note that, in theory, X is in the output of Inter-IAPC(Y ) if and only if Y is in the output of Inter-IAPC(X). However, in practice, this may not always be true, particularly when working in high-dimensional domains. By loosening the criteria by which two nodes are said adjacent, the effective restrictions on the size of the neighborhood are now far less severe. The decentralized search has significant impact on the accuracy of HPC. It enables the algorithm to handle large neighborhoods while still being correct under faithfulness condition.

Inter-IAPC is a fast incremental method that receives a data set D and a target node T as its input and promptly returns a rough estimation of PC T , hence the term "weak" PC learner. The subroutines DE-PCS and DE-SPS (omitted for brevity) search a superset of PC T and SP T respectively with a severe restriction on the maximum conditioning size (|Z| <= 1 in DE-PCS and |Z| <= 3 in DE-SPS) in order to significantly increase the reliability of the tests. The variable filtering has two advantages : i) it allows HPC to scale to hundreds of thousands of variables by restricting the search to a subset of relevant variables, and ii) it eliminates many (almost) deterministic relationships that produce many false negative errors in the output of the algorithm. Again, the reader is encouraged to consult the papers by [START_REF] Rodrigues De Morais | A novel Markov boundary based feature subset selection algorithm[END_REF][START_REF] Rodrigues De Morais | An efficient learning algorithm for local bayesian network structure discovery[END_REF] for gaining more insight on these procedures. if T ∈ Inter-IAPC(X, D, (T ∪ PCST ∪ SPST )) then 6:

PCT ← PCT ∪ X 7:

end In this section, we discuss the SS phase. The following discussion draws strongly on [START_REF] Tsamardinos | The max-min hill-climbing Bayesian network structure learning algorithm[END_REF] as the SS phase in Hybrid HPC and MMHC are exactly the same. The idea of constraining the search to improve time-efficiency first appeared in the Sparse Candidate algorithm [START_REF] Friedman | Learning bayesian network structure from massive datasets: the "sparse candidate" algorithm[END_REF]. It results in efficiency improvements over the (unconstrained) greedy search. All recent hybrid algorithms build on this idea, but employ a sound algorithm for identifying the candidate parent sets. The Hybrid HPC first identifies the parents and children set of each variable, then performs a greedy hill-climbing search in the space of BN. The search begins with an empty graph. The edge addition, deletion, or direction reversal that leads to the largest increase in score (the BDeu score was used) is taken and the search continues in a similar fashion recursively. The important difference from standard greedy search is that the search is constrained to only consider adding an edge if it was discovered by HPC in the first phase. We extend the greedy search with a TABU list [START_REF] Friedman | Learning bayesian network structure from massive datasets: the "sparse candidate" algorithm[END_REF]. The list keeps the last 100 structures explored. Instead of applying the best local change, the best local change that results in a structure not on the list is performed in an attempt to escape local maxima. When 15 changes occur without an increase in the maximum score ever encountered during search, the algorithm terminates. The overall best scoring structure is then returned. Clearly, the more false positives the heuristic allows to enter candidate PC set, the more computational burden is imposed in the SS phase.

Experimental validation

In this section, we conduct an experimental comparison of H2PC against MMHC on several benchmarks with various data sizes. All the data sets used for the empirical experiments are sampled from eight well-known BNs that have been previously used as benchmarks for BN learning algorithms (see Table 1 for details). We do not claim that those data sets resemble real-world problems, however, they make it possible to compare the outputs of the algorithms with the known structure. All BN benchmarks (structure and probability tables) were downloaded from the bnlearn repository1 [START_REF] Scutari | Learning bayesian networks with the bnlearn R package[END_REF]. Six sample sizes have been considered: We first investigate the quality of the skeleton returned by H2PC during the CB phase. To this end, we measure the false positive edge ratio, the precision (i.e., the number of true positive edges in the output divided by the number of edges in the output), the recall (i.e., the number of true positive edges divided the true number of edges) and a combination of precision and recall defined as (1precision)2 + (1recall) 2 , to measure the Euclidean distance from perfect precision and recall, as proposed in [START_REF] Peña | Towards scalable and data efficient learning of Markov boundaries[END_REF]. Second, to assess the quality of the final DAG output at the end of the SS phase, we report the five performance indicators [START_REF] Scutari | Bayesian network structure learning with permutation tests[END_REF] described below:

the posterior density of the network for the data it was learned from, as a measure of goodness of fit. It is known as the Bayesian Dirichlet equivalent score (BDeu) from [START_REF] Heckerman | Learning bayesian networks: The combination of knowledge and statistical data[END_REF][START_REF] Buntine | Theory refinement on Bayesian networks[END_REF] and has a single parameter, the equivalent sample size, which can be thought of as the size of an imaginary sample supporting the prior distribution. The equivalent sample size was set to 10 as suggested in [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques[END_REF]; -the BIC score [START_REF] Schwarz | Estimating the dimension of a model[END_REF] of the network for the data it was learned from, again as a measure of goodness of fit; -the posterior density of the network for a new data set, as a measure of how well the network generalizes to new data; -the BIC score of the network for a new data set, again as a measure of how well the network generalizes to new data; -the Structural Hamming Distance (SHD) between the learned and the true structure of the network, as a measure of the quality of the learned depen- dence structure. The SHD between two PDAGs is defined as the number of the following operators required to make the PDAGs match: add or delete an undirected edge, and add, remove, or reverse the orientation of an edge.

For each data set sampled from the true probability distribution of the benchmark, we first learn a network structure with the H2PC and MMHC and then we compute the relevant performance indicators for each pair of network structures. The data set used to assess how well the network generalizes to new data is generated again from the true probability structure of the benchmark networks and contains 5000 observations.

Notice that using the BDeu score as a metric of reconstruction quality has the following two problems. First, the score corresponds to the a posteriori probability of a network only under certain conditions (e.g., a Dirichlet distribution of the hyper parameters); it is unknown to what degree these assumptions hold in distributions encountered in practice. Second, the score is highly sensitive to the equivalent sample size (set to 10 in our experiments) and depends on the network priors used. Since, typically, the same arbitrary value of this parameter is used both during learning and for scoring the learned network, the metric favors algorithms that use the BDeu score for learning. In fact, the BDeu score does not rely on the structure of the original, gold standard network at all; instead it employs several assumptions to score the networks. For those reasons, in addition to the score we also report the BIC score and the SHD metric.

In Figure 1, we report the quality of the skeleton obtained with HPC over that obtained with MMPC (before the SS phase) as a function of the sample size. Results for each benchmark are not shown here in detail due to space restrictions. For sake of conciseness, the performance values are averaged over the 8 benchmarks depicted in Table 1. The increase factor for a given performance indicator is expressed as the ratio of the performance value obtained with HPC over that obtained with MMPC (the gold standard). Note that for some indicators, an increase is actually not an improvement but is worse (e.g., false positive rate, Euclidean distance). For clarity, we mention explicitly on the subplots whether an increase factor > 1 should be interpreted as an improvement or not. Regarding the quality of the superstructure, the advantages of HPC against MMPC are noticeable. As observed, HPC consistently increases the recall and reduces the rate of false negative edges. As expected this benefit comes at a little in terms of false positive edges. HPC also improves the Euclidean distance from perfect precision and recall on all benchmarks, while increasing the number of independence tests and thus the running time in the CB phase (see number of statistical tests). It is worth noting that HPC is capable of maintaining the mean false positive edge increase (with respect to MMPC) under 2 • 10 -3 while reducing by 30% the Euclidean distance in the range 500-5000 samples. These results are very much in line with other experiments presented in [START_REF] Rodrigues De Morais | An efficient learning algorithm for local bayesian network structure discovery[END_REF][START_REF] Villanueva | Optimized algorithm for learning bayesian network superstructures[END_REF].

In Figure 2, we report the quality of the final DAG obtained with H2PC over that obtained with MMHC (after the SS phase) as a function of the sample size. Regarding BDeu and BIC on both training and test data, the improvements are noteworthy. The results in terms of goodness of fit to training data and new data using H2PC clearly dominate those obtained using MMHC, whatever the sample size considered, hence its ability to generalize better. Regarding the quality of the network structure itself (i.e., how close is the DAG to the true dependence structure of the data), this is pretty much a dead heat between the 2 algorithms on small sample sizes (i.e., 50 and 100), however we found H2PC to perform significantly better on larger sample sizes. The SHD increase factor decays rapidly (lower is better) as the sample size increases. As far as the overall running time performance is concerned, we see from Table 2 that both methods have a tendency to work comparatively well for small sample sizes (i.e., less than 200). The total running time with H2PC with 5000 samples is 8 times slower on average than that of MMHC. Overall, it appears that the running time increase factor grows somewhat linearly with the sample size. Nonetheless, it is worth mentioning that our implementation of MMHC in the bnlearn package employs several heuristics to speed up learning that are not yet implemented in H2PC. This leads to some loss of efficiency compared to MMHC due to redundant calculations. Notice that the optimization of the HPC code is currently being undertaken to allow for fair comparisons with MMHC.

Overall, H2PC compares favorably to MMHC. It has consistently lower generalization error on all data sets. Large values of the recall do not cause much rise in precision while maintaining the total running time under control. This experiment indicates that MMPC should be best suited in terms of performance when coupled to an optimal SS BN learning method discussed in [START_REF] Perrier | Finding optimal bayesian network given a super-structure[END_REF][START_REF] Kojima | Optimal search on clustered structural constraint for learning bayesian network structure[END_REF]. 

Discussion

Our prime conclusion is that H2PC is a promising approach to constructing BN structures. The performances of HPC raises interesting possibilities in the context of hybrid methods. It emphasizes that concentrating on higher recall values while keeping the false positive rate as low as possible pays off in terms of goodness of fit and structure accuracy.

The focus of our study was on the efficiency of the heuristics the learning algorithms are based on, i.e., the maximization algorithms used in score-based algorithms combined with the techniques for learning the dependence structure associated with each node in CB algorithms. The influence of the other components of the overall learning strategy, such as the conditional independence tests (and the associated type I error threshold) or the network scores (and the associated parameters, such as the equivalent sample size), was not investigated.

The conclusions of our studies should be applicable to the shrinkage test that is more robust to small sample sizes, and to the permutation mutual information test for large samples. Tsamardinos et al. [START_REF] Tsamardinos | Permutation testing improves bayesian network learning[END_REF] recently showed that the use of exact tests based on (semi-parametric) permutation procedures lead to more robust structural learning, while being only 10-20 times slower than the asymptotic tests for small sample sizes. Similarly, Scutari [START_REF] Scutari | Measures of Variability for Graphical Models[END_REF] investigated the behavior of permutation conditional independence tests and tests based the permutation Pearson's χ 2 test, the permutation mutual information test, and the shrinkage test based on the estimator for the mutual information. Based on a single BN benchmark, they showed that permutation tests result in better network structures than the corresponding parametric tests in terms of goodness of fit. However, the output graphs are often not as close to the true network structure as the ones learned with the corresponding parametric tests. Shrinkage tests, on the other hand, outperform both parametric and permutation tests in the quality of the network structure itself, which is closer to the true dependence structure but do not fit the data as well as the networks learned with the corresponding maximum likelihood tests. So, there is no clear picture as to which test should be employed on a given data set. This is still an open question.

As noted by [START_REF] Perrier | Finding optimal bayesian network given a super-structure[END_REF], it is possible to reduce the complexity of an optimal search of an exponential factor by using a structural constraint such as a super-structure on condition that this super-structure is sound (i.e., includes the true graph as a subgraph). Under this assumption, the accuracy of the resulting graph may greatly improve according. Consequently, more attention should be paid to learning sound superstructures rather than true skeleton from data as both speed and accuracy should be expected with more sophisticated SS search strategies than the greedy HC used in our study. Although sound super-structures are easier to learn for high values of type I error, such values produce denser structures with many extra edges, thereby resulting in high computational overheads. Therefore, relaxing the type I error of the tests is not a solution. [START_REF] Kojima | Optimal search on clustered structural constraint for learning bayesian network structure[END_REF] show that a small change in the type I error in MMPC yields a dramatical increase of the computational burden involved in their hybrid procedure, with almost no gain in accuracy. The key is to keep the false positive rate small while controlling the false missing rate.

Finally, it is worth mentioning that neither MMPC nor HPC were optimized in this work to learn global superstructures as both MMPC and HPC are run independently on each node without keeping track of the dependencies found previously. This leads to some loss of efficiency due to redundant calculations. The reason is that they were initially designed to infer a local network around a target node. An optimized version of HPC for super-structure discovery was developed in [START_REF] Villanueva | Optimized algorithm for learning bayesian network superstructures[END_REF]. The optimizations were done in order to get a global method and to lower the computational cost of HPC, while maintaining its performance. These optimizations include the use of a cache to store the (in)dependencies and the use of a global structure. This optimizations reduce the computational cost of HPC by 30% on average according to the authors.

Conclusion

We discussed a hybrid algorithm for BN structure learning called Hybrid HPC (H2PC). Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to training data and new data as well, hence its ability to generalize better, with little overhead in terms of of running time over MMHC. The optimization of the HPC code is currently being undertaken. Regarding the quality of the network structure itself (i.e., how close is the DAG to the true dependence structure of the data), we found H2PC to outperform MMHC by a significant margin. More importantly, our experimental results show a clear benefit in terms of edge recall without sacrificing the number of extra edges, which is crucial for the soundness of the super-structure used during the second stage of hybrid methods like the ones proposed in [START_REF] Perrier | Finding optimal bayesian network given a super-structure[END_REF][START_REF] Kojima | Optimal search on clustered structural constraint for learning bayesian network structure[END_REF]. Though not discussed here, a topic of considerable interest would be to ascertain which independence test is most suited to the data at hand. This needs further substantiation through more experiments and analysis.

Algorithm 1 HPC

 1 Require: T : target; D: data set; U: the set of variables Ensure: PCT : Parents and Children of T 1: [PCST , dSep] ← DE-PCS(T, D) 2: SPST ← DE-SPS(T, D, PCST , dSep) 3: PCT ← Inter-IAPC(T, D, (T ∪ PCST ∪ SPST )) 4: for all X ∈ PCST \ PCT do 5:

Algorithm 3

 3 Hybrid HPC Require: D: data set; U: the set of variables Ensure: A DAG G on the variables U 1: for all pair of nodes X, Y ∈ U do 2: Add X in PCY and Add Y in PCX if X ∈ HP C(Y ) and Y ∈ HP C(X) 3: end for 4: Starting from an empty graph, perform greedy hill-climbing with operators addedge, delete-edge, reverse-edge. Only try operator add-edge X → Y if Y ∈ PCX 5 Hybrid HPC (H2PC)

Fig. 1 .

 1 Fig. 1. Quality of the skeleton obtained with HPC over that obtained with MMPC before the SS phase. Results are averaged over the 8 benchmarks.

Fig. 2 .

 2 Fig.2. Quality of the final DAG obtained with H2PC over that obtained with MMHC (after the SS phase). Results are averaged over the 8 benchmarks.

Table 1 .

 1 Description of the BN benchmarks used in the experiments. All experiments are repeated 10 times for each sample size and each BN. We investigate the behavior of both algorithms using the same parametric tests as a reference. H2PC was implemented in R[START_REF] Development | R: A language and environment for statistical computing[END_REF] and integrated into the bnlearn R package developed by[START_REF] Scutari | Learning bayesian networks with the bnlearn R package[END_REF]. The source code of H2PC as well as all data sets used for the empirical tests are publicly available

	network	# of vars	# of edges	max. degree domain range in/out	min/med/max PC set size
	child	20	25	2/7	2-6	1/2/8
	insurance	27	52	3/7	2-5	1/3/9
	mildew	35	46	3/3	3-100	1/2/5
	alarm	37	46	4/5	2-4	1/2/6
	hailfinder	56	66	4/16	2-11	1/1.5/17
	munin1	186	273	3/15	2-21	1/3/15
	pigs	441	592	2/39	3-3	1/2/41
	link	724	1125	3/14	2-4	0/2/17
	50, 100, 200, 500, 1500 and 5000.			

2 

. The threshold considered for the type I error of the test is 0.05. Our experiments were carried out on PC with Intel(R) Core(TM) i5-2520M CPU @2,50 GHz 4Go RAM running under Windows 7 32 bits.

Table 2 .

 2 Total running time increase factor (H2PC/MMHC).

	Network	50	100	Sample Size 200 500	1500	5000
	child	1.13 ±0.1 1.28 ±0.2 1.54 ±0.2 2.38 ±0.2 2.65 ±0.2 3.08 ±0.4
	insurance 1.21 ±0.2 1.35 ±0.2 2.03 ±0.1 3.83 ±0.2 5.55 ±0.4 7.38 ±0.6
	mildew 0.71 ±0.2 1.05 ±0.2 1.10 ±0.1 1.23 ±0.1 1.63 ±0.1 3.19 ±0.3
	alarm	1.17 ±0.1 1.39 ±0.1 1.86 ±0.1 2.28 ±0.1 2.93 ±0.3 3.41 ±0.4
	hailfinder 1.09 ±0.1 1.30 ±0.1 1.61 ±0.1 2.17 ±0.1 2.82 ±0.2 3.35 ±0.3
	munin1 1.09 ±0.0 1.29 ±0.1 1.36 ±0.1 2.01 ±0.1 4.28 ±0.2 12.88 ±0.7
	pigs	1.41 ±0.1 1.41 ±0.1 4.65 ±0.2 5.32 ±0.2 6.51 ±0.2 9.70 ±0.3
	link	1.57 ±0.0 2.13 ±0.1 2.86 ±0.1 6.07 ±0.2 11.07 ±1.1 23.35 ±0.9
	all	1.17 ±0.3 1.40 ±0.3 2.13 ±1.1 3.16 ±1.6 4.68 ±2.9 8.29 ±6.7

http://www.bnlearn.com/bnrepository

http://www710.univ-lyon1.fr/∼aaussem/Software.html

Acknowledgments

The authors thank Marco Scutari for sharing his bnlearn package in R. The experiments reported here were performed on computers funded by a French Institute for Complex Systems (IXXI) grant.