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AN ALGEBRAIC THEORY OF COMPLEXITY FOR DISCRETE

OPTIMIZATION∗

DAVID A. COHEN† , MARTIN C. COOPER‡ , PÁIDÍ CREED§ , PETER G. JEAVONS¶,

AND STANISLAV ŽIVNÝ‖

Abstract. Discrete optimization problems arise in many different areas and are studied under
many different names. In many such problems the quantity to be optimized can be expressed as
a sum of functions of a restricted form. Here we present a unifying theory of complexity for prob-
lems of this kind. We show that the complexity of a finite-domain discrete optimization problem is
determined by certain algebraic properties of the objective function, which we call weighted polymor-
phisms. We define a Galois connection between sets of rational-valued functions and sets of weighted
polymorphisms and show how the closed sets of this Galois connection can be characterized. These
results provide a new approach to studying the complexity of discrete optimization. We use this
approach to identify certain maximal tractable subproblems of the general problem and hence derive
a complete classification of complexity for the Boolean case.

Key words. Galois connection, constraint optimization, discrete optimization, valued constraint
satisfaction problems, weighted clones, weighted polymorphisms

1. Introduction. Discrete optimization problems arise in many different areas
and are studied under many different names, including min-sum problems, Gibbs
energy minimization, Markov random fields, conditional random fields, 0/1 integer
programming, pseudo-Boolean function minimization, constraint optimization, and
valued constraint satisfaction [39, 12, 50, 49, 23, 19, 7, 6, 21, 22, 51].

Here we adopt a very general framework where each problem instance is specified
by a set of variables, a set of possible values for those variables, and a set of constraints.
Each combination of values allowed by each constraint has an associated cost, and the
goal is to find an assignment with minimal total cost. This simple abstract mathe-
matical framework can be used to express discrete optimization problems arising in
a wide variety of fields, including operational research (scheduling, resource utiliza-
tion, transportation), computer vision (region segmentation, object recognition, image
enhancement), automated reasoning (Max-Sat, Min-Ones), graph theory (Min-Cut,
maximum independent set), and many others.
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In the special case when all defined costs are zero, the problem we are studying
collapses to the standard constraint satisfaction problem (CSP). The general CSP
is NP-hard and so is unlikely to have a polynomial-time algorithm. However, there
has been much success in finding tractable fragments of the CSP by restricting the
types of relation allowed in the constraints. A set of allowed relations has been called
a constraint language [35]. For some constraint languages the associated CSPs with
constraints chosen from that language are solvable in polynomial time, while for other
constraint languages this class of problems is NP-hard [36, 35, 29]; these two cases are
referred to as tractable languages and NP-hard languages, respectively. Dichotomy
theorems, which classify each possible constraint language as either tractable or NP-
hard, have been established for languages over 2-element domains [42] and 3-element
domains [14], for conservative languages [16, 1], and for maximal languages [17, 13].

The more general framework we consider here, which allows nonzero costs, is
also NP-hard, but again we can try to identify tractable fragments by restricting the
types of allowed constraints. Each type of constraint is specified by a rational-valued
function defined on a set of tuples, which specifies the cost associated with each allowed
tuple of values. Such a function is called a weighted relation, and a set of weighted
relations will be called a valued constraint language [19]. Much less is known about the
complexity of the optimization problems associated with different valued constraint
languages, although some results have been obtained for certain special cases. In
particular, a complete characterization of complexity has been obtained for valued
constraint languages over a 2-element domain [19]. This result generalizes a number
of earlier results for particular optimization problems such asMax-Sat [25] and Min-
Ones [26]. A complete classification has also been obtained for valued constraint
languages containing all unary {0, 1}-valued weighted relations (such languages are
called conservative) [38]. This result generalizes a number of earlier results such as
Graph Min-Cost-Hom [32] and Digraph Min-Cost-Hom [46].

One class of weighted relations that has been extensively studied and shown to
be tractable is the class of submodular functions [26, 19, 37, 28, 38, 52].

In the classical CSP framework it has been shown that the complexity of any con-
straint language over any finite domain is determined by certain algebraic properties
known as polymorphisms [36, 35]. This result has reduced the problem of identifi-
cation of tractable constraint languages to that of identification of suitable sets of
polymorphisms. In other words, it has been shown to be enough to study just those
constraint languages which are characterized by having a given set of polymorphisms.
Using this algebraic approach, considerable progress has now been made toward a
complete characterization of the complexity of constraint languages over finite do-
mains of arbitrary size [29, 15, 4, 2, 3, 5].

In this paper, we introduce a new algebraic construct which we call a weighted
polymorphism. We are able to show that the weighted polymorphisms of a valued
constraint language are sufficient to determine the complexity of that language. In ad-
dition, we are able to define a Galois connection between valued constraint languages
and sets of weighted polymorphisms and to characterize the closed sets on both sides.

This paper builds on and extends our earlier attempts to develop an algebraic the-
ory of complexity for valued constraints [19, 18]. These earlier papers introduced the
notions of multimorphism [19] and fractional polymorphism [18] and provided a num-
ber of new tools for analyzing the complexity of this class of problems. These earlier
approaches have led to considerable progress, including a characterization of languages
solvable by a standard LP relaxation in terms of fractional polymorphisms [47], a
complete complexity classification for valued constraint languages including all unary



{0, 1}-valued weighted relations [38], and a complete complexity classification for val-
ued constraint languages whose weighted relations allow all tuples [48]. However,
the algebraic objects introduced in these earlier approaches could not be successfully
combined to obtain a suitable closure operation and hence could not be used to define
a Galois connection. The notion of weighted polymorphism introduced here subsumes
all the earlier notions and finally allows the development of a fully algebraic approach.

The Galois connection we establish here can be used in the search for tractable
valued constraint languages in a very similar way to the use of polymorphisms in the
search for tractable constraint languages in the classical CSP. First, we need only
consider valued constraint languages characterized by weighted polymorphisms. This
greatly simplifies the search for a characterization of all tractable valued constraint
languages. Second, we will show below that any tractable valued constraint language
must have an associated nontrivial weighted polymorphism. Hence the results of this
paper provide a powerful new set of tools for analyzing the complexity of finite-domain
discrete optimization problems.

The structure of the paper is as follows. In section 2 we introduce the general
framework of the valued constraint satisfaction problem (VCSP) and define the notion
of expressibility. In section 3 we focus on the classical CSP and show how it fits in the
VCSP framework as a special case. We briefly recall the notion of a polymorphism
and the Galois connection that has been so fruitful in the study of the complexity of
the classical CSP. In sections 4 and 5 we introduce weighted relational clones (valued
constraint languages closed under expressibility and certain other operations) and the
corresponding closed sets of weighted polymorphisms, which we call weighted clones.
We then state our main result: weighted relational clones are in one-to-one correspon-
dence with weighted clones. In section 6 we give proofs of the theorems establishing
this Galois connection. In section 7 we use the algebraic theory to establish necessary
conditions that must be satisfied by any tractable valued constraint language. Using
these results, we obtain a complete classification for the Boolean case in section 8.
Finally, in section 9, we state some conclusions and outline directions for future work.

2. The VCSP. For any set D, the set of tuples of length r over D is denoted
by Dr, and a subset of Dr is called a relation over D of arity r. A (partial) function
̺ from Dr to Q associates a rational1 weight with each of the tuples in some subset
of Dr and so will be called a weighted relation on D of arity r.

The idea of a weighted relation is very general and can be used to define a wide
variety of discrete optimization problems. The general framework we shall use for
such problems is defined as follows.

Definition 2.1. An instance of the VCSP is a triple P = 〈V,D,C〉, where V is
a finite set of variables, D is a finite set of possible values, and C is a finite multi-set
of constraints. Each element of C is a pair c = 〈σ, ̺〉, where σ is a tuple of variables
called the scope of c, and ̺ is a weighted relation on D of arity |σ|.

An assignment for P is a mapping s : V → D. The cost of an assignment s,
denoted CostP (s), is given by the sum of the weights assigned to the restrictions of s
onto each constraint scope, that is,

CostP (s)
def
=

∑

〈〈v1,v2,...,vm〉,̺〉∈C

̺(s(v1), s(v2), . . . , s(vm)).

1To avoid representational issues, we restrict ourselves to rational rather than real-valued weights.
The resulting framework is sufficiently general to encode very many standard optimization problems;
for examples, see [19].



If ̺(s(v1), s(v2), . . . , s(vm)) is undefined for some 〈〈v1, v2, . . . , vm〉 , ̺〉 ∈ C, then the
assignment s is said to be infeasible and CostP (s) is undefined.

A solution to P is a feasible assignment with minimal cost.
In many earlier treatments of the VCSP (e.g., [19]) infeasible assignments are

given an infinite cost, whereas here the cost of an infeasible assignment is simply
undefined.

Example 2.1 (Max-Cut). In graph theory a cut of a graph is a partition of the
vertices into two disjoint sets. The size of a cut is the number of edges of the graph
that intersect both sides of this partition. The Max-Cut problem for a graph is to
find a cut with the largest possible size. This problem is NP-hard [30].

The Max-Cut problem for the graph (V,E) can be expressed as the VCSP
instance 〈V, {0, 1}, C〉, where C = {〈e, ̺ 6=〉 | e ∈ E}, and ̺ 6= is the binary weighted
relation on the set {0, 1} defined by

̺ 6=(x, y)
def
=

{

0 if x 6= y,
1 otherwise.

Any assignment for this VCSP instance partitions the elements of V into those as-
signed the value 0 and those assigned the value 1. The cost of the assignment is equal
to the number of edges minus the size of the corresponding cut.

Example 2.2 (Digraph Min-Cost-Hom). Given two directed graphs (digraphs)
G = (VG, EG) and H = (VH , EH), a homomorphism from G to H is a mapping
f : VG → VH that preserves edges, that is, (u, v) ∈ EG implies (f(u), f(v)) ∈ EH .
Assume that for any u ∈ VG and v ∈ VH a rational cost cu(v) is given. The cost
of a homomorphism f from G to H is then defined to be

∑

u∈VG
cu(f(u)). The

Digraph Min-Cost-Hom problem is to find a homomorphism from G to H of min-
imum cost [32, 46].

Given a fixed digraph H = (VH , EH), we denote by ̺H the binary weighted
relation on the set VH defined by

̺H(x, y)
def
=

{

0 if (x, y) ∈ EH ,
undefined otherwise.

The Digraph Min-Cost-Hom problem for input graph G = (VG, EG) and fixed
target graph H = (VH , EH) can be expressed as an instance 〈VG, VH , C〉 of VCSP by
setting C = {〈e, ̺H〉 | e ∈ EG} ∪ {〈u, cu〉 | u ∈ VG}.

A valued constraint language is any set Γ of weighted relations on some fixed set
D. We define VCSP(Γ) to be the class of all VCSP instances in which all weighted
relations in all constraints belong to Γ.

Example 2.1 shows that VCSP({̺ 6=}) includes the Max-Cut problem. In fact the
class of instances VCSP({̺ 6=}) corresponds very closely to the Max-Cut problem,
in the sense that any instance from VCSP({̺ 6=}) can be interpreted as an instance of
the Max-Cut problem on the graph defined by the constraint scopes.

Valued constraint languages may be infinite, but it will be convenient to follow [19]
and define the complexity of a valued constraint language in terms of its finite subsets.

Definition 2.2. A valued constraint language Γ is called tractable if for every
finite subset Γ′ ⊆ Γ, there exists an algorithm solving any instance P ∈ VCSP(Γ′) in
polynomial time. Conversely, Γ is called NP-hard if there is some finite subset Γ′ ⊆ Γ
for which VCSP(Γ′) is NP-hard.

One advantage of defining tractability in terms of finite subsets is that the tractabil-
ity of a valued constraint language is independent of whether the cost functions are



represented explicitly (via tables of values) or implicitly (via oracles) since in a finite
subset the weighted relations necessarily have bounded arity.

Example 2.1 shows that the valued constraint language {̺ 6=} is NP-hard.
We now define a closure operator on weighted relations, which adds to a given set

of weighted relations all other weighted relations which can be expressed using that
set, in the sense defined below.

Definition 2.3. For any VCSP instance P = 〈V,D,C〉 and any list L =
〈v1, . . . , vr〉 of variables of P, the projection of P onto L, denoted πL(P), is the
weighted relation on D of arity r defined as follows:

πL(P)(x1, . . . , xr)
def
= min

{s:V →D | 〈s(v1),...,s(vr)〉=〈x1,...,xr〉}
CostP (s) .

We say that a weighted relation ̺ is expressible over a valued constraint language Γ
if there exists a VCSP instance P ∈ VCSP(Γ) and a list L of variables of P such that
πL(P) = ̺. We call the pair 〈P , L〉 a gadget for expressing ̺ over Γ.

We define Express(Γ) to be the expressive power of Γ, that is, the set of all
weighted relations expressible over Γ.

Note that the list of variables L in a gadget may contain repeated entries, the
sum over an empty set is zero, and the minimum over an empty set is undefined.

Example 2.3. Let P be the VCSP instance with a single variable v and no
constraints, and let L = 〈v, v〉. Then, by Definition 2.3,

πL(P)(x, y) =

{

0 if x = y,
undefined otherwise.

Hence for any valued constraint language Γ, over any set D, Express(Γ) contains this
binary weighted relation, which will be called the weighted equality relation.

Example 2.4. Let P be the VCSP instance with domain {0, 1}, variables v1, v2, v3
and constraints 〈〈v1, v2〉 , ̺ 6=〉 and 〈〈v2, v3〉 , ̺ 6=〉, and let L = 〈v1, v3〉. Then, by Defi-
nition 2.3,

πL(P)(x, y) =

{

0 if x = y,
1 otherwise.

Hence Express({̺ 6=}) contains this binary weighted relation, which will be
denoted ̺=.

However, using the results of this paper, we will be able to show, for example,
that ̺ 6= 6∈ Express({̺=}) (see Example 8.2).

The next result shows that expressibility preserves tractability.
Theorem 2.4. A valued constraint language Γ is tractable if and only if Express(Γ)

is tractable; similarly, Γ is NP-hard if and only if Express(Γ) is NP-hard.
Proof. By the definition of a tractable valued constraint language, it is sufficient

to show that for any finite subset Γ′ of Express(Γ) there exists a polynomial-time
reduction from VCSP(Γ′) to VCSP(Γ′′), where Γ′′ is a finite subset of Γ.

Let Γ′ be a finite subset of Express(Γ) and let P ′ be any instance of VCSP(Γ′).
By Definition 2.3, any weighted relation ̺′ ∈ Express(Γ) can be constructed by using
some gadget 〈P̺′ , L〉, where P̺′ is an instance of VCSP(Γ). Hence we can simply
replace each constraint in P ′ which has a weighted relation ̺′ not already in Γ with
the corresponding gadget to obtain an instance P of VCSP(Γ) which has exactly the
same solutions as P ′. The maximum size of any of the gadgets used is a constant



determined by the finite set Γ′, so this construction can be carried out in polynomial
time in the size of P ′.

This result shows that, when trying to identify tractable valued constraint lan-
guages, it is sufficient to consider only languages of the form Express(Γ). In the
following sections, we will show that such languages can be characterized using cer-
tain algebraic properties.

3. Classical constraint satisfaction. In this section we consider the special
case when the weights are all zero.

Definition 3.1. We denote by RD the set of all zero-valued weighted relations
on a set D.

There is a one-to-one correspondence between the set of zero-valued weighted
relations RD and the set of all relations over D. In this correspondence each weighted
relation ̺ in RD is associated with the relation R(̺) containing precisely those tuples
on which ̺ is defined. Similarly, each zero-valued weighted relation inRD is associated
with the predicate which is true for precisely those tuples where the weighted relation
is defined. Subsets of RD are sometimes referred to as crisp constraint languages [19]
and VCSP(RD) is equivalent to the classical CSP, where each assignment is either
allowed (cost 0) or disallowed (infeasible, or cost undefined).

Definition 3.2. A weighted relation ̺ of arity r can be obtained by addition
from the weighted relation ̺1 of arity s and the weighted relation ̺2 of arity t if ̺
satisfies the identity ̺(x1, . . . , xr) = ̺1(y1, . . . , ys) + ̺2(z1, . . . , zt) for some (fixed)
choice of y1, . . . , ys and z1, . . . , zt from among the x1, . . . , xr.

For zero-valued weighted relations this notion of addition corresponds to perform-
ing a relational join operation on the associated relations R(̺1) and R(̺2) [33]. It
also corresponds to taking a conjunction of the associated predicates [15]. Moreover,
minimizing a weighted relation ̺ ∈ RD over one of its arguments corresponds to tak-
ing a relational projection of R(̺) onto its remaining coordinates. It also corresponds
to existential quantification of the associated predicate over that argument.

Definition 3.3. A set Γ ⊆ RD is called a relational clone if it contains the
weighted equality relation and is closed under addition and minimization over arbitrary
arguments.

For each Γ ⊆ RD we define RelClone(Γ) to be the smallest relational clone con-
taining Γ.

It is a straightforward consequence of Definitions 2.3 and 3.3 that the expressive
power of a crisp constraint language is given by the smallest relational clone containing
it, as the next result indicates.

Proposition 3.4. For any Γ ⊆ RD, Express(Γ) = RelClone(Γ).
This alternative characterization for the expressive power of a crisp constraint

language was first observed in [35] and used to study the complexity of such languages
using tools from universal algebra. We now give a brief summary of this algebraic
approach.

For any set D, a function f : Dk → D is called a k-ary operation on D.
Definition 3.5. We denote by OD the set of all finitary operations on D and

by O
(k)
D the k-ary operations in OD.

Definition 3.6. The k-ary projections on D are the operations e
(k)
i : Dk → D

such that (a1, . . . , ak) 7→ ai.

Definition 3.7. Let f ∈ O
(k)
D and g1, . . . , gk ∈ O

(ℓ)
D . The superposition of f

and g1, . . . , gk is the ℓ-ary operation f [g1, . . . , gk] : D
ℓ → D such that (x1, . . . , xℓ) 7→

f(g1(x1, . . . , xℓ), . . . , gk(x1 . . . , xℓ)).



Definition 3.8. A set F ⊆ OD is called a clone of operations if it contains all
the projections on D and is closed under superposition. For each F ⊆ OD we define
Clone(F ) to be the smallest clone containing F .

We can extend k-ary operations to operate on tuples in a natural way, as follows.
Let x1, . . . ,xk be tuples of length r over a set D, where each xi = 〈xi,1, xi,2, . . . , xi,r〉.
We can obtain another element of Dr by applying f to the tuples xi coordinatewise,
as follows:

f(x1, . . . ,xk)
def
= 〈f(x1,1, . . . , xk,1), f(x1,2, . . . , xk,2), . . . , f(x1,r, . . . , xk,r)〉 .

Definition 3.9. Let ̺ be a weighted relation of arity r on a set D and let

f ∈ O
(k)
D . We say that f is a polymorphism of ̺ if for any x1,x2, . . . ,xk ∈ Dr such

that ̺(xi) is defined for i = 1, . . . , k, we have that ̺(f(x1,x2, . . . ,xk)) is also defined.
If f is a polymorphism of ̺ we say ̺ is invariant under f .
Definition 3.10. For any valued constraint language Γ over a set D, we denote

by Pol(Γ) the set of all operations on D which are polymorphisms of all weighted

relations ̺ ∈ Γ and by Pol(k)(Γ) the k-ary operations in Pol(Γ).
Definition 3.11. For any F ⊆ OD, we denote by Inv(F ) the set of all weighted

relations in RD that are invariant under all operations f ∈ F .
For any set D, the mappings Pol and Inv form a Galois connection between OD

and RD [11]. A characterization of this Galois connection for finite sets D is given
by the following two theorems, originally obtained for sets of relations [31, 10].

Theorem 3.12. For any finite set D and any finite Γ ⊆ RD, Inv(Pol(Γ)) =
RelClone(Γ).

Theorem 3.13. For any finite set D and any finite F ⊆ OD, Pol(Inv(F )) =
Clone(F ). As with any Galois connection [11], this means that there is a one-to-one
correspondence between clones and relational clones. Together with Proposition 3.4,
this result shows that the expressive power of any crisp constraint language Γ on a
finite set D corresponds to a particular clone of operations on D. Hence, by Theo-
rem 2.4, the search for tractable crisp constraint languages corresponds to a search
for suitable clones of operations [35, 15]. This key observation paved the way for
applying deep results from universal algebra in the search for tractable constraint
languages [17, 16, 13, 14, 4, 2, 3, 5].

4. Weighted relational clones. In this section we return to the general case
of weighted relations taking arbitrary values in Q in order to define the notion of a
weighted relational clone.

Definition 4.1. We denote by ΦD the set of all weighted relations on D taking

values in Q and by Φ
(r)
D the weighted relations in ΦD of arity r.

We now define a closure operator on weighted relations, which adds to a set of
weighted relations all other weighted relations which can be obtained from the original
set by nonnegative scaling and addition of a constant.

Definition 4.2. A weighted relation ̺′ ∈ ΦD can be obtained from a weighted re-
lation ̺ ∈ ΦD by nonnegative scaling and addition of constants if there exist α, β ∈ Q

with α ≥ 0 such that ̺′ ≡ α̺ + β . We denote by Γ∼ the smallest set of weighted
relations containing Γ which is closed under nonnegative scaling and addition of con-
stants.

The next result shows that adding weighted relations that can be obtained by
nonnegative scaling and addition of constants preserves tractability.

Theorem 4.3. A valued constraint language Γ is tractable if and only if Γ∼ is
tractable; similarly, Γ is NP-hard if and only if Γ∼ is NP-hard.



Proof. By Definition 2.2, it is sufficient to show that for each finite subset Γ′ of
Γ∼ there exists a polynomial-time reduction from VCSP(Γ′) to VCSP(Γ).

Let Γ′ be a fixed finite subset of Γ∼. We will show that each weighted relation
̺′ ∈ Γ′ that is not in Γ can be replaced by a weighted relation from Γ to obtain a
polynomial-time reduction from VCSP(Γ′) to VCSP(Γ′\{̺′}∪Γ). By performing each
of these reductions in sequence we can obtain the desired polynomial-time reduction
from VCSP(Γ′) to VCSP(Γ).

Let P ′ be any instance of VCSP(Γ′), and choose any weighted relation ̺′ ∈ Γ′.
By Definition 4.2, ̺′ can be obtained by nonnegative scaling and addition of constants
from some weighted relation ̺ ∈ Γ. Hence, we can replace each constraint of the form
〈σ, ̺′〉 in P ′ with a new constraint 〈σ, ̺〉, where ̺ ∈ Γ and ̺′ = α̺ + β for some
nonnegative rational value α and some arbitrary rational constant β, to obtain an
instance of VCSP(Γ′ \ {̺′}∪Γ). It only remains to ensure that this new instance has
the same solutions as P ′.

The constant β is added to the cost of all assignments and so does not affect the
choice of solution.

Since α is a nonnegative rational value, it can be expressed as p/q for some
nonnegative integer p and positive integer q.

If p is nonzero, then the effect of the scale factor p/q can be simulated by taking
p copies of the new constraints and q copies of all other constraints. The values of
p, q are constants determined by the choice of ̺′, so this construction can be carried
out in polynomial time in the size of P ′.

It only remains to deal with the case where p is zero. In this case we still need to
replace each constraint 〈σ, ̺′〉 with one copy of the corresponding constraint 〈σ, ̺〉, to
ensure that infeasible assignments to ̺′ are still excluded. Assume that P ′ contains
k such constraints. Let M be the maximum weight assigned by ̺′, and let m be the
minimum difference between any two distinct weights assigned by any other weighted
relations in Γ′. The cost of any feasible assignment after replacing the k constraints
〈σ, ̺′〉 is greater by at most kM than the cost of the same assignment for P ′. Hence
if we also take ⌈Mk

m
+1⌉ copies of all the remaining constraints of P ′, then we obtain

an instance of VCSP(Γ′ \ {̺′}∪Γ) with the same solutions as P ′. Since M and m are
constants determined by the finite set Γ′, this construction can again be carried out
in polynomial time in the size of P ′.

Definition 4.4. A set Γ ⊆ ΦD is a weighted relational clone if it contains
the weighted equality relation and is closed under nonnegative scaling and addition of
constants, addition, and minimization over arbitrary arguments.

For each Γ ⊆ ΦD we define wRelClone(Γ) to be the smallest weighted relational
clone containing Γ.

It is a straightforward consequence of Definitions 2.3, 4.2, and 4.4 that for any
valued constraint language Γ ⊆ ΦD, the set of weighted relations that can be expressed
using weighted relations obtained from Γ by nonnegative scaling and addition of
constants is given by the smallest weighted relational clone containing Γ, as the next
result indicates.

Proposition 4.5. For any Γ ⊆ ΦD, Express(Γ∼) = wRelClone(Γ).

Hence, by Theorems 2.4 and 4.3, the search for tractable valued constraint lan-
guages corresponds to a search for suitable weighted relational clones.

In the next section we establish an alternative characterization for weighted rela-
tional clones which facilitates this search.



5. Weighted clones. To obtain a suitable alternative characterization for
weighted relational clones we now generalize the notion of a clone of operations,
introduced in Definition 3.8, by introducing the notion of a weighted clone.

Recall from Definition 3.8 that a clone of operations, C, is a set of operations on
some fixed set D that contains all projections and is closed under superposition. The
k-ary operations in a clone C will be denoted C(k).

Definition 5.1. We define a k-ary weighting of a clone C to be a function
ω : C(k) → Q such that ω(f) < 0 only if f is a projection and

∑

f∈C(k)

ω(f) = 0 .

We denote by WC the set of all possible weightings of C and by W
(k)
C the set of k-ary

weightings of C.
For any weighting ω, we denote by dom(ω) the set of operations C(k) on which

ω is defined. We denote by ar(ω) the arity of ω.
Since a weighting is simply a rational-valued function satisfying certain linear

inequalities it can be scaled by any nonnegative rational to obtain a new weighting.
Similarly, any two weightings of the same clone of the same arity can be added to
obtain a new weighting of that clone.

The notion of superposition from Definition 3.7 can also be extended to weightings
in a natural way by forming a superposition with each argument of the weighting, as
follows.

Definition 5.2. For any clone C, any ω ∈ W
(k)
C and any g1, g2, . . . , gk ∈ C(ℓ),

we define the superposition of ω and g1, . . . , gk to be the function ω[g1, . . . , gk] : C
(ℓ) →

Q defined by

(5.1) ω[g1, . . . , gk](f
′)

def
=

∑

f∈C(k)

f [g1,...,gk]=f ′

ω(f) .

Example 5.1. Let D be a totally ordered set, and let C = Clone({max}), where
max is the binary maximum operation on D. Note that C(2) contains just three

binary operations: e
(2)
1 , e

(2)
2 , and max. Let ω be the 2-ary weighting of C given by

ω(f)
def
=











−1 if f = e
(2)
1 ,

+1 if f = e
(2)
2 ,

0 if f = max,

and let

〈g1, g2〉 =
〈

e
(2)
2 ,max

〉

.

Note that e
(2)
1 [g1, g2] = g1 = e

(2)
2 and e

(2)
2 [g1, g2] = g2 = max, so, applying Defini-

tion 5.2, we have

ω[g1, g2](f) =











0 if f = e
(2)
1 ,

−1 if f = e
(2)
2 ,

+1 if f = max .

Note that ω[g1, g2] satisfies the conditions of Definition 5.1 and hence is a 2-ary weight-
ing of C.



Example 5.2. Let C be a clone on some totally ordered set D and assume that
C contains the binary maximum and minimum operations on D, which are denoted

by max and min. Note that C(4) contains operations such as max[e
(4)
i , e

(4)
j ] which

returns the maximum of the ith and jth argument values. Operations of this form
will be denoted max(xi, xj).

Let ω be the 4-ary weighting of C given by

ω(f)
def
=







−1 if f is a projection, that is, f ∈ {e
(4)
1 , e

(4)
2 , e

(4)
3 , e

(4)
4 },

+1 if f ∈ {max(x1, x2),min(x1, x2),max(x3, x4),min(x3, x4)},
0 otherwise,

and let

〈g1, g2, g3, g4〉 =
〈

e
(3)
1 , e

(3)
2 , e

(3)
3 ,max(x1, x2)

〉

.

Then, by Definition 5.2 we have

ω[g1, g2, g3, g4](f) =







−1 if f is a projection, that is, f ∈ {e
(3)
1 , e

(3)
2 , e

(3)
3 },

+1 if f ∈ {max(x1, x2, x3),min(x1, x2),min(x3,max(x1, x2))},
0 otherwise.

Note that ω[g1, g2, g3, g4] satisfies the conditions of Definition 5.1 and hence is a 3-ary
weighting of C.

Example 5.3. Let C and ω be the same as in Example 5.2 but now consider

〈g′1, g
′
2, g

′
3, g

′
4〉 =

〈

e
(4)
1 ,max(x2, x3),min(x2, x3), e

(4)
4

〉

.

By Definition 5.2 we have

ω[g′1, g
′
2, g

′
3, g

′
4](f) =















−1 if f ∈ {e
(4)
1 ,max(x2, x3),min(x2, x3), e

(4)
4 },

+1 if f ∈

{

max(x1, x2, x3),min(x1,max(x2, x3)),
max(min(x2, x3), x4),min(x2, x3, x4)

}

,

0 otherwise.

Note that ω[g′1, g
′
2, g

′
3, g

′
4] does not satisfy the conditions of Definition 5.1 because, for

example, we have that ω[g′1, g
′
2, g

′
3, g

′
4](f) < 0 when f = max(x2, x3), which is not a

projection. Hence ω[g′1, g
′
2, g

′
3, g

′
4] is not a valid weighting of C.

It follows immediately from Definition 3.7 that the sum of the weights in any
superposition ω[g1, . . . , gk] is equal to the sum of the weights in ω, which is zero, by
Definition 5.1. However, as we have seen in Example 5.3, it is not always the case that
an arbitrary superposition satisfies the other condition in Definition 5.1 that negative
weights are only assigned to projections. Hence we make the following definition.

Definition 5.3. If the result of a superposition is a valid weighting, then that
superposition will be called a proper superposition.

Remark 5.1. The superposition of a projection operation and other projection
operations is always a projection operation. So, by Definition 5.2, for any clone C and

any ω ∈ W
(k)
C , if g1, . . . , gk ∈ C(ℓ) are projections, then the function ω[g1, . . . , gk] can

take negative values only on projections and hence is a valid weighting. This means
that a superposition with any list of projections is always a proper superposition.

We are now ready to define weighted clones.
Definition 5.4. A weighted clone, W , is a nonempty set of weightings of some

fixed clone C which is closed under nonnegative scaling, addition of weightings of
equal arity, and proper superposition with operations from C. The clone C is called
the support of W .



Example 5.4. For any clone, C, the set WC containing all possible weightings of
C is a weighted clone with support C.

Example 5.5. For any clone, C, the set W0
C containing all zero-valued weightings

of C is a weighted clone with support C. Note thatW0
C contains exactly one weighting

of each possible arity, which assigns the value 0 to all operations in C of that arity.
We now establish a link between weightings and weighted relations, which will

allow us to link weighted clones and weighted relational clones.
Definition 5.5. Let ̺ be a weighted relation of arity r on some set D and let ω

be a k-ary weighting of some clone of operations C on the set D.
We say that ω is a weighted polymorphism of ̺ if for any x1,x2, . . . ,xk ∈ Dr

such that ̺(xi) is defined for i = 1, . . . , k, we have that ̺(f(x1,x2, . . . ,xk)) is defined
for all f ∈ C(k), and

(5.2)
∑

f∈C(k)

ω(f)̺(f(x1,x2, . . . ,xk)) ≤ 0 .

If ω is a weighted polymorphism of ̺ we say ̺ is improved by ω.

Note that by Definition 3.9, if ̺ is improved by the weighting ω ∈ W
(k)
C , then

every element of C(k) must be a polymorphism of ̺.
Example 5.6. Consider the class of submodular functions [40]. These are precisely

the functions ̺ on an ordered domain which satisfy the following identity:

̺(min(x1,x2)) + ̺(max(x1,x2))− ̺(x1)− ̺(x2) ≤ 0 .

In other words, the set of submodular functions is the set of weighted relations with
a 2-ary weighted polymorphism ωsub, defined by

ωsub(f)
def
=







−1 if f ∈ {e
(2)
1 , e

(2)
2 },

+1 if f ∈ {min(x1, x2),max(x1, x2)},
0 otherwise.

Submodular function minimization is known to be tractable [44, 34].
Definition 5.6. For any Γ ⊆ ΦD, we denote by wPol(Γ) the set of all weightings

of Pol(Γ) which are weighted polymorphisms of all weighted relations ̺ ∈ Γ. The set

of k-ary weightings in wPol(Γ) will be denoted wPol(k)(Γ).
To define a mapping in the other direction, we need to consider the union of the

sets WC over all clones C on some fixed set D, which will be denoted WD. If we have
a set W ⊆ WD which may contain weightings of different clones over D, then we can
extend each of these weightings with zeros, as necessary, so that they are weightings
of the same clone C, given by

C = Clone

(

⋃

ω∈W

dom(ω)

)

.

This set of extended weightings obtained from W will be denoted W . For any set
W ⊆ WD, we define wClone(W ) to be the smallest weighted clone containing W .

Definition 5.7. For any W ⊆ WD, we denote by Imp(W ) the set of all weighted
relations in ΦD which are improved by all weightings ω ∈ W . The set of r-ary weighted
relations in Imp(W ) will be denoted Imp(r)(W ).

It follows immediately from the definition of a Galois connection [11] that for any
set D, the mappings wPol and Imp form a Galois connection between WD and ΦD,
as illustrated in Figure 5.1. A characterization of this Galois connection for finite sets
D is given by the following two theorems, which are proved in section 6.



Theorem 5.8. For any finite D and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) =
wRelClone(Γ).

Theorem 5.9. For any finite D and any finite W ⊆ WD, wPol(Imp(W )) =
wClone(W ).

As with any Galois connection [11], this means that there is a one-to-one corre-
spondence between weighted clones and weighted relational clones. Hence, by Propo-
sition 4.5, Theorem 2.4, and Theorem 4.3, the search for tractable valued constraint
languages over a finite set corresponds to a search for suitable weighted clones of
operations.

6. Proofs of Theorems 5.8 and 5.9. Our proofs of Theorems 5.8 and 5.9 will
both use the following result, which is a variant of the well-known Farkas lemma used
in linear programming [40, 43].

Lemma 6.1 (Farkas, 1894). Let S and T be finite sets of indices, where T is the
disjoint union of two subsets, T≥ and T=. For all i ∈ S and all j ∈ T , let ai,j and bj
be rational numbers. Exactly one of the following holds:

• Either there exists a set of nonnegative rational numbers {xi | i ∈ S} and a
rational number c such that

ΦD

∅

WD

∅

Sets of
weighted relations

Sets of
clone weightings

Γ

wPol(Γ)

Imp(wPol(Γ))

= wRelClone(Γ)

wPol

Imp

ΦD

∅

WD

∅

Sets of
weighted relations

Sets of
clone weightings

W

Imp(W )

wPol(Imp(W ))

= wClone(W )wPol

Imp

Fig. 5.1. Galois connection between ΦD and WD.



for each j ∈ T≥,
∑

i∈S

ai,j xi ≥ bj + c, and

for each j ∈ T=,
∑

i∈S

ai,j xi = bj + c.

• Or else there exists a set of integers {yj | j ∈ T } such that
∑

j∈T yj = 0 and

for each j ∈ T≥, yj ≥ 0,

for each i ∈ S,
∑

j∈T

yj ai,j ≤ 0, and

∑

j∈T

yj bj > 0.

Such a set is called a certificate of unsolvability.
We note that there is an effective procedure for deciding which of the cases mentioned
in Lemma 6.1 holds for any instance and for calculating the values of the corresponding
coefficients xi or yj [43].

We will prove Theorem 5.8 in two parts. First, we show in Proposition 6.2 that
the set of all weighted relations improved by any given set of weightings is always a
weighted relational clone. Then we show that for any finite set Γ the set of weighted
relations improved by all weightings in wPol(Γ) is precisely the weighted relational
clone wRelClone(Γ).

Proposition 6.2. For any finite set D and any W ⊆ WD, Imp(W ) is a weighted
relational clone.

Proof. Certainly Imp(W ) contains the weighted equality relation (defined in
Example 2.3), since this weighted relation satisfies inequality (5.2) in Definition 5.5
for all tuples xi on which it is defined. Similarly, Imp(W ) is closed under nonnegative
scaling, addition of constants, and addition and rearrangement of arguments, since all
of these operations preserve inequality (5.2). Hence, to show Imp(W ) is a weighted
relational clone we only need to show Imp(W ) is closed under minimization.

Let ̺ ∈ Imp(r)(W ) and assume that ̺′ is obtained from ̺ by minimizing over the
last argument. In other words, ̺′(x1, x2, . . . , xr−1) = minxr

(̺(x1, x2, . . . , xr)). We
will now show that ̺′ ∈ Imp(W ).

Let ω ∈ W be a k-ary weighting of a clone C. Since ̺ ∈ Imp(W ), we know that
̺ and ω satisfy inequality (5.2) for all x1,x2, . . . ,xk such that ̺(xi) is defined. Now
consider any x′

1,x
′
2, . . . ,x

′
k for which each ̺′(x′

i) is defined. Extend each x′
i to a tuple

x′′
i of arity r in such a way that ̺(x′′

i ) is minimized. Since all negative values of ω are
associated with projections, we have

∑

f∈C(k)

ω(f)̺′(f(x′
1,x

′
2, . . . ,x

′
k)) ≤

∑

f∈C(k)

ω(f)̺(f(x′′
1 ,x

′′
2 , . . . ,x

′′
k)) ≤ 0 .

We now prove Theorem 5.8, which states that for any finite set D and any finite
Γ ⊂ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).

Proof. We first establish that for any Γ ⊂ ΦD we have the inclusion
wRelClone(Γ) ⊆ Imp(wPol(Γ)). To see this, observe that Γ ⊆ Imp(wPol(Γ)) and,
hence, wRelClone(Γ) ⊆ wRelClone(Imp(wPol(Γ))), which is equal to Imp(wPol(Γ))
by Proposition 6.2.

We will prove the reverse inclusion, Imp(wPol(Γ)) ⊆ wRelClone(Γ), as follows.
Given a weighted relation ̺ of arity r, we will show that either there exists a weighted



operation ω ∈ wPol(Γ) such that ̺ 6∈ Imp({ω}) or else ̺ plus some constant can be
obtained by minimization from a nonnegative weighted sum of weighted relations in
Γ, and hence ̺ ∈ wRelClone(Γ).

We now give the details of this argument. Let k be the number of r-tuples for
which ̺ is defined and fix an arbitrary order, x1, . . . ,xk, for these tuples. This list of
tuples can be viewed as (the rows of) a matrix with k rows and r columns, which we
will call S̺.

By Proposition 4.5, ̺ ∈ wRelClone(Γ) if and only if it can be expressed using
weighted relations from Γ∼. By Definition 2.3, a weighted relation ̺′ is expressible
over Γ∼ if and only if there exists an instance P ∈ VCSP(Γ∼) and a list L of variables
of P such that πL(P) = ̺′.

We consider instances P with |Dk| variables, where each variable is associated
with a distinct tuple from Dk. Each constraint of P is a pair 〈S, γ〉 for some γ ∈ Γ
and some list of variables S. Each such S can be viewed as a list of k-tuples over D,
and hence as a matrix over D, whose columns are these k-tuples. Since we are using
P to express the defined values of ̺, it is sufficient to consider only matrices S with
rows t1, . . . , tk such that γ(ti) is defined for i = 1, . . . , k. For any γ ∈ Γ, a pair 〈S, γ〉
with this property will be called a k-match to Γ.

Each assignment to the variables of P can be seen as a mapping from k-tuples over

D to D and hence is associated with an operation f ∈ O
(k)
D . For any list of variables

S of P , we will write f(S) to denote the assignment to those variables obtained by
applying f to the columns of S, viewed as a matrix. With this notation, we have that
πL(P) = ̺ with L = S̺, if we can find nonnegative rationals xS,γ for all k-matches to
Γ, and a constant c ∈ Q, such that the following system of inequalities and equations
is satisfied:

for each f ∈ O
(k)
D ,

∑

γ∈Γ

∑

{all k-matches 〈S, γ〉}

xS,γ γ(f(S)) ≥ ̺(f(S̺)) + c,

for each projection e ∈ O
(k)
D ,

∑

γ∈Γ

∑

{all k-matches 〈S, γ〉}

xS,γ γ(e(S)) = ̺(e(S̺))+ c.

Moreover, if f 6∈ Pol(k)(Γ), then the left-hand side of the corresponding inequality

will be undefined, by Definition 3.9, so it is sufficient to consider only f ∈ Pol(k)(Γ).
This gives us a system of inequalities and equations with rational coefficients.

If this system has a solution, then ̺ ∈ wRelClone(Γ). On the other hand, if this
system of equations and inequalities has no solution, then we appeal to Lemma 6.1
to get a certificate of unsolvability. That is, in this case we know that there exists a
set of integers {yf | f ∈ Pol(k)(Γ)} such that

∑

f∈Pol(k)(Γ) yf = 0, yf < 0 only if f is
a projection, and

for each k-matching 〈S, γ〉 of Γ,
∑

f∈Pol(k)(Γ)

yf γ(f(S)) ≤ 0 and(6.1)

∑

f∈Pol(k)(Γ)

yf ̺(f(S̺)) > 0.(6.2)

Now, consider the k-ary weighting ω of the clone Pol(Γ) defined by ω(f) = yf for

each f ∈ Pol(k)(Γ). From (6.1), we can see that ω is a weighted polymorphism of
every γ ∈ Γ. On the other hand, (6.2) shows that ω is not a weighted polymorphism
of ̺.



Remark 6.1. The proof of Theorem 5.8 demonstrates the decidability of the
following question: for any finite Γ ⊆ ΦD and any weighted relation ̺ defined on D,
does ̺ belong to wRelClone(Γ)?

We will prove Theorem 5.9 in two parts. First, we show in Proposition 6.3 that
the set of weighted polymorphisms of any given set of weighted relations is always a
weighted clone. Then we show that for any finite set W the set of weightings that
improve all weighted relations in Imp(W ) is precisely the weighted clone wClone(W ).

Proposition 6.3. For any finite set D, and any Γ ⊆ ΦD, wPol(Γ) is a weighted
clone.

Proof. By Definition 5.6, wPol(Γ) is a set of weightings of Pol(Γ). Similarly,
wPol(Γ) is closed under addition and nonnegative scaling, since both these operations
preserve inequality (5.2). Hence, to show wPol(Γ) is a weighted clone we only need
to show wPol(Γ) is closed under proper superposition by members of Pol(Γ).

Let ω ∈ wPol(k)(Γ) and suppose ω′ = ω[g1, . . . , gk] is a proper superposition of ω,

where g1, g2, . . . , gk ∈ Pol(ℓ)(Γ). We will now show that ω′ ∈ wPol(ℓ)(Γ). Suppose ̺ is
a weighted relation of arity r satisfying ω ∈ wPol({̺}), i.e., ̺ and ω satisfy inequal-
ity (5.2) for all x1,x2, . . . ,xk such that each ̺(xi) is defined. Given any x′

1,x
′
2, . . . ,x

′
ℓ

for which each ̺(x′
i) is defined, set xi = gi(x

′
1,x

′
2, . . . ,x

′
ℓ) for i = 1, 2, . . . , k. Then,

if we set f ′ = f [g1, . . . , gk], we have f ′(x′
1,x

′
2, . . . ,x

′
ℓ) = f(x1,x2, . . . ,xk) for any

f ∈ Pol(k)(Γ). Hence, by Definition 5.2, we have
∑

f ′∈Pol(ℓ)(Γ)

ω′(f ′)̺(f ′(x′
1,x

′
2, . . . ,x

′
ℓ)) =

∑

f∈Pol(k)(Γ)

ω(f)̺(f(x1,x2, . . . ,xk)) ≤ 0 .

We will make use of the following technical lemma, which shows that any weighted
sum of arbitrary superpositions of a pair of weightings ω1 and ω2 can be obtained
by taking a weighted sum of superpositions of ω1 and ω2 with projection operations
and then taking a superposition of the result. This result implies that any weighting
which can be expressed as a weighted sum of arbitrary superpositions can also be
expressed as a superposition of a weighted sum of proper superpositions.

Lemma 6.4. Let C be a clone, and let ω1 and ω2 be weightings of C, of arity k
and ℓ respectively. For any g1, . . . , gk ∈ C(m) and any g′1, . . . , g

′
ℓ ∈ C(m),

(6.3) c1 ω1[g1, . . . , gk] + c2 ω2[g
′
1, . . . , g

′
ℓ] = ω[g1, . . . , gk, g

′
1, . . . , g

′
ℓ] ,

where ω = c1 ω1[e
(k+ℓ)
1 , . . . , e

(k+ℓ)
k ] + c2 ω2[e

(k+ℓ)
k+1 , . . . , e

(k+ℓ)
k+ℓ ]

Proof. For any f ∈ C(m), the result of applying the right-hand-side expression in
(6.3) to f is

∑

f ′∈C(k+ℓ)

f ′[g1,...,gk,g
′

1,...,g
′

ℓ
]=f













∑

h′∈C(k)

h′[e
(k+ℓ)
1 ,...,e

(k+ℓ)
k

]=f ′

c1 ω1(h
′) +

∑

h′∈C(ℓ)

h′[e
(k+ℓ)
k+1 ,...,e

(k+ℓ)
k+ℓ

]=f ′

c2 ω2(h
′)













.

Replacing each f ′ by the equivalent superposition of h′ with projections, we obtain
∑

h′∈C(k)

h′[g1,...,gk]=f

c1 ω1(h
′) +

∑

h′∈C(ℓ)

h′[g′

1,...,g
′

ℓ
]=f

c2 ω2(h
′) ,

which is the result of applying the left-hand side of (6.3) to f .



We now prove Theorem 5.9, which states that for any finite set D and any finite
W ⊂ WD, wPol(Imp(W )) = wClone(W ).

Proof. We first establish that for any W ⊂ WD we have the inclusion
wClone(W ) ⊆ wPol(Imp(W )). To see this, observe that every operation in C =
Clone(

⋃

ω∈W dom(ω)) is a polymorphism of Imp(W ), by Definition 3.9, so W ⊆
wPol(Imp(W )). Hence, we have that wClone(W ) ⊆ wClone(wPol(Imp(W ))), which
is equal to wPol(Imp(W )) by Proposition 6.3.

We will prove the reverse inclusion, wPol(Imp(W )) ⊆ wClone(W ), as follows.
Given any weighting ω0 ∈ WD, we will show that either there exists a weighted
relation ̺ ∈ Imp(W ) such that ω0 6∈ wPol({̺}) or else ω0 is equal to a nonnegative
weighted sum of superpositions of weightings in W , and hence ω0 ∈ wClone(W ).

We now give the details of this argument. Let k be the arity of ω0, and let
M = |D|k. We first observe that it is sufficient to consider weighted relations of arity
M in Imp(W ). To see this, suppose there exists a weighted relation ̺ ∈ Imp(W ) with
arity N > M such that ω0 6∈ wPol({̺}) and let x1, . . . ,xk ∈ DN be any set of tuples
for which inequality (5.2) fails to hold for ω0 and ̺. Let X be the k×N matrix whose
rows are the tuples x1, . . . ,xk. Since N > M it follows that some of the columns in
this matrix must be equal. Moreover, if the ith and jth columns of X are equal, then
so will be the ith and jth entries of the tuple f(x1, . . . ,xk) obtained by applying any

f ∈ O
(k)
D to these k tuples.

Now let ̺′ be the weighted relation of arity ≤ M that depends only on the first
of each of these repeated columns and takes the same values as ̺ takes on arguments
with the appropriate entries repeated. LetX′ be the reduced form ofX (with repeated
columns deleted). By this approach, we can construct ̺′ so that ̺′ ∈ Imp(W ), but
X′ gives a certificate to show that ω0 6∈ wPol({̺′}), i.e., the rows of X′ form a list of
tuples for which (5.2) fails to hold for ω0 and ̺′.

Moreover, if we have a weighted relation ̺ ∈ Imp(W ) with arity N < M such
that ω0 6∈ wPol({̺}), then ̺ can be extended to a weighted relation ̺′ of arity M
that does not depend on the M − N added inputs and, hence, is also contained in
Imp(W ) and is such that ω0 6∈ wPol({̺′}).

By the argument given above, there exists a weighted relation ̺ ∈ Imp(W ) such
that ω0 6∈ wPol({̺}) if and only if there exists a weighted relation ̺M of arity M in
Imp(W ) such that ω0 6∈ wPol({̺M}). Furthermore, by reordering the arguments of
̺M if necessary, we can assume that ̺M and ω0 violate (5.2) on the particular list
of tuples x1, . . . ,xk given by taking the rows of a matrix, XM , whose columns are
precisely the tuples in Dk, ordered lexicographically.

By Definition 5.5, such a weighted relation ̺M exists if and only if the following
system of inequalities can be satisfied for all ω ∈ W and all t1, . . . , tar(ω) ∈ DM such
that ̺M (ti) is defined for i = 1, . . . , ar(ω):

(6.4)
∑

g∈dom(ω)

ω(g) ̺M (g(t1, . . . , tar(ω))) ≤ 0;

and, for the tuples x1, . . . ,xk forming the rows of XM, ̺M (xi) is defined for i =
1, . . . , k and

(6.5)
∑

f∈dom(ω0)

ω0(f) ̺M (f(x1, . . . ,xk)) > 0 .

There is a one-to-one correspondence between operations g : Dk → D and tuples
tg ∈ DM , where the tuple tg contains the list of values returned by the operation g
applied to the columns of XM.



Set C = Clone(
⋃

ω∈W dom(ω)). We observe that to satisfy inequality (6.4), for
any ω ∈ W , if ̺M (ti) is defined for i = 1, . . . , ar(ω), then ̺M (g(t1, . . . , tar(ω))) must
be defined for all g ∈ dom(ω). To achieve this, it is sufficient to ensure that for all
g ∈ C(k), ̺M (tg) is defined. All other values of ̺M can be left undefined, as this just
reduces the number of inequalities in the system.

Using superposition (Definition 5.2), we can rewrite inequalities (6.4) to obtain
the following equivalent system: for all ω ∈ W and all g1, . . . , gar(ω) ∈ C(k),

(6.6)
∑

f∈dom(ω[g1,...,gar(ω)])

ω[g1, . . . , gar(ω)](f) ̺M (f(x1, . . . ,xk)) ≤ 0.

The values of ̺M (f(x1, . . . ,xk) may be scaled to obtain a corresponding set of
integer values yf for each f ∈ C(k). Moreover, if we add any constant value to
each yf , this will not affect inequalities (6.6) and (6.5), since the sum of the values
of any weighting is zero. Hence we may assume that

∑

f∈C(k) yf = 0 and then

apply Lemma 6.1 to the resulting system of inequalities with T = C(k) and S =
{ω[g1, . . . , gar(ω)] | ω ∈ W, g1, . . . , gar(ω) ∈ C(k)}. We conclude that either a solution
̺M exists, in which case ω0 6∈ wPol(Imp(W )), or else there exists a set of nonnegative
rational numbers {xω[g1,...,gar(ω)] | ω ∈ W, g1, . . . , gar(ω) ∈ C(k)} such that for every

f ∈ C(k),

(6.7)
∑

ω∈W

∑

〈g1,...,gar(ω)〉
gi∈C(k)

xω[g1,...,gar(ω)]ω[g1, . . . , gar(ω)](f) ≥ ω0(f) + c

for some constant value c.
By Definition 5.1, adding the left-hand side of these inequalities over all f gives

0, and adding the values of ω0(f) over all f also gives zero, so the value of c must
be zero. Moreover, each inequality in (6.7) must actually be an equality. In other
words, ω0 is equal to a nonnegative weighted sum of superpositions of weighting
in W .

Hence, by Lemma 6.4 and Remark 5.1, ω0 is equal to a proper superposition of
some element ω′

0 ∈ wClone(W ), so ω0 ∈ wClone(W ).
Remark 6.2. The proof of Theorem 5.9 demonstrates the decidability of the

following question: for any finite W ⊆ WD and any weighting ω defined on D, does
ω belong to wClone(W )?

7. Necessary conditions for tractability. In this section, we will start to
investigate the structure of weighted clones and hence establish some necessary con-
ditions for any valued constraint language to be tractable.

Note that by Definition 3.8, the smallest possible clone of operations over a fixed
set D is the set of all projection operations on D, which is denoted JD.

Proposition 7.1. For any nonempty finite set D, there are precisely two weighted
clones with support JD. These are WJD

and W0
JD

.
Proof. Let W be a weighted clone with support JD.
If the weights assigned by every weighting ω ∈ W are all zero, then W is the

zero-valued weighted clone W0
JD

described in Example 5.5.
Otherwise, there is some ω ∈ W (of arity k) such that ω assigns positive weight

to some k-ary projections and negative weights to some of the others. (The sum
of the weights is zero, by Definition 5.1.) If we form the superposition of ω with

the sequence of projections g1, g2, . . . , gk, where gi = e
(k)
a if ω(e

(k)
i ) is positive and



gi = e
(k)
b otherwise, then we obtain a new weighting ω[g1, g2, . . . , gk] of JD which

assigns some positive weight w to e
(k)
a and −w to e

(k)
b .

By adding appropriate multiples of such functions for each successive pair of
indices a and b, we can obtain any desired weighting of JD. Hence, in this case W
contains all possible weightings of JD, so W = WJD

.
Any weighting ω which is defined only for projection operations will be called a

trivial weighting,

Proposition 7.2. For any finite set D with at least two elements and any set
of trivial weightings W ⊆ WD, Imp(W ) is NP-hard.

Proof. If W contains only trivial weightings, then wClone(W ) has support JD,
so it is equal to WJD

or W0
JD

by Proposition 7.1.

Every weighting in W0
JD

is a weighted polymorphism of any possible weighted

relation by Definition 5.5. Hence Imp(W0
JD

) = ΦD.

The weighted relations that are improved by all weightings are precisely those
which take at most one value. Hence Imp(WJD

) = (RD)∼.
In both cases the resulting valued constraint language is NP-hard for any D with

two or more elements. Hence Imp(wClone(W )) is NP-hard, and hence Imp(W ) is
NP-hard.

Now consider weightings whose values are all 0.

Proposition 7.3. For any finite set D with at least two elements and any set
of zero-valued weightings W ⊆ WD, Imp(W ) is NP-hard.

Proof. By Definition 5.5, a zero-valued weighting will be a weighted polymorphism
of any weighted relation which is a total function (i.e., any weighted relation where
all assignments are feasible). Some valued constraint languages containing only total
functions are NP-hard [19]. For example, consider the valued constraint language
consisting of the following total function:

̺ 6=(x, y) =

{

0 if x 6= y,
1 otherwise.

We observed in Example 2.1 that on the domain {0, 1} the problem VCSP({̺ 6=})
corresponds to the Max-Cut problem which is known to be NP-hard. Over domains
of size k > 2 this problem corresponds to the problem Max-k-Cut, which is also
known to be NP-hard.

Using the Galois connection developed in the previous sections, these two results
tell us that any valued constraint language that is not NP-hard must have a weighted
polymorphism which is nontrivial and assigns at least some nonzero weights. A weight-
ing which assigns positive weight to at least one operation that is not a projection
will be called a positive weighting.

Corollary 7.4. For any finite set D with at least two elements, and any Γ ⊆
ΦD, either Γ is NP-hard or else wPol(Γ) is a weighted clone containing some positive
weightings.

Proof. By Proposition 6.3, in all cases wPol(Γ) is a weighted clone.

By Theorem 5.8, for any finite Γ′ ⊆ Γ, Imp(wPol(Γ′)) = wRelClone(Γ′). By
Proposition 4.5, Theorem 2.4, and Theorem 4.3, if Γ′ is NP-hard, then wRelClone(Γ′)
is also NP-hard, so Imp(wPol(Γ′)) must be NP-hard.

Conversely, if Γ′ is not NP-hard, then the same argument shows that
Imp(wPol(Γ′)) is not NP-hard, so by Propositions 7.2 and 7.3, wPol(Γ′) must contain
some weightings that are nontrivial and some weightings that are not zero-valued.



Choose a weighting ω ∈ wPol(Γ) that is not zero-valued and a weighting ω′ that is
nontrivial (but may be zero-valued). If ω assigns positive weight to any nonprojection,
then it is a positive weighting and we are done.

Otherwise, we have that ω assigns positive weight to some projections and nega-
tive weight to some other projections. Let f be an operation on which ω′ is defined
that is not a projection, and let k be the arity of f . If we form the superposition of ω

with the sequence of functions g1, g2, . . . , gar(ω), where gi = f if ω(e
(ar(ω))
i ) is positive,

and gi = e
(k)
1 otherwise, then we obtain a new weighting ω[g1, g2, . . . , gar(ω)] which

assigns positive weight to f (see Example 5.1).
Assuming that P 6= NP, this result tells us that tractable valued constraint lan-

guages are associated with certain kinds of weighted clones.
To obtain further information about the weighted clones associated with tractable

valued constraint languages, we now consider some special kinds of operations. For
any k ≥ 2, a k-ary operation f is called sharp if f is not a projection, but the operation
obtained by equating any two inputs in f is a projection [27]. In other words, f is
sharp if for all i, j ∈ {1, . . . , k} with i < j, there exists an index m ∈ {1, . . . , k − 1}
such that f satisfies the identity f(x1, x2, . . . , xj−1, xi, xj , xj+1, . . . , xk−1) = xm. For
instance, when k = 7, choosing i = 3 and j = 5, we get that f satisfies the identity
f(x1, x2, x3, x4, x3, x5, x6) = xm for some 1 ≤ m ≤ 6.

Theorem 7.5. Any weighted clone W containing positive weightings must con-
tain a weighting that assigns positive weight to either

1. a set of unary operations that are not projections or
2. a set of sharp operations.

Proof. Let ω be a positive weighting in W with the smallest possible arity, k. If
k = 1, then we are done. Otherwise, we consider the weightings

ω[e
(k−1)
1 , e

(k−1)
2 , . . . , e

(k−1)
j−1 , e

(k−1)
i , e

(k−1)
j , . . . , e

(k−1)
k−1 ]

for all i, j with 1 ≤ i < j ≤ k.
Each of these weightings has arity k−1 so, by the choice of ω, must not assign pos-

itive weight to any operation except (possibly) projections. Hence all nonprojection
operations assigned positive weight by ω are sharp.

We can obtain further details about these weighted clones by considering the
possible types of sharp operations.

First, we observe that all sharp operations must satisfy the identity f(x, x, . . . , x) =
x; such operations are called idempotent.

Ternary sharp operations may be classified according to their values on tuples of
the forms (x, x, y), (x, y, x), and (y, x, x), which must be equal to either x or y. There
are precisely eight possibilities, as listed in Table 7.1.

The first column in Table 7.1 corresponds to operations that satisfy the identities
f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all x, y ∈ D; such operations are called ma-
jority operations. The last column in the table corresponds to operations that satisfy

Table 7.1
Sharp ternary operations.

Input 1 2 3 4 5 6 7 8
(x, x, y) x x x x y y y y

(x, y, x) x x y y x x y y

(y, x, x) x y x y x y x y



the identities f(x, x, y) = f(x, y, x) = f(y, x, x) = y for all x, y ∈ D; such operations
are called minority operations. Columns 4, 6, and 7 in Table 7.1 correspond to opera-
tions that satisfy the identities f(y, y, x) = f(x, y, x) = f(y, x, x) = y for all x, y ∈ D
(up to permutations of inputs); such operations are called Pixley operations [41].

For any k ≥ 3, a k-ary operation f is called a semiprojection if it is not a pro-
jection, but there is an index i ∈ {1, . . . , k} such that f(x1, . . . , xk) = xi for all
x1, . . . , xk ∈ D such that x1, . . . , xk are not pairwise distinct. In other words, a
semiprojection is a particular form of sharp operation where the operation obtained
by equating any two inputs is always the same projection. Columns 2, 3, and 5 in
Table 7.1 correspond to semiprojections.

The following lemma shows that the only sharp operations of arity k ≥ 4 are
semiprojections.

Lemma 7.6 (Świerczkowski’s lemma [45]). Given an operation of arity ≥ 4, if
every operation arising from the identification of two variables is a projection, then
these projections coincide.

Hence we may refine Theorem 7.5 to obtain the following corollary.
Corollary 7.7. Any weighted clone W containing positive weightings must

contain a weighting that assigns positive weight to either
1. a set of unary operations that are not projections; or
2. a set of binary idempotent operations that are not projections; or
3. a set of ternary operations that are majority operations, minority operations,

Pixley operations, or semiprojections; or
4. a set of k-ary semiprojections (for some k > 3).

Corollary 7.7 can be used to guide the search for tractable valued constraint
languages, as we illustrate in the next section.

8. Classification of Boolean valued constraint languages. In this section,
we consider the special case of valued constraint languages over a 2-valued domain,
such as the Boolean domain D = {0, 1}.

There are only four unary operations on the Boolean domain, and one of these

is the projection operation e
(1)
1 , which is the identity operation. The remaining three

unary operations are the operations given by f(x) = 0, f(x) = 1, and f(x) = 1 − x.
These will be referred to as constant 0, constant 1, and inversion.

There are only two binary idempotent operations on the Boolean domain that
are not projections: the operations min and max. The only sharp ternary operations
are the unique majority operation (which we will call Mjrty), the unique minority
operation (which we will call Mnrty), and three Pixley operations. There are no
semiprojections.

Hence we can refine Corollary 7.7 even further in the special case of the Boolean
domain, to limit the possibilities for weighted clones associated with tractable valued
constraint languages to just nine cases.

Theorem 8.1. Any weighted clone W on the Boolean domain that contains
positive weightings must contain a weighting ω that assigns positive weight to either

1. exactly one of the unary operations constant 0, constant 1, or inversion;
2. exactly one of the binary operations min and max or both of them equally; or
3. exactly one of the ternary operations Mjrty and Mnrty or both of them with

ω(Mjrty) = 2ω(Mnrty).
Proof. Let C be the support of W , and let ω be a positive weighting in W with

minimal possible arity. Since there are no semiprojections on the Boolean domain,
Corollary 7.7 tells us that ω is either unary, binary, or ternary.



Consider first the case when ω is unary. Since there are just three unary operations
on the Boolean domain that are not projections, scale ω so it assigns weight −1 to

the projection e
(1)
1 , weight a to the constant 0 operation f0, weight b to the constant

1 operation f1, and weight c to the inversion operation f¬. If c = 1, then ω assigns
positive weight only to f¬ and we are done. Otherwise, if f¬ ∈ C, and hence c is
defined, we consider the weighting ω′ = 1

c+1ω + c
c+1ω[f¬]. It is straightforward to

check that ω′ assigns weight c− 1 to e
(1)
1 , weight a to f0, weight b to f1, and weight

0 to f¬. By Lemma 6.4, ω′ belongs to W .
If a = 1, then ω′ assigns positive weight only to f0 and we are done. Otherwise,

if f0 ∈ C, and hence a is defined, we consider the weighting ω′′ = ω′ + a
b
ω′[f0]. It is

straightforward to check that ω′′ assigns positive weight only to f1. By Lemma 6.4,
ω′′ belongs to W .

Next consider the case when ω is binary. By Corollary 7.7 and our observations
above about the possible binary idempotent operations on the Boolean domain, we
know that ω assigns positive weight only to one or both of the operations min and
max. If either of these weights is undefined (because the corresponding function does
not belong to C) or zero, then we are done, so assume that ω assigns positive weight

to both min and max. By taking the weighting ω+ω[e
(2)
2 , e

(2)
1 ], with a suitable scaling,

we can obtain a weighting ωa ∈ W that assigns weight −1 to both binary projections,
weight a to min, and weight 2− a to max for some 0 < a < 2.

If a < 1, then the weighting ωa+
a

1−a
ωa[min,max] assigns positive weight only to

max. If a > 1, then the weighting ωa +
2−a
a−1ωa[min,max] assigns positive weight only

to min. If a = 1, then ωa assigns equal weight to min and max.
Finally, we consider the case when ω is ternary. By Corollary 7.7 and our ob-

servations above about the possible ternary sharp operations on the Boolean do-
main, we know that ω assigns positive weight to some subset of Mjrty, Mnrty, and
the three Boolean Pixley operations f1, f2, and f3 (corresponding to the fourth,

sixth, and seventh columns of Table 7.1). We note that f1[e
(3)
2 , e

(3)
3 , e

(3)
1 ] = f3,

f2[e
(3)
2 , e

(3)
3 , e

(3)
1 ] = f1, and f3[e

(3)
2 , e

(3)
3 , e

(3)
1 ] = f2. Hence, if ω assigns positive weight

to any Pixley operation, then we have that W also contains the weighting ω′ =

ω + ω[e
(3)
2 , e

(3)
3 , e

(3)
1 ] + ω[e

(3)
3 , e

(3)
1 , e

(3)
2 ], which assigns equal negative weight to each

projection and equal positive weight to each Pixley operation. By a suitable scaling
we shall assume that ω′ assigns weight −1 to each projection.

Suppose first that ω′ assigns positive weight to at least one of Mjrty and
Mnrty and assigns weight 0 < w < 1 to the three Pixley operations. We note that

fi[f1, f2, f3] = e
(3)
i for each i = 1, 2, 3. Moreover, Mjrty[f1, f2, f3] = Mnrty and

Mnrty[f1, f2, f3] = Mjrty. Thus, the weighting ω′′ = ω′ + wω′[f1, f2, f3] is nonzero
and assigns weight 0 to each Pixley operation and equal negative weight to all pro-
jections. By Lemma 6.4, ω′′ ∈ W .

Assume that ω′′ assigns positive weight to both Mnrty and Mjrty. By taking a
suitable scaling, we can obtain a weighting ωa ∈ W that assigns weight −1 to all
three projections, weight a to Mnrty, and weight 3− a to Mjrty for some 0 < a < 3.

If a < 1, then the weighting ωa + a
1−a

ωa[Mjrty,Mjrty,Mnrty] assigns positive

weight only to Mjrty. If a > 1, then the weighting ωa +
3−a
a−1ωa[Mjrty,Mjrty,Mnrty]

assigns positive weight only to Mnrty. If a = 1, then ωa assigns positive weight to
both Mjrty and Mnrty in the ratio 2:1.

The only remaining case is when ω′ assigns positive weight 1 just to the three Pix-

ley operations. In this case we note that f1[e
(3)
1 , e

(3)
2 , f1] = Mjrty, f2[e

(3)
1 , e

(3)
2 , f1] = e1,



and f3[e
(3)
1 , e

(3)
2 , f1] = e2. Thus the function µ1 = ω′[e1, e2, f1] assigns weight −1 to

f1, +1 to Mjrty, and 0 otherwise. For i = 2, 3, we can obtain in a similar way
a function µi, which assigns weight −1 to fi and +1 to Mjrty. Then the weighting
ω′′ = ω′+µ1+µ2+µ3 will assign positive weight only to Mjrty. Again, by Lemma 6.4,
ω′′ ∈ W .

Each of the nine types of weightings mentioned in Theorem 8.1 can be supported
by a different clone, so these nine types of weightings can each generate different
weighted clones.

Using the Galois connection developed above, this result tells us that any tractable
valued constraint language over the Boolean domain must have as a weighted poly-
morphism one of nine specific kinds of weightings. Eight of these can be shown to be
sufficient to ensure tractability using the results of [19]. The only remaining case is
the unary weighting that assigns positive weight to the inversion operation only. Our
next result shows that having a weighted polymorphism of this kind is not a sufficient
condition for tractability on its own, but if a language has any additional positive
weightings as weighted polymorphisms which are not implied by this one, then it will
be tractable.

Corollary 8.2. Any weighted clone W on the Boolean domain that contains
positive weightings satisfies exactly one of the following:

1. W = wClone({ω¬}∪W0
C) for some unary weighting ω¬ that assigns positive

weight to the inversion operation only, where C is the support of W ; in this
case Imp(W ) is NP-hard.

2. W contains one of the eight other kinds of weighting listed in Theorem 8.1;
in each of these eight cases Imp(W ) is tractable.

Proof. By Theorem 8.1, W must contain either a weighting ω¬ that assigns
positive weight to the inversion operation only or at least one of the eight other kinds
of weighting listed in Theorem 8.1 (or both).

If W = wClone({ω¬} ∪W0
C) for some unary weighting ω¬ that assigns positive

weight to the inversion operation only and C is the support of W , then we are in
case 1. In this case, the weighted relation ̺ 6= defined in Example 2.1 is an element of
Imp(W ), so Imp(W ) is NP-hard (see the proof of Proposition 7.3).

If W contains a suitable weighting ω¬, but W 6= wClone({ω¬} ∪W0
C), then W

must also contain a nonzero weighting ω of minimal possible arity such that ω 6∈
wClone({ω¬} ∪W0

C).

If ω is unary, then we can use the same argument as in the proof of Theorem 8.1
to show that W must contain a unary operation that assigns positive weight to the
constant 1 operation only or the constant 0 operation only.

If ω is not unary, then ω[e
(1)
1 , . . . , e

(1)
1 ] must lie in wClone(ω¬), so ω assigns positive

weights only to operations f such that f(x, . . . , x) = x or f(x, . . . , x) = 1 − x. If
ω(f) = a > 0 for some f such that f(x, . . . , x) = 1 − x, then we consider the
weighting ω′ = ω + aω¬[f ] and note that ω′(f) = 0. By repeating this process we
obtain a weighting ω′′ which assigns positive weight only to operations f such that
f(x, . . . , x) = x. Since ω has minimal arity, these must be sharp operations, so we
can proceed as in the proof of Theorem 8.1 to show that case 2 holds.

Each of the eight types of weightings in case 2 is sufficient to ensure the tractability
of Imp(W ) by the results of [19].

The corresponding classification for valued constraint languages over the Boolean
domain was obtained in [19] using a more intricate argument involvingthe explicit



construction of gadgets to express particular weighted relations. Here we have
considered only the properties of weighted clones.

Example 8.1. The weighted relation ̺= defined in Example 2.4 has as a weighted
polymorphism the weighting ωsub defined in Example 5.6 which assigns equal positive
weight to max and min.

Hence the valued constraint language Γ = {̺=} is tractable and remains tractable
if we add to Γ any other weighted relations that have this weighting as a weighted
polymorphism. For example, we may add unary weighted relations with a single
allowed value, which allow us to fix individual variables to a desired value, and still
retain tractability.

Such an extended valued constraint language allows us to express, for example,
the (s, t)-Min-Cut problem [40].

Example 8.2. The weighted relation ̺ 6= defined in Example 2.1 has a unary
weighted polymorphism that assigns positive weight only to the inversion function. It
has none of the other eight types of weightings listed in Theorem 8.1.

It follows that ̺ 6= 6∈ Express({̺=}) (cf. Example 2.4).

9. Conclusions. We have presented an algebraic theory of valued constraint
languages that generalizes and extends the algebraic theory developed over the past
few years to study the complexity of the classical constraint satisfaction problem.
We have shown that the complexity of any valued constraint language over a finite
domain with rational-valued costs is determined by certain algebraic properties which
we have called weighted polymorphisms.

When the weights are all zero, the optimization problem we are considering col-
lapses to the classical CSP. In previous work [36, 35] it has been shown that every
tractable constraint language for the CSP can be characterized by an associated clone
of operations. That work initiated the use of algebraic properties in the search for
tractable constraint languages, an area that has seen considerable activity in recent
years; see, for instance, [17, 16, 15, 14, 37, 28, 4, 2, 3, 5].

The results in this paper show that a similar result holds for the valued constraint
satisfaction problem: every tractable valued constraint language is characterized by
an associated weighted clone. We therefore hope that our results here will provide a
similar impetus for the investigation of a much broader class of discrete optimization
problems. For example, a recent result on the power of linear programming for val-
ued constraint languages [47] provides a characterization of languages solvable by a
standard LP relaxation in terms of algebraic properties similar to weighted polymor-
phisms. Moreover, another recent result that classifies the complexity of all valued
constraint languages consisting of total weighted relations [48] also relies heavily on
algebraic properties of this kind.

Many questions about the complexity of discrete optimization problems over finite
domains can now be translated into questions about the structure of weighted clones.
This provides a new approach to tackling such questions by investigating the algebraic
properties of weighted clones.

This work raises many open questions. In particular, we would like to know
whether our key results, Theorems 5.8 and 5.9, can be extended to infinite valued
constraint languages and infinite sets of weightings or to infinite domains of values [8,
9]. In the case of the CSP, considerable progress resulted from showing that clones
of idempotent operations play a special role [15]. Moreover, it has been shown that
rather than specific clones of operations one can consider large families of abstract
algebras, known as varieties [15]. It remains to be seen whether such notions have
interesting counterparts in the theory of weighted clones.
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[5] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard, Vari-
eties with few subalgebras of powers, Trans. Amer. Math. Soc., 362 (2010), pp. 1445–1473.

[6] S. Bistarelli, U. Montanari, and F. Rossi, Semiring-based constraint satisfaction and op-
timisation, J. ACM, 44 (1997), pp. 201–236.

[7] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier,
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison, Con-
straints, 4 (1999), pp. 199–240.

[8] M. Bodirsky, Constraint satisfaction problems with infinite templates, in Complexity of Con-
straints, Lecture Notes in Comput. Sci. 5250, Springer, New York, 2008, pp. 196–228.
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[48] J. Thapper and S. Živný, The complexity of finite-valued CSPs, in Proceedings of the 45th
ACM Symposium on the Theory of Computing (STOC’13), ACM, 2013, pp. 695–704.

[49] M. J. Wainwright and M. I. Jordan, Graphical models, exponential families, and variational
inference, Found. Trends Machine Learning, 1 (2008), pp. 1–305.

[50] T. Werner, A Linear Programming Approach to Max-Sum Problem: A Review, IEEE Trans.
Pattern Analysis and Machine Intelligence, 29 (2007), pp. 1165–1179.
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