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Abstract—This paper proposes and validates a new method-
ology to facilitate the analysis of modern data-intensive ap-
plications. A major part of handling the processing needs of
these applications consists in using the appropriate Model-of-
Computation (MoC) which guarantees accurate performance
estimations. Our methodology introduces one major contribution
that facilitates the analysis step in the co-design flow. It is
based on an intermediate level of abstraction implementing the
Parameterized and Interfaced Synchronous Dataflow (ΠSDF)
semantics. In the proposed methodology, a system designer
models the embedded system using the standardised Modeling
and Analysis of Real-Time and Embedded Systems (MARTE)
profile. High-level models are then refined towards intermediate
level models by following the Model-Driven Engineering (MDE)
transformation paradigm. The model-to-model transformation
permitting to reach the ΠSDF level starting from a MARTE-
compliant model is detailed and validated in this paper. It is
shown to facilitate system analysis.
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I. INTRODUCTION

Data-intensive processing is an extensive domain of ap-
plications which denotes the manipulation of a considerable
amount of data and the execution of numerous complex
computations [1]. A data-intensive application is an application
that explores, inquires, examines, data and in general deals
with very large scale data streams. A high complexity of
data structures, important application parallelism, large data
storage and strong computational requirements are common
characteristics of data-intensive applications.

Current data intensive processing applications are various
including both multimedia and high complexity numerical and
scientific applications. Typical high performance multimedia
applications are image processing, video processing and detec-
tion systems (radar, sonar). They are designed to manipulate all
type of signals (signals of interest can include sound, images,
time-varying measurement values and sensor data) and they
belong to the multidimensional signal processing area.

At the present time, embedded systems are commonly
dedicated to data intensive processing applications where huge
amounts of data are handled in a regular way by means of
repetitive computations. These applications deal with inten-
sive or massive parallelism. Indeed, parallel applications can
implement two levels of parallelism: data parallelism and task
parallelism. High-level analysis of data-intensive applications

becomes a complex task necessitating a refinement step toward
low levels of abstraction specifying both computation and
communication costs in the system. Accurate performance
numbers can be reached at the cost of very detailed modeling.
On the other hand, a moderate effort for modeling leads to a
high-level evaluation task, but the accuracy is lost.

In this paper, we propose a new approach that takes advan-
tage of Model-Driven Engineering (MDE) [2] foundations and
Modeling and Analysis of Real-Time and Embedded Systems
(MARTE) [3] profile. We define a transformation to a new
level of abstraction that alleviates the exploration and analysis
tasks of real-time data-intensive processing applications. This
level is based on a novel extension of the famous Synchronous
Data Flow (SDF) [4] Model-of-Computation (MoC), the Pa-
rameterized and Interfaced Synchronous Dataflow (ΠSDF) [5]
model. ΠSDF facilitates the specification, and especially the
analysis of data-intensive applications [5] as it gathers a lot
of features including hierarchy, configurability and dynamism.
This MoC introduces analysis techniques facilitating the design
space exploration task. The proposed methodology necessitates
the high-level specification of the parts needed to build the
embedded system. Once the user defines the application algo-
rithm on the one hand, and the HW architecture on the other
hand using the MARTE profile, a ΠSDF-compliant model of
the application is generated. Then, a high-level analysis of the
data-parallel application is performed using the PREESM [6]
rapid prototyping tool.

Our primary goal is to analyze the modeled application
taking as intermediate representation a ΠSDF graph. Two
Model-to-model transformations are then developed to convert
Unified Modeling Language-based (UML) [7] models into a
ΠSDF graph. The conversion of a UML modeled parallel
application to ΠSDF is made possible by intermediate meta-
models that enrich the specified system for eventual analysis.
This paper details the implementation of these transformations,
denoting some transformation rules and describing involved
meta-models.

This paper is structured into five sections. The MARTE
and the ΠSDF MoCs which present the main concepts of our
flow, and some related works dedicated to modern application
modeling and analysis are highlighted in Section II. Section
III details our proposed methodology for data-intensive ap-
plications analysis. The MARTE to ΠSDF transformation is
detailed in Section IV. Finally, a case study is described in
Section V as a validation of our approach.



II. CONTEXT

This section introduces the basic concepts on which
our flow relies. We first present the MARTE profile, which
allows the co-specification of the embedded system. Then,
we introduce the ΠSDF MoC that offers mechanisms used
for application analysis. Finally, we briefly discuss some
approaches for data-intensive application analysis.

A. MARTE profile

The standardized MARTE profile is structured around two
central concerns: modeling the characteristics of embedded
systems and annotating the models to support analysis of
the system features. These concerns can be achieved thanks
to the presence of numerous stereotypes that can be used
to annotate the UML models for further analysis. Defining
accurate semantics for time and Hw/Sw resource modeling and
supporting real-time and embedded systems co-design flows
are the major goals of the MARTE profile. These two goals
can be achieved using the MDE foundations when defining
embedded systems design flows. In one hand, MDE facilitates
automatic transformations from one abstraction level to a lower
one, for simulation or implementation purposes. In the other
hand, it promotes the integration of different tools thanks
to the transformation techniques. As a result, analysis tools,
verification tools and modeling tools can be coupled in one
co-design flow.

B. ΠSDF graph

Recently, several MoCs have been suggested offering high-
level design. Dataflow Process Networks (DPN) [8] offer
capabilities for describing data-intensive applications for con-
current implementation on parallel hardware. Applications are
composed of a set of tasks that need to be executed while
consuming and producing data. Being a particular case of Kahn
Process Networks (KPN) [8], DPN use a directed graph to
describe the application’s algorithm. Numerous extensions of
DPN have emerged to model different range of applications.
SDF is the most known DPN MoC in which nodes can be
scheduled statically onto single or parallel processors. Other
dataflow models were introduced such as the Cyclo-Static
Dataflow (CSDF) [9] and the multidimensional SDF [10].
Each MoC adds capabilities to the SDF model to increase
its expressivity. Since parameterization and configuration have
emerged as important characteristics of modern applications,
an extended version of SDF has been defined to support this
evolution: the Parameterized SDF (PSDF) model [11]. Actors
in PSDF are dynamically reconfigurable and hierarchical. Each
actor relies on a set of parameters to control its functionality
and its data flow behavior.

Tasks of signal processing applications are broken into
sub-tasks in recent programming practices favoring hierarchy
modeling of complex computations. A hierarchical extension
of the SDF model, the Interface-Based SDF (IBSDF) MoC
[12], promotes sub-graph composition by adding interface
elements aiming to separate levels of hierarchy.

The ΠSDF MoC extends the PSDF and IBSDF models
to accommodate a broader range of applications by enforcing
parameterization, hierarchy and configuration [5]. A ΠSDF
graph G=(A,F,I,Π,∆) is composed of:

• A: A set of actors

• F: A set of First In, First Out data queues (FIFOs)

• I: A set of hierarchical interfaces

• Π: A set of parameters

• ∆: A set of parameters dependencies

The ΠSDF MoC supports four important characteristics which
are:

• Parameterization: parameterization relies on param-
eters which are vertices of the graph G. A parameter
value is associated to each parameter to configure
elements of the graph. The allocation of parameter
values to all parameters in Π represents a configuration
of G.

• Hierarchy: enforcing the compositionality by taking
interface-based hierarchy mechanism as a foundation
for component tasks modeling can be a good practice
when facing complex computations.

• Reconfiguration: reconfiguration in the ΠSDF se-
mantics means changing a parameter value at run time
or at compile time. Reducing the frequency of pa-
rameter value modifications is facilitated through two
types of parameters in the ΠSDF model: configurable
parameters and locally static parameters.

• Analysis: ΠSDF introduces semantics to express
application’s dynamism. Such dynamism is driven by
parameters which can be of two types: dynamic or
static. These two degrees of dynamism necessitate a
two-step analysis of the graph (compile time analysis
and runtime analysis) in order to check application
properties such as memory boundedness, consistency
and deadlock freeness, which are critical information
when exploring the design-space of complex real-time
systems.

SDF MoC can serve two different purposes: specification and
analysis. There has been many researches on the problem of
application analysis based on the SDF MoC. Most of these
efforts focus on throughput analysis [13], [14] and resource
requirements (memory usage) [15], [16] of DSP and multi-
media applications. A number of frameworks have attempted
to propose graphical formalisms to model and analyze data-
intensive signal processing applications specified using the
SDF MoC. Some examples are Ptolemy II [17], PREESM
[18] and SDF3 [19]. These frameworks are open-source and
support experimentation with actor-oriented design. Ptolemy II
provides simulation of signal processing applications specified
using many MoCs. SDF3 supports SDF, CSDF and scenario-
aware dataflow (SADF) [20] models. It allows transformation
and analysis of SDF graphs using different algorithms and
targeting MPSoC architectures, the feature that differentiates
SDF3 from Ptolemy II. PREESM provides a hierarchical
actor-based description of the application based on ΠSDF
and IBSDF MoCs. It includes several algorithms offering
automatic mapping and scheduling. In addition, the application
and architecture code files can be generated automatically for
heterogeneous multicore embedded systems.



C. Design space exploration approaches

Several UML-based design frameworks have been sug-
gested targeting the design space exploration problem. The
MODES framework presented in [21] uses the UML class,
composite structure and sequence diagrams enriched with the
MARTE stereotypes for the functional specification of the
embedded application. It then automatically generates a control
and data flow internal representation conforming to a number
of meta-models. Additional meta-models and transformations
are defined to perform the DSE phase. MODES is based on
a flow of transformations between different tools. In fact,
while the H-SPEX and the SPEU tools are used for the DSE
and estimation tasks, the UPPAAL model checking tool is
used to validate the functional and temporal properties of the
specification, taking as input a network of timed automata. In
the Koski flow [22], two steps are needed to ensure architecture
exploration. First, a static analysis of the application model is
done. Then iterative simulations take place in order to explore
the architecture. This flow relies mainly on UML to model
application, architecture and the association between them.

COMPLEX [23] and MADES [24] are EU FP7 projects
aiming to use high-level models for the design of real-time and
embedded systems. The COMPLEX framework mixes system-
level power optimization and rapid prototyping techniques in a
platform-based design flow. Subsets of the MARTE profile are
used to specify the system and UML use-cases are modeled
to generate systems stimuli. While executable specifications
are generated automatically from UML models allowing sep-
arate hardware and software estimation, the mapping is done
manually and provided as a design entry. Several system-level
estimation tools are combined together to facilitate power and
execution time evaluation. The MADES project proposes a
methodology that combines MARTE and SysML in a design
flow targeting embedded avionics systems. This flow focuses
on modeling, verification and hardware and software genera-
tion steps. However, the design space exploration step is not
supported in this framework. In fact, the main focus of this
framework is the specification and how the user can combine
different profiles to give a complete view of the system.

III. OVERVIEW OF THE PROPOSED DSE FLOW

Our proposed multi-level design space exploration
methodology will be outlined in this section. The implemen-
tation of model transformations and the integration of a rapid
prototyping tool will be also highlighted.

A. A multi-level DSE flow

Our approach for the embedded systems design automation,
highlighted in Figure 1, can be divided into three levels: the
specification level, the generic model level and the ΠSDF-
compliant model level.

1) The specification level: The first level, specification
level, presents the entry point of our flow. Models of the
architecture, the data-parallel application and the Hw/Sw IP
deployment are described using diagrams of the UML lan-
guage and notations of the MARTE profile. These models
are specified by a user with UML modeling tools such as
Papyrus [25]. The system properties, including application
and architecture properties (execution time, frequency, etc.),

Fig. 1. The proposed multi-level flow

are specified in the same UML model using the appropriate
stereotypes. Five MARTE packages are used to annotate a
given UML model:

• Hardware Resource Modeling (HRM): used to specify
the detailed platform architecture elements

• Software Resource Modeling (SRM): allows to anno-
tate tasks of the application and specify the execution
time value of each modeled task

• Repetitive Structure Modeling (RSM): used to express
the repetitive concepts of the system including the
data-parallel computations and the massively parallel
processing elements

• Generic Component Model (GCM): used to specify
the nature of flow-oriented communication paradigm
between SoC components. It is a general model pack-
age that includes interaction ports, flow ports, and
message ports

• Non-Functional Properties (NFP): supports the mod-
eling of the systems performance requirements and
constraints like time, energy, area,etc.

Modeling a given embedded system is carried out based
on three UML diagrams: the class diagram, the composite
structure diagram and the deployment diagram. The class
diagram illustrates the structure of the embedded system by
demonstrating the systems components including hardware
and software components (presented using classes) and their
characteristics (attributes and operations of the classes). The
internal structure of each hierarchical component is specified
using the composite structure diagram. These two diagrams
cover effectively the modeling of the static structure of an
embedded system in a co-design approach. Elementary com-
ponents of the hierarchical component interact with each other
using ports and connectors. In order to specify the corre-
sponding implementation of a given elementary component,
an UML mechanism is well defined. This mechanism, named
Deployment, is a powerful tool that allocates IPs on hardware
and software components. Our flow adopts a Platform-Based
Design approach that benefits from an IP library containing



IPs of the architecture and IPs of the application. For this
reason, the structure of the data-flow model of the application
is described using the composite structure diagram and the
behavior of the elementary tasks is embedded in the software
IPs. Similarly, the structure of the architecture is defined in the
composite structure diagram of the architecture and the source
code of hardware components is provided in the IP library. This
adopted modeling methodology simplifies the design entries
as much as possible without losing precision in the analysis
phase or in the code generation process. In fact, models of
the architecture and application define the main components
of the system in a high-level graphical manner giving a better
understanding of the system even for a non-expert user. In
addition, low-level behavioral information of the architecture
and the application can be exploited by the analysis tool to
generate precise estimation results. These IPs are also used
to generate the entire system from UML models. While the
structure of the application and the architecture can be directly
concluded from class and composite structure diagrams, the
behavior inside each code file describing each component can
be extracted from the provided IP library.

2) The generic model level: When developing our ap-
proach, two possibilities were proposed. The first was to
generate a ΠSDF model directly from the UML models of the
application. This alternative is certainly a time-consuming task.
It necessitates intensive programming. In fact, UML diagrams
are rich with UML concepts and MARTE notations. This fact
makes the UML model browsing difficult especially when
the application contains intensive computations. A second
alternative was then proposed: defining an intermediate level
that captures necessary parts of the system and is generic
enough to facilitate exploration and code generation. This level
can be identified as mandatory transit in each transformation
targeting either analysis or code generation.

3) The ΠSDF-compliant model level: While high-level
models of the system in the first level are easy to specify, to
change and to understand, the ΠSDF graph of the application,
in the third level, is rich with exploration features. This graph
is used for application analysis because besides its exploration
features it:

• Adequately fits with the targeted signal-processing
domain

• Supports the specification and analysis of massively-
parallel data-flows because it is hierarchic

• Facilitates the exploration of parametric architectures
given that data-flows of the application can depend on
static or dynamic parameters

B. Model transformations

In our framework, we use an approach in which we start
from a structural application and architecture description which
is then converted into a ΠSDF for analysis and performance
estimation. This conversion is automatic and guided by two
model-to-model transformations as shown in figure 2. The im-
plementation of the transformations is driven by the definition
of a set of transformation rules. Each rule specifies how one or
more concepts in the source model can be converted into other
concepts in the target model. In our approach, transformation

Fig. 2. Model-to-model transformations

rules are defined using the QVTO language [26], an imper-
ative language for model transformation designed for writing
unidirectional transformations.

1) The UML to MARTE transformation: The top level
of our design flow, the specification level gives a clear and
complete view of the system. However, the collection of
common notions present in the MARTE profile is not precise
enough to directly allow the analysis of the system model. This
fact justifies the integration of another level that facilitates the
analysis process. Since the MARTE meta-model captures the
structure of the embedded system and keeps characteristics
of the hardware and software components (specified using
stereotypes), it has been introduced in our framework to be a
base in the intermediate level between the system specification
and the ΠSDF model generation. This level, named the generic
model level, is totally based on the open-source MARTE meta-
model provided with the source code of Papyrus. As part of
our efforts, a model-to-model transformation has been created
to generate generic models of the application and architecture
that are conforming to the MARTE meta-model.

2) The MARTE to ΠSDF transformation: Starting from a
generic model of the application, a second model-to-model
transformation has been defined to generate a ΠSDF-compliant
model. This transformation will be detailed in the next section.
The creation of the ΠSDF-compliant model level is based
on an Ecore version of the PiMM meta-model. ΠSDF meta-
model allows a description of the data-parallel application at
the ΠSDF-compliant model level, the third abstraction level in
our flow. The ΠSDF-compliant model and the generic model
of the architecture, will be provided as design entries to the
PREESM tool for analysis and performance estimation. The
results obtained from the analyses enable to generate files of
the adequate models of the application and the architecture.

C. Mapping, scheduling and performance estimation using
PREESM

PREESM is an open-source framework for the rapid proto-
typing and code generation of multi-core DSP-based systems.
The inputs to this rapid prototyping framework are:

• Models of the application: specified using the IBSDF
MoC or the ΠSDF MoC.

• Models of the architecture: specified using the System-
Level Architecture Model (S-LAM) [27] of PREESM



or the MARTE profile

• Scenario: references the application and the archi-
tecture, encapsulates several constraints including
scheduling and simulation constraints and contains the
execution time values of each actor of the ΠSDF
graph. These values can be specified in the UML
models and directly transmitted to the scenario or
imported from Excel sheets.

• Workflow: used to accelerate the rapid prototyping
process by specifying transformations necessary to
analyze, simulate or generate executable code.

Several mapping/scheduling can be carried out in PREESM.
As result of the schedulability analysis process, performance
values can be examined including the worst case execution
time and the percentage of necessary load and memory. These
provided results enable design space exploration.

IV. MARTE TO ΠSDF MODEL TRANSFORMATION

It is the objective of this paper to focus on the MARTE to
ΠSDF model transformation. Source and target meta-models
of the transformation will be described first. Then, some
transformation rules will be mentioned.

A. The source meta-model: MARTE

The first transformation, UML to MARTE transformation,
generates a model that conforms to the MARTE meta-model.
The MARTE meta-model contains numerous meta-classes
encapsulated in different packages. The generated MARTE
model contains basically elements from the GCM and RSM
packages. Meta-classes from the GCM and the RSM packages
are used as input for the MARTE to ΠSDF transformation. The
design entries of our flow are composite structure diagrams
of the application and architecture. The first transformation
that takes UML structured diagrams of a given model and
generates a GCM-compliant model can preserve the hierar-
chical structure of a model without losing any detail and
without being tied to specific execution semantics. In fact,
the hierarchical structure of a model is preserved thanks to
the GCM model from the MARTE meta-model because this
model is an abstraction of the UML structured classes.

For this reason, a GCM-based model of an embedded sys-
tem can be regarded as a generic model that contains enough
details for further transformations. A GCM-based model is
composed of a set of Structured Component. A Structured
Component encapsulates Assembly Parts, Interaction Ports and
Connectors. Interaction Ports are either Flow Ports or Message
Ports. Since we focus on intensive data-flow computations,
only Flow Ports will be used in the specification level. Con-
nectors have connector Ends that can be Interaction Ports or
Assembly Parts. Connectors between two Assembly Parts are
Assembly Connectors. The stereotypes from the RSM package
are present in the MARTE meta-model as meta-classes. While
these stereotypes model the multiplicities of repeated tasks
and ports in the UML models, they specify the shape of
an AssemblyPart or a FlowPort in the MARTE meta-model.
Stereotypes specifying complex interconnection topologies, es-
pecially the tiler and the interRepetition stereotypes, figure out
in the MARTE meta-model to specify the kind of Connectors

TABLE I. SOME UML TO MARTE TRANSFORMATION RULES

Source meta-model Target meta-model
UML meta-model MARTE meta-model
UML::Class GCM::StructuredComponent
UML::Property GCM::AssemblyPart
UML::port GCM::FlowPort
UML::Connector (kind=assembly) GCM::AssemblyConnector
UML::Class Foundations::Classifier

Fig. 3. ΠSDF meta-model

and AssemblyConnectors meta-classes. Being the output of
the first transformation, the generic model of the application
is obtained using transformation rules. These transformations
map elements from the UML meta-model into elements from
the MARTE meta-model. Table I summarizes some of these
rules.

B. The target meta-model: PiMM

The PiMM meta-model reflects a subset of the semantics of
the ΠSDF MoC. Figure 3 depicts a portion of the ΠSDF meta-
model. The highest concept present in the ΠSDF meta-model
is the PiGraph meta-class representing the graph of the applica-
tion or a sub-graph of a given hierarchical actor. A model that
complies with the ΠSDF meta-model consists of one or more
PiGraphs. A PiGraph can contain several vertices, parameters,
dependencies and fifos. An AbstractActor, presenting one
vertex, can be either an actor (hierarchical or elementary) or
an interface, expressed via Actor and InterfaceActor meta-
classes. An AbstractActor can enclose an arbitrary number
of DataInputPort by means of the compositional dataInputPort
relation. Moreover, the same AbstractActor can hold numerous
DataOutputPort by means of the compositional dataOutputPort
relation. The Expression meta-class defines the rates of data
input ports and data output ports by means of the expression
relation; while the Port meta-class defines the name and the
kind (in/out) of the port itself.

C. Transformation rules

The MARTE to ΠSDF QVTO transformation includes
numerous rules among which we will detail six rules that are
representative of the global transformation.

1) StructuredComponent to PiGraph: The generic model
of the application, resulting from the UML to MARTE trans-
formation, contains one or more StructuredComponents. A



StructuredComponent presents either a hierarchical sub-task
containing a net of other sub-tasks or the main application
including a set of hierarchical tasks. A generic model of a given
application can be composed of one StructuredComponent
denoting the main application and zero or more Structured-
Components illustrating the hierarchical sub-tasks if they exist.
Looking at the PiMM meta-model, the PiGraph meta-class can
present either a hierarchical actor or the main ΠSDF graph of
the application. In fact, the ΠSDF hierarchy, which is a top-
down hierarchy, allows to compose sub-PiDSF graphs within
an upper-level ΠSDF graph. While each sub-ΠSDF graph
has input and output data interfaces facilitating data-exchange
between the hierarchical actor and its sub-graph, the upper-
level ΠSDF graph contains a net of actors communicating via
data input and output ports. The first mapping in the MARTE
to ΠSDF transformation allows to convert each Structured-
Component in the MARTE-compliant model into a PiGraph. If
the StructuredComponent specifies the main application, data
input and output interfaces will be created in the PiGraph
as shown in figure 4. Otherwise, the rule that creates these
interfaces will be eliminated.

Fig. 4. StructuredComponent to PiGraph transfomation rule (QVTO)

2) AssemblyPart to Actor: An AssemblyPart belonging to
a StructuredComponent is a sub-task that can be an elementary
or a hierarchic one. Each AssemblyPart in the generic model
of the application is converted into an Actor using the mapping
rule of figure 5. An actor communicates with other actors in
the ΠSDF graph using data input and output ports. For this
reason, ports of the AssemblyConnector became ports of the
Actor calling the appropriate mapping rule.

Fig. 5. AssemblyPart to Actor transfomation rule (QVTO)

3) FlowPort to Port: The FlowPort stereotype gives seman-
tics to fix the direction of a given port. This characteristic is
preserved in the MARTE-compliant model thanks to the UML

to MARTE transformation. Since the direction of the port is
important in the definition of a ΠSDF graph, two mapping
rules were defined to convert a FlowPort into a Port depending
on its direction kind. A FlowPort having a direction equal to
in becomes a data input port (as shown in figure 6) and a
FlowPort with an out direction turns into a data output port.

Fig. 6. FlowPort to Port transfomation rule (QVTO)

4) FlowPort to Interface: FlowPorts of the StructuredCom-
ponent that specifies a hierarchical sub-task are converted into
data input and output interfaces.

5) AssemblyConnector to FIFO: An AssemblyConnector
gathers two AssemblyParts inside the StructuredComponent.
While AssemblyParts of a given StructuredComponent turn
into Actors in a PiGraph, each AssemblyConnectors become
a FIFO linking one source port of an actor to a target port
of another actor. This mapping is guaranteed thanks to the
mapping rule shown in figure 7.

Fig. 7. AssemblyConnector to FIFO transfomation rule (QVTO)

6) shapeSpecification to Expression: Each input or output
port in a ΠSDF graph has a rate that presents the number of
tokens produced or consumed on this port. Since the Shaped
stereotype applied on ports of the UML model indicates
the amount of data present in these ports, this stereotype is
kept in the generic model of the application and necessary
information are extracted to define the rate of each port in
the ΠSDF-compliant model. It is necessary to notice that the
ΠSDF MoC deals only with one-dimensional streams. For this
reason, 2-D streams are embedded within a 1-D stream in our
transformation (figure 8) by multiplying the input streams.

Fig. 8. shapeSpecification to Expression transfomation rule (QVTO)

V. CASE STUDY: SOBEL FILTER

We introduce below the Sobel filter application [28]
designed with the MARTE profile as a validation of our



developed transformations. In figure 9, the Application class
corresponds to the task that reads a 2-dimension image, convo-
lutes the Y component of the original image with 3∗3 matrices
and finally displays the resulting image. A 2-dimension image
is decomposed into three arrays materialized by the ports Y, U
and V. The shape of these ports is X∗Y . It describes the shape
of the corresponding data array. X and Y denote respectively
the width and height of the image. The multiplicity N associ-
ated with the instance of the Elementary sobel class denotes
a repetition space on a task expressing data-parallelism. Each
repetition of the task consumes an X ∗ (Y/N + 2) array of
pixels and produces an X ∗ (Y/N + 2) array of pixels. These
consumed arrays correspond to blocks of the original image.
The sobel filter is applied on each block. The construction of
these blocks relies on the data dependencies expressed via the
Tiler stereotype. The Tiler produces blocks with 2 extra lines of
pixel: the last line from the previous block and the first line of
the next block. In fact, the convolution of the image with 3∗3
matrices means that the calculation of the nth line of pixels
of the produced image requires an access to the (n− 1)th and
(n + 1)th lines of pixel of the original image.

Fig. 9. Model of the Sobel filter application

We now study the refinement of the high-level models via
our implemented transformation chain. The first step consists
in targeting the MARTE meta-model executing the UML to
MARTE transformation. Then, the MARTE to ΠSDF model-
to-model transformation is executed to generate a ΠSDF model
of the application. Subsets from the trace files generated from
the transformation chain are outlined in figure 10. The first
trace file is the result of the UML to MARTE transformation.
It outlines the generation of a StructuredComponent taking as
input the Application hierarchic class. Then, this Structured-
Component is transformed into a PiGraph as shown in the
second file. The PiGraph incorporates actors, FIFOs and ports.
Using the StructuredComponent to PiGraph transformation
rule, the transformation engine creates a PiGraph having the
same name as the StructuredComponent. Input and output
FlowPorts of the StructuredComponent become DataInputPorts
and DataOutputPorts. Finally, Connectors in the Structured-
Component turn into FIFOs in the PiGraph. The Application
class presents the main class of the application, for this reason,
no interfaces are added to the PiGraph in the vertices field as
shown in Figure 11. However, the Sobel filter class specifies
a hierarchical task with a repetitive task inside; as a result,

Fig. 10. The generated trace files for the Application class

Fig. 11. The generated Application ΠSDF graph

two interfaces are added to the vertices field: one data input
interface and one data output interface (figure 12). Two other
actors are added to the vertices list of the Sobel filter PiGraph.
These actors permit respectively to split and merge the original
image, the fact that insures the schedulability of the generated
ΠSDF graph. The generation of these supplementary actors
is due to the presence of transformation rules that verify
the schedulability of each ΠSDF graph before generating the
final model. These rules examine each Tiler in the generated
MARTE-compliant model and decide if other actors will be
built or not. The generated ΠSDF graphs include parameters
and parameter dependencies. The static parameter, from the
Application graph, X*Y, displays the parametric size of the
original image. It is important to notice that the MARTE profile
was extended to indicate whether the parametric shape of a
repeated element or a port is static or dynamic. The Sobel filter
graph contains a dynamic parameter, which is N. N represents
the number of the repetitions of the Elementary sobel task.
This repetition depends on number of processing units.For this
reason, it will be defined after the analysis process.



Fig. 12. The generated Sobel filter ΠSDF graph

VI. CONCLUSION

In this paper, we have presented a model transformation
for the analysis of data-intensive applications. In the proposed
methodology, high-level specifications are first described by
the designer using the MARTE profile. Then, the resulting
models are automatically refined into another level of abstrac-
tion for analysis and design space exploration. The refinement
technique is implemented using MDE transformation. In terms
of applicability, a user models the system with an UML
editor under the Eclipse framework and then executes the
proposed transformation chain to generate a ΠSDF graph. An
experimental validation of the UML to MARTE and MARTE
to ΠSDF model-to-model transformations was detailed using
a filter application. Next efforts will be concentrated on the
integration of the PREESM flow in our framework. Currently,
PREESM uses the S-LAM model to specify the architecture.
Additional algorithms will be defined to additionally support
the MARTE-based models of the architecture.
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