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THE GRADIENT FLOW STRUCTURE FOR INCOMPRESSIBLE IMMISCIBLE TWO-PHASE FLOWS IN POROUS MEDIA

We show that the widely used model governing the motion of two incompressible immiscible fluids in a possibly heterogeneous porous medium has a formal gradient flow structure. More precisely, the fluid composition is governed by the gradient flow of some non-smooth energy. Starting from this energy together with a dissipation potential, we recover the celebrated Darcy-Muskat law and the capillary pressure law governing the flow thanks to the principle of least action. Our interpretation does not require the introduction of any algebraic transformation like, e.g., the global pressure or the Kirchhoff transform, and can be transposed to the case of more phases.

1. Introduction 1.1. General motivations. The models for multiphase porous media flows have been widely studied in the last decades since they are of great interest in several fields of applications, like e.g. oil-engineering, carbon dioxide sequestration, or nuclear waste repository management. We refer to the monographs [START_REF] Bear | Dynamic of Fluids in Porous Media[END_REF][START_REF] Bear | Introduction to modeling of transport phenomena in porous media[END_REF] for an extensive discussion on the derivation of models for porous media flows, and to [START_REF] Aziz | Petroleum Reservoir Simulation[END_REF][START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF][START_REF] Antontsev | Boundary value problems in mechanics of nonhomogeneous fluids[END_REF][START_REF] Chen | Computational methods for multiphase flows in porous media[END_REF] for numerical and mathematical studies.

More recently, F. Otto showed in his seminal work [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] that the so-called porous medium equation:

∂ t ρ -∆ρ m = 0 for (x, t) ∈ R N × R + and m > 1,
which is a very simplified model corresponding to the case of an isentropic gas flowing within a porous medium, can be reinterpreted in a physically relevant way as the gradient flow of the free energy with respect to some Wasserstein metric in the space of Borel probability measures. Extensions to more general degenerate parabolic equations were then proposed for example in [1,[START_REF] Lisini | Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces[END_REF]. See also for instance [START_REF] Blanchet | A gradient flow approach to the Keller-Segel systems[END_REF] or [START_REF] Kinderlehrer | A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations[END_REF] for the interpretation of some dissipative systems as gradient flows in Wasserstein metrics.

In this note, we will focus on the model governing the motion of an incompressible immiscible two-phase flow in a possibly heterogeneous porous medium, that will appear in the sequel as ( 3) and ( 11)-( 13). This model is relevant for instance for describing the flow of oil and water, whence the subscripts o and w appearing in the sequel of this note, within a rock that is possibly made of several rock-types. Our goal is to show that, at least formally, this model can be reinterpreted as the gradient flow of some singular energy. This will motivate the use of structurepreserving numerical methods inspired from [START_REF] Cancès | Numerical analysis of a robust entropy-diminishing finite volume scheme for degenerate parabolic equations[END_REF] to this model in the future.

Our approach is inspired from the one of A. Mielke [START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF] and, more closely, to the one of M. A. Peletier [START_REF] Peletier | Variational modelling: Energies, gradient flows, and large deviations[END_REF]. The basic recipe for variational modeling is recalled in §1.2, then its ingredients are identified in §2. This approach is purely formal, but it can be made rigorous under some unphysical strict positivity assumption on the phase mobilities η o , η w defined below. We will remain sloppy about regularity issues all along this note.

1.2. The recipe of getting formal variational models. Here we recall very briefly the main ingredients needed for defining a formal gradient flow.

i. The state space M is the set where the solution of the gradient flow can evolve. ii. At a point s ∈ M, the tangent space T s M, to whom would belong ∂ t s, is identified in a non-unique way with a so-called process space Z s (that might depend on s). More precisely, we assume that for each s ∈ M there exists an onto linear application P(s) :

Z s → T s M. iii. The energy functional E : M → R ∪ {+∞} admits a (local) sub-differential ∂ s E(s) ⊂ (T s M) * at s ∈ M.
iv. The dissipation potential D is such that, for all s ∈ M and all V ∈ Z s , one has D(s; V) ≥ 0. It is supposed to be convex and coercive w.r.t. to its second variable. v. The initial data s 0 belongs to M. All these ingredient being defined, we obtain from the principle of least action that s : R + → M is the gradient flow of the energy E for the dissipation D if (1a)

∂ t s = P(s)V where (1b) V ∈ argmin V∈Zs max h∈∂sE(s) D s(t); V(t) + h , P(s) V (TsM) * ,TsM
.

The formula (1b) means that a gradient flow is lazy and smart: the motion aims to minimize the dissipation while maximizing the decay of the energy. We refer to [START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF][START_REF] Peletier | Variational modelling: Energies, gradient flows, and large deviations[END_REF] for additional material on such a formal modeling and to [2] for an extensive (and rigorous) discussion on gradient flows in metric spaces.

Variational modeling for two-phase flows in porous media

2.1. State space and process space. Let Ω be an open subset of R N representing a (possibly heterogeneous) porous medium, let φ : Ω → (0, 1) be a measurable function (called porosity) such that φ ≤ φ(x) ≤ φ for a.e. x ∈ Ω for some constants φ, φ ∈ (0, 1), and let s o , s w : Ω → [0, 1) be two measurable functions (so-called residual saturations) such that s o (x) + s w (x) < 1 for a.e. x ∈ Ω. In what follows, we denote by

s o (x) = 1 -s w (x), s w (x) = 1 -s o (x), for a.e. x ∈ Ω.
For almost all x ∈ Ω, we denote by

∆ x = s = (s o , s w ) ∈ R 2 s o + s w = 1 with s α (x) ≤ s α ≤ s α (x) for α ∈ {o, w} .
Let s 0 = (s 0 o , s 0 w ) be a given initial saturation profile, we denote by m α (α ∈ {o, w}) the volume occupied by the phase α in the porous medium, i.e.,

m o = Ω φ(x)s 0 o (x)dx, and m w = Ω φ(x)s 0 w (x)dx.
For simplicity, we restrict our attention to the case where the volume of each phase is preserved: no source term and no-flux boundary conditions (otherwise, nonautonomous gradient flows should be considered). Hence the saturation profile lies at each time in the so-called state space M, defined by

M = s = (s o , s w ) s α : Ω → R + with Ω φ(x)s α (x)dx = m α for α ∈ {o, w} .
Let us now describe the processes that allow to transform the saturation profile. We denote by

Z s = V = (v o , v w ) v α : Ω → R N with v α • n = 0 on ∂Ω
the process space of the admissible processes for modifying a saturation profile s ∈ M. The identification between V = (v o , v m ) ∈ Z s and ṡ = ( ṡo , ṡw ) ∈ T s M is made through the onto operator P(s) : Z s → T s M defined by ( 2)

P(s)V = - 1 φ ∇ • v o ; - 1 φ ∇ • v w , ∀V ∈ Z s .
Since ∂ t s ∈ T s M, the relation ( 2) yields the existence of some phase filtration speeds (v o , v w ) ∈ Z s such that the following continuity equations hold:

(3)

φ∂ t s α + ∇ • v α = 0, α ∈ {o, w}.
The relation (3) must be understood as the local volume conservation of each phase α ∈ {o, w}. Finally, the duality bracket • , • (TsM) * ,TsM is given by 

h, ṡ (TsM) * ,TsM = α∈{o,w} Ω φh α ṡα = - α∈{o,w} Ω h α ∇ • v α = α∈{o,w} Ω ∇h α • v α . 2 
Π(s o , x) =    so σ(x) π(a, x)da -(ρ o -ρ w )sgz if s o ∈ [s o (x), s o (x)], +∞ otherwise,
where, denoting by e z the downward unit normal vector of R N , we have set z = x • e z , and where g and ρ α denote the gravity constant and the density of the phase α respectively, and where σ is such that 

x → π(σ(x), x) -(ρ o -ρ w )gz is constant. Since π | (s o ,so) (•, x) ∈ L 1 (s o (x), s o (x)),
× Ω → R ∪ {+∞} is defined by (4) E(s, x) = Π(s o , x) if s = (s o , s w ) ∈ ∆ x , +∞ otherwise.
The function E(•, x) is convex and finite on ∆ x for a.e. x ∈ Ω. Its sub-differential is given by

∂ s E(s, x) = (h o , h w ) ∈ R 2 h o -h w + (ρ o -ρ w )gz ∈ π(s o , x) if s ∈ ∆ x , ∅ otherwise.
Finally, we can define the so-called global energy E : M → R ∪ {+∞} by ( 5)

E(s) = Ω φ(x)E(s(x), x)dx, ∀s = (s o , s w ) ∈ M.
The saturation profile s ∈ M is of finite energy E(s) < ∞ if and only if s(x) ∈ ∆ x for a.e. x ∈ Ω. For s ∈ M with finite energy one can check that the local subdifferential ∂ s E(s) of E at s is given by

(6) ∂ s E(s) = h = (h o , h w ) : Ω → R 2 s.t. h o -h w + (ρ o -ρ w )gz ∈ π(s o , x) for a.e. x ∈ Ω .
2.3. About the dissipation. The permeability tensor field Λ ∈ L ∞ (Ω; R N ×N ) is assumed to be such that is a symmetric and positive matrix for a.e. x ∈ Ω. Moreover, we assume that there exist λ ⋆ , λ

⋆ ∈ R * + such that λ ⋆ |u| 2 ≤ Λ(x)u • u ≤ λ ⋆ |u| 2 ,
for all u ∈ R N and a.e. x ∈ Ω.

This ensures that Λ(x) is invertible for a.e. x ∈ Ω. Its inverse is denoted by Λ -1 (x). We also need the two Carathéodory functions η o , η w : R × Ω → R + -the so-called phase mobilities -such that η α (•, x) are Lipschitz continuous and nondecreasing on R + for a.e. x ∈ Ω and α ∈ {o, w}. Moreover, we assume that η α (s, x) = 0 if s ≤ s α (x) and that η α (s, x) > 0 if s > s α (x).

Given s = (s o , s w ) ∈ M and V = (v o , v w ) ∈ Z s , we define the dissipation potential D by

D(s, V) = 1 2 α∈{o,w} Ω Λ -1 v α • v α η α (s α ) dx, ∀s ∈ M, ∀V ∈ Z s .
It is easy to check that dissipation is finite, i.e., D(s, V) < ∞, iff v α = 0 a.e. on {x ∈ Ω | s α (x) ≤ s α (x)}.

2.4. Principle of least action and resulting equations. Let us consider the gradient flow governed by the energy E, the continuity equation ( 3), and the dissipation D. Let s ∈ M be a finite energy saturation profile, then because of the principle of least action (1b) and of the definition (2) of the operator P(s) : Z s → T s M, the process V = (v o , v w ) ∈ Z s and the hydrostatic phase pressures h = (h o , h w ) must be chosen so that (V, h) is the minmax saddle-point of the functional

(7) ( V, h) → D(s, V) - α∈{o,w} Ω h α ∇ • v α dx.
One can first fix h ∈ ∂ s E(s) and minimize w.r.t. V. This provides [START_REF] Cancès | Two-phase flows involving capillary barriers in heterogeneous porous media[END_REF] argmin

V∈Z   D(s, V) - α∈{o,w} Ω h α ∇ • v α dx   = -η o (s o )Λ∇ h o , -η w (s w )Λ∇ h w .
Injecting this expression in [START_REF] Blanchet | A gradient flow approach to the Keller-Segel systems[END_REF] and maximizing w.r.t. h ∈ ∂ s E(s), that is minimizing [START_REF] Cancès | Numerical analysis of a robust entropy-diminishing finite volume scheme for degenerate parabolic equations[END_REF] h = argmin h∈∂sE(s)

1 2 Ω η α (s α )Λ∇ ĥα • ∇ ĥα among all elements h in the subdifferential ∂ s E(s), yields (10) 
-∇ • v o + v w = 0, v α = -η α (s α )Λ∇h α .
In [START_REF] Cancès | An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field[END_REF] the first condition follows from the constraint ĥ ∈ ∂ s E(s) in ( 9), and the second one from [START_REF] Cancès | Two-phase flows involving capillary barriers in heterogeneous porous media[END_REF]. Define the phase pressures p = (p o , p w ) by p α (x) = h α (x) + ρ α gz, for a.e. x ∈ Ω and α ∈ {o, w}, then we recover the classical Darcy-Muskat law : [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF] v α = -η α (s α )Λ∇ (p αρ α gz) , α ∈ {o, w}.

Moreover, it follows from (6) that the following capillary pressure relation holds:

(12) p o (x) -p w (x) ∈ π(s o (x), x) a.e. in Ω.
We recover here the multivalued capillary pressure relation proposed in [START_REF] Cancès | Two-phase flows involving capillary barriers in heterogeneous porous media[END_REF][START_REF] Cancès | An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field[END_REF]. Combining (3) and (10) easily gives ∂ t (s o + s w ) = 0, so that the condition (13) s o + s w = 1 a.e. in Ω, is preserved along time and the whole pore volume remains saturated by the two fluids. Gathering (3), ( 11), ( 12) and ( 13) gives the usual system of equations governing immiscible incompressible two-phase flows in porous media [START_REF] Bear | Dynamic of Fluids in Porous Media[END_REF][START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF][START_REF] Antontsev | Boundary value problems in mechanics of nonhomogeneous fluids[END_REF][START_REF] Chen | Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF][START_REF] Cancès | An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field[END_REF].

Remark 1. By similarity with the classical Wasserstein distance used in optimal mass transport [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] one could here endow the tangent space T s M at s ∈ M with a weighted Ḣ-1 -scalar product ṡ1 , ṡ2 TsM = α∈{o,w} Ω η α (s α )Λ∇h 1,α • ∇h 2,α dx, where, for i ∈ {1, 2} and α ∈ {o, w}, we have set ṡi = ( ṡi,o , ṡi,w ) and where h i,α solves -∇ • (η α (s α )Λ∇h i,α ) = ṡi,α in Ω, η α (s α )Λ∇h i,α • n = 0 on ∂Ω.

Under some conditions on the functions η α (see [START_REF] Dolbeault | Savaré A new class of transport distances between measures[END_REF]), this should allow us to consider M as a metric space endowed with the corresponding distance, but E is not locally λ-convex for this Riemannian structure. The minimization (9) then consists in the selection of the subgradient with minimal norm.
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