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This paper proposes and validates a new methodology to facilitate the analysis of modern data-intensive applications. A major part of handling the processing needs of these applications consists in using the appropriate Model-of-Computation (MoC) which guarantees accurate performance estimations. Our methodology introduces one major contribution that facilitates the analysis step in the co-design flow. It is based on an intermediate level of abstraction implementing the Parameterized and Interfaced Synchronous Dataflow (ΠSDF) semantics. In the proposed methodology, a system designer models the embedded system using the standardised Modeling and Analysis of Real-Time and Embedded Systems (MARTE) profile. High-level models are then refined towards intermediate level models by following the Model-Driven Engineering (MDE) transformation paradigm. The model-to-model transformation permitting to reach the ΠSDF level starting from a MARTEcompliant model is detailed and validated in this paper. It is shown to facilitate system analysis.

I. INTRODUCTION

Data-intensive processing is an extensive domain of applications which denotes the manipulation of a considerable amount of data and the execution of numerous complex computations [START_REF] Kouzes | The Changing Paradigm of Data-Intensive Computing[END_REF]. A data-intensive application is an application that explores, inquires, examines, data and in general deals with very large scale data streams. A high complexity of data structures, important application parallelism, large data storage and strong computational requirements are common characteristics of data-intensive applications.

Current data intensive processing applications are various including both multimedia and high complexity numerical and scientific applications. Typical high performance multimedia applications are image processing, video processing and detection systems (radar, sonar). They are designed to manipulate all type of signals (signals of interest can include sound, images, time-varying measurement values and sensor data) and they belong to the multidimensional signal processing area.

At the present time, embedded systems are commonly dedicated to data intensive processing applications where huge amounts of data are handled in a regular way by means of repetitive computations. These applications deal with intensive or massive parallelism. Indeed, parallel applications can implement two levels of parallelism: data parallelism and task parallelism. High-level analysis of data-intensive applications becomes a complex task necessitating a refinement step toward low levels of abstraction specifying both computation and communication costs in the system. Accurate performance numbers can be reached at the cost of very detailed modeling. On the other hand, a moderate effort for modeling leads to a high-level evaluation task, but the accuracy is lost.

In this paper, we propose a new approach that takes advantage of Model-Driven Engineering (MDE) [START_REF] Lugato | Model-Driven Engineering for High Performance Computing Applications[END_REF] foundations and Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [START_REF]UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems[END_REF] profile. We define a transformation to a new level of abstraction that alleviates the exploration and analysis tasks of real-time data-intensive processing applications. This level is based on a novel extension of the famous Synchronous Data Flow (SDF) [START_REF] Lee | Synchronous data flow[END_REF] Model-of-Computation (MoC), the Parameterized and Interfaced Synchronous Dataflow (ΠSDF) [START_REF] Desnos | PiMM: Parameterized and Interfaced Dataflow Meta-Model for MP-SoCs Runtime Reconfiguration[END_REF] model. ΠSDF facilitates the specification, and especially the analysis of data-intensive applications [START_REF] Desnos | PiMM: Parameterized and Interfaced Dataflow Meta-Model for MP-SoCs Runtime Reconfiguration[END_REF] as it gathers a lot of features including hierarchy, configurability and dynamism. This MoC introduces analysis techniques facilitating the design space exploration task. The proposed methodology necessitates the high-level specification of the parts needed to build the embedded system. Once the user defines the application algorithm on the one hand, and the HW architecture on the other hand using the MARTE profile, a ΠSDF-compliant model of the application is generated. Then, a high-level analysis of the data-parallel application is performed using the PREESM [START_REF] Pelcat | Rapid Prototyping and Dataflow-Based Code Generation for the 3GPP LTE eNodeB Physical Layer mapped onto Multi-Core DSPs[END_REF] rapid prototyping tool.

Our primary goal is to analyze the modeled application taking as intermediate representation a ΠSDF graph. Two Model-to-model transformations are then developed to convert Unified Modeling Language-based (UML) [START_REF]Object Management Group[END_REF] models into a ΠSDF graph. The conversion of a UML modeled parallel application to ΠSDF is made possible by intermediate metamodels that enrich the specified system for eventual analysis. This paper details the implementation of these transformations, denoting some transformation rules and describing involved meta-models. This paper is structured into five sections. The MARTE and the ΠSDF MoCs which present the main concepts of our flow, and some related works dedicated to modern application modeling and analysis are highlighted in Section II. Section III details our proposed methodology for data-intensive applications analysis. The MARTE to ΠSDF transformation is detailed in Section IV. Finally, a case study is described in Section V as a validation of our approach.

II. CONTEXT

This section introduces the basic concepts on which our flow relies. We first present the MARTE profile, which allows the co-specification of the embedded system. Then, we introduce the ΠSDF MoC that offers mechanisms used for application analysis. Finally, we briefly discuss some approaches for data-intensive application analysis.

A. MARTE profile

The standardized MARTE profile is structured around two central concerns: modeling the characteristics of embedded systems and annotating the models to support analysis of the system features. These concerns can be achieved thanks to the presence of numerous stereotypes that can be used to annotate the UML models for further analysis. Defining accurate semantics for time and Hw/Sw resource modeling and supporting real-time and embedded systems co-design flows are the major goals of the MARTE profile. These two goals can be achieved using the MDE foundations when defining embedded systems design flows. In one hand, MDE facilitates automatic transformations from one abstraction level to a lower one, for simulation or implementation purposes. In the other hand, it promotes the integration of different tools thanks to the transformation techniques. As a result, analysis tools, verification tools and modeling tools can be coupled in one co-design flow.

B. ΠSDF graph

Recently, several MoCs have been suggested offering highlevel design. Dataflow Process Networks (DPN) [START_REF] Lee | Datafow process networks[END_REF] offer capabilities for describing data-intensive applications for concurrent implementation on parallel hardware. Applications are composed of a set of tasks that need to be executed while consuming and producing data. Being a particular case of Kahn Process Networks (KPN) [START_REF] Lee | Datafow process networks[END_REF], DPN use a directed graph to describe the application's algorithm. Numerous extensions of DPN have emerged to model different range of applications. SDF is the most known DPN MoC in which nodes can be scheduled statically onto single or parallel processors. Other dataflow models were introduced such as the Cyclo-Static Dataflow (CSDF) [START_REF] Bilsen | Cyclostatic dataflow[END_REF] and the multidimensional SDF [START_REF] Murthy | Multidimensional synchronous dataflow[END_REF]. Each MoC adds capabilities to the SDF model to increase its expressivity. Since parameterization and configuration have emerged as important characteristics of modern applications, an extended version of SDF has been defined to support this evolution: the Parameterized SDF (PSDF) model [START_REF] Bhattacharya | Parameterized dataflow modeling for DSP systems[END_REF]. Actors in PSDF are dynamically reconfigurable and hierarchical. Each actor relies on a set of parameters to control its functionality and its data flow behavior.

Tasks of signal processing applications are broken into sub-tasks in recent programming practices favoring hierarchy modeling of complex computations. A hierarchical extension of the SDF model, the Interface-Based SDF (IBSDF) MoC [START_REF] Piat | Interface-based hierarchy for synchronous data-flow graphs[END_REF], promotes sub-graph composition by adding interface elements aiming to separate levels of hierarchy.

The ΠSDF MoC extends the PSDF and IBSDF models to accommodate a broader range of applications by enforcing parameterization, hierarchy and configuration [START_REF] Desnos | PiMM: Parameterized and Interfaced Dataflow Meta-Model for MP-SoCs Runtime Reconfiguration[END_REF]. A ΠSDF graph G=(A,F,I,Π,∆) is composed of: • Hierarchy: enforcing the compositionality by taking interface-based hierarchy mechanism as a foundation for component tasks modeling can be a good practice when facing complex computations.

• Reconfiguration: reconfiguration in the ΠSDF semantics means changing a parameter value at run time or at compile time. Reducing the frequency of parameter value modifications is facilitated through two types of parameters in the ΠSDF model: configurable parameters and locally static parameters.

• Analysis: ΠSDF introduces semantics to express application's dynamism. Such dynamism is driven by parameters which can be of two types: dynamic or static. These two degrees of dynamism necessitate a two-step analysis of the graph (compile time analysis and runtime analysis) in order to check application properties such as memory boundedness, consistency and deadlock freeness, which are critical information when exploring the design-space of complex real-time systems.

SDF MoC can serve two different purposes: specification and analysis. There has been many researches on the problem of application analysis based on the SDF MoC. Most of these efforts focus on throughput analysis [START_REF] Ghamarian | Throughput Analysis of Synchronous Data Flow Graphs[END_REF], [START_REF] Stuijk | Throughput-Buffering Trade-Off Exploration for Cyclo-Static and Synchronous Dataflow Graphs[END_REF] and resource requirements (memory usage) [START_REF] Yang | Exploring trade-offs between performance and resource requirements for synchronous dataflow graphs[END_REF], [START_REF] Desnos | Memory bounds for the distributed execution of a hierarchical Synchronous Data-Flow graph[END_REF] of DSP and multimedia applications. A number of frameworks have attempted to propose graphical formalisms to model and analyze dataintensive signal processing applications specified using the SDF MoC. Some examples are Ptolemy II [START_REF] Buck | Ptolemy: a Framework for Simulating and Prototyping Heterogeneous Systems[END_REF], PREESM [START_REF] Pelcat | An Open Framework for Rapid Prototyping of Signal Processing Applications[END_REF] and SDF3 [START_REF] Stuijk | Predictable mapping of streaming applications on multiprocessors[END_REF]. These frameworks are open-source and support experimentation with actor-oriented design. Ptolemy II provides simulation of signal processing applications specified using many MoCs. SDF3 supports SDF, CSDF and scenarioaware dataflow (SADF) [START_REF] Stuijk | Scenario-aware dataflow: Modeling, analysis and implementation of dynamic applications[END_REF] models. It allows transformation and analysis of SDF graphs using different algorithms and targeting MPSoC architectures, the feature that differentiates SDF3 from Ptolemy II. PREESM provides a hierarchical actor-based description of the application based on ΠSDF and IBSDF MoCs. It includes several algorithms offering automatic mapping and scheduling. In addition, the application and architecture code files can be generated automatically for heterogeneous multicore embedded systems.

C. Design space exploration approaches

Several UML-based design frameworks have been suggested targeting the design space exploration problem. The MODES framework presented in [START_REF] Do Nascimento | A model-driven engineering framework for embedded systems design[END_REF] uses the UML class, composite structure and sequence diagrams enriched with the MARTE stereotypes for the functional specification of the embedded application. It then automatically generates a control and data flow internal representation conforming to a number of meta-models. Additional meta-models and transformations are defined to perform the DSE phase. MODES is based on a flow of transformations between different tools. In fact, while the H-SPEX and the SPEU tools are used for the DSE and estimation tasks, the UPPAAL model checking tool is used to validate the functional and temporal properties of the specification, taking as input a network of timed automata. In the Koski flow [START_REF] Kangas | UML-based multiprocessor SoC design framework[END_REF], two steps are needed to ensure architecture exploration. First, a static analysis of the application model is done. Then iterative simulations take place in order to explore the architecture. This flow relies mainly on UML to model application, architecture and the association between them.

COMPLEX [START_REF] Grüttner | The COMPLEX reference framework for HW/SW co-design and power management supporting platform-based design-space exploration[END_REF] and MADES [START_REF] Quadri | MADES FP7 EU project: Effective high-level SysML/MARTE methodology for real-time and embedded avionics systems[END_REF] are EU FP7 projects aiming to use high-level models for the design of real-time and embedded systems. The COMPLEX framework mixes systemlevel power optimization and rapid prototyping techniques in a platform-based design flow. Subsets of the MARTE profile are used to specify the system and UML use-cases are modeled to generate systems stimuli. While executable specifications are generated automatically from UML models allowing separate hardware and software estimation, the mapping is done manually and provided as a design entry. Several system-level estimation tools are combined together to facilitate power and execution time evaluation. The MADES project proposes a methodology that combines MARTE and SysML in a design flow targeting embedded avionics systems. This flow focuses on modeling, verification and hardware and software generation steps. However, the design space exploration step is not supported in this framework. In fact, the main focus of this framework is the specification and how the user can combine different profiles to give a complete view of the system.

III. OVERVIEW OF THE PROPOSED DSE FLOW

Our proposed multi-level design space exploration methodology will be outlined in this section. The implementation of model transformations and the integration of a rapid prototyping tool will be also highlighted.

A. A multi-level DSE flow

Our approach for the embedded systems design automation, highlighted in Figure 1, can be divided into three levels: the specification level, the generic model level and the ΠSDFcompliant model level.

1) The specification level: The first level, specification level, presents the entry point of our flow. Models of the architecture, the data-parallel application and the Hw/Sw IP deployment are described using diagrams of the UML language and notations of the MARTE profile. These models are specified by a user with UML modeling tools such as Papyrus [START_REF] Papyrus | [END_REF]. The system properties, including application and architecture properties (execution time, frequency, etc.), Modeling a given embedded system is carried out based on three UML diagrams: the class diagram, the composite structure diagram and the deployment diagram. The class diagram illustrates the structure of the embedded system by demonstrating the systems components including hardware and software components (presented using classes) and their characteristics (attributes and operations of the classes). The internal structure of each hierarchical component is specified using the composite structure diagram. These two diagrams cover effectively the modeling of the static structure of an embedded system in a co-design approach. Elementary components of the hierarchical component interact with each other using ports and connectors. In order to specify the corresponding implementation of a given elementary component, an UML mechanism is well defined. This mechanism, named Deployment, is a powerful tool that allocates IPs on hardware and software components. Our flow adopts a Platform-Based Design approach that benefits from an IP library containing IPs of the architecture and IPs of the application. For this reason, the structure of the data-flow model of the application is described using the composite structure diagram and the behavior of the elementary tasks is embedded in the software IPs. Similarly, the structure of the architecture is defined in the composite structure diagram of the architecture and the source code of hardware components is provided in the IP library. This adopted modeling methodology simplifies the design entries as much as possible without losing precision in the analysis phase or in the code generation process. In fact, models of the architecture and application define the main components of the system in a high-level graphical manner giving a better understanding of the system even for a non-expert user. In addition, low-level behavioral information of the architecture and the application can be exploited by the analysis tool to generate precise estimation results. These IPs are also used to generate the entire system from UML models. While the structure of the application and the architecture can be directly concluded from class and composite structure diagrams, the behavior inside each code file describing each component can be extracted from the provided IP library.

2) The generic model level: When developing our approach, two possibilities were proposed. The first was to generate a ΠSDF model directly from the UML models of the application. This alternative is certainly a time-consuming task. It necessitates intensive programming. In fact, UML diagrams are rich with UML concepts and MARTE notations. This fact makes the UML model browsing difficult especially when the application contains intensive computations. A second alternative was then proposed: defining an intermediate level that captures necessary parts of the system and is generic enough to facilitate exploration and code generation. This level can be identified as mandatory transit in each transformation targeting either analysis or code generation.

3) The ΠSDF-compliant model level: While high-level models of the system in the first level are easy to specify, to change and to understand, the ΠSDF graph of the application, in the third level, is rich with exploration features. This graph is used for application analysis because besides its exploration features it:

• Adequately fits with the targeted signal-processing domain

• Supports the specification and analysis of massivelyparallel data-flows because it is hierarchic

• Facilitates the exploration of parametric architectures given that data-flows of the application can depend on static or dynamic parameters

B. Model transformations

In our framework, we use an approach in which we start from a structural application and architecture description which is then converted into a ΠSDF for analysis and performance estimation. This conversion is automatic and guided by two model-to-model transformations as shown in figure 2. The implementation of the transformations is driven by the definition of a set of transformation rules. Each rule specifies how one or more concepts in the source model can be converted into other concepts in the target model. In our approach, transformation Fig. 2. Model-to-model transformations rules are defined using the QVTO language [START_REF] Guduric | A Comparison between Relational and Operational QVT Mappings[END_REF], an imperative language for model transformation designed for writing unidirectional transformations.

1) The UML to MARTE transformation: The top level of our design flow, the specification level gives a clear and complete view of the system. However, the collection of common notions present in the MARTE profile is not precise enough to directly allow the analysis of the system model. This fact justifies the integration of another level that facilitates the analysis process. Since the MARTE meta-model captures the structure of the embedded system and keeps characteristics of the hardware and software components (specified using stereotypes), it has been introduced in our framework to be a base in the intermediate level between the system specification and the ΠSDF model generation. This level, named the generic model level, is totally based on the open-source MARTE metamodel provided with the source code of Papyrus. As part of our efforts, a model-to-model transformation has been created to generate generic models of the application and architecture that are conforming to the MARTE meta-model.

2) The MARTE to ΠSDF transformation: Starting from a generic model of the application, a second model-to-model transformation has been defined to generate a ΠSDF-compliant model. This transformation will be detailed in the next section. The creation of the ΠSDF-compliant model level is based on an Ecore version of the PiMM meta-model. ΠSDF metamodel allows a description of the data-parallel application at the ΠSDF-compliant model level, the third abstraction level in our flow. The ΠSDF-compliant model and the generic model of the architecture, will be provided as design entries to the PREESM tool for analysis and performance estimation. The results obtained from the analyses enable to generate files of the adequate models of the application and the architecture.

C. Mapping, scheduling and performance estimation using PREESM

PREESM is an open-source framework for the rapid prototyping and code generation of multi-core DSP-based systems. The inputs to this rapid prototyping framework are:

• Models of the application: specified using the IBSDF MoC or the ΠSDF MoC.

• Models of the architecture: specified using the System-Level Architecture Model (S-LAM) [START_REF] Pelcat | A System-Level Architecture Model for Rapid Prototyping of Heterogeneous Multicore Embedded Systems[END_REF] of PREESM or the MARTE profile

• Scenario: references the application and the architecture, encapsulates several constraints including scheduling and simulation constraints and contains the execution time values of each actor of the ΠSDF graph. These values can be specified in the UML models and directly transmitted to the scenario or imported from Excel sheets.

• Workflow: used to accelerate the rapid prototyping process by specifying transformations necessary to analyze, simulate or generate executable code.

Several mapping/scheduling can be carried out in PREESM.

As result of the schedulability analysis process, performance values can be examined including the worst case execution time and the percentage of necessary load and memory. These provided results enable design space exploration.

IV. MARTE TO ΠSDF MODEL TRANSFORMATION

It is the objective of this paper to focus on the MARTE to ΠSDF model transformation. Source and target meta-models of the transformation will be described first. Then, some transformation rules will be mentioned. I summarizes some of these rules.

B. The target meta-model: PiMM

The PiMM meta-model reflects a subset of the semantics of the ΠSDF MoC. Figure 3 depicts a portion of the ΠSDF metamodel. The highest concept present in the ΠSDF meta-model is the PiGraph meta-class representing the graph of the application or a sub-graph of a given hierarchical actor. A model that complies with the ΠSDF meta-model consists of one or more PiGraphs. A PiGraph can contain several vertices, parameters, dependencies and fifos. An AbstractActor, presenting one vertex, can be either an actor (hierarchical or elementary) or an interface, expressed via Actor and InterfaceActor metaclasses. An AbstractActor can enclose an arbitrary number of DataInputPort by means of the compositional dataInputPort relation. Moreover, the same AbstractActor can hold numerous DataOutputPort by means of the compositional dataOutputPort relation. The Expression meta-class defines the rates of data input ports and data output ports by means of the expression relation; while the Port meta-class defines the name and the kind (in/out) of the port itself.

C. Transformation rules

The MARTE to ΠSDF QVTO transformation includes numerous rules among which we will detail six rules that are representative of the global transformation. 2) AssemblyPart to Actor: An AssemblyPart belonging to a StructuredComponent is a sub-task that can be an elementary or a hierarchic one. Each AssemblyPart in the generic model of the application is converted into an Actor using the mapping rule of figure 5. An actor communicates with other actors in the ΠSDF graph using data input and output ports. For this reason, ports of the AssemblyConnector became ports of the Actor calling the appropriate mapping rule. 3) FlowPort to Port: The FlowPort stereotype gives semantics to fix the direction of a given port. This characteristic is preserved in the MARTE-compliant model thanks to the UML to MARTE transformation. Since the direction of the port is important in the definition of a ΠSDF graph, two mapping rules were defined to convert a FlowPort into a Port depending on its direction kind. A FlowPort having a direction equal to in becomes a data input port (as shown in figure 6) and a FlowPort with an out direction turns into a data output port. 12). Two other actors are added to the vertices list of the Sobel filter PiGraph. These actors permit respectively to split and merge the original image, the fact that insures the schedulability of the generated ΠSDF graph. The generation of these supplementary actors is due to the presence of transformation rules that verify the schedulability of each ΠSDF graph before generating the final model. These rules examine each Tiler in the generated MARTE-compliant model and decide if other actors will be built or not. The generated ΠSDF graphs include parameters and parameter dependencies. The static parameter, from the Application graph, X*Y, displays the parametric size of the original image. It is important to notice that the MARTE profile was extended to indicate whether the parametric shape of a repeated element or a port is static or dynamic. The Sobel filter graph contains a dynamic parameter, which is N. N represents the number of the repetitions of the Elementary sobel task. This repetition depends on number of processing units.For this reason, it will be defined after the analysis process. In this paper, we have presented a model transformation for the analysis of data-intensive applications. In the proposed methodology, high-level specifications are first described by the designer using the MARTE profile. Then, the resulting models are automatically refined into another level of abstraction for analysis and design space exploration. The refinement technique is implemented using MDE transformation. In terms of applicability, a user models the system with an UML editor under the Eclipse framework and then executes the proposed transformation chain to generate a ΠSDF graph. An experimental validation of the UML to MARTE and MARTE to ΠSDF model-to-model transformations was detailed using a filter application. Next efforts will be concentrated on the integration of the PREESM flow in our framework. Currently, PREESM uses the S-LAM model to specify the architecture. Additional algorithms will be defined to additionally support the MARTE-based models of the architecture.

•

  A: A set of actors • F: A set of First In, First Out data queues (FIFOs) • I: A set of hierarchical interfaces • Π: A set of parameters • ∆: A set of parameters dependencies The ΠSDF MoC supports four important characteristics which are: • Parameterization: parameterization relies on parameters which are vertices of the graph G. A parameter value is associated to each parameter to configure elements of the graph. The allocation of parameter values to all parameters in Π represents a configuration of G.
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 1 Fig. 1. The proposed multi-level flow
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  . The source meta-model: MARTE The first transformation, UML to MARTE transformation, generates a model that conforms to the MARTE meta-model. The MARTE meta-model contains numerous meta-classes encapsulated in different packages. The generated MARTE model contains basically elements from the GCM and RSM packages. Meta-classes from the GCM and the RSM packages are used as input for the MARTE to ΠSDF transformation. The design entries of our flow are composite structure diagrams of the application and architecture. The first transformation that takes UML structured diagrams of a given model and generates a GCM-compliant model can preserve the hierarchical structure of a model without losing any detail and without being tied to specific execution semantics. In fact, the hierarchical structure of a model is preserved thanks to the GCM model from the MARTE meta-model because this model is an abstraction of the UML structured classes. For this reason, a GCM-based model of an embedded system can be regarded as a generic model that contains enough details for further transformations. A GCM-based model is composed of a set of Structured Component. A Structured Component encapsulates Assembly Parts, Interaction Ports and Connectors. Interaction Ports are either Flow Ports or Message Ports. Since we focus on intensive data-flow computations, only Flow Ports will be used in the specification level. Connectors have connector Ends that can be Interaction Ports or Assembly Parts. Connectors between two Assembly Parts are Assembly Connectors. The stereotypes from the RSM package are present in the MARTE meta-model as meta-classes. While these stereotypes model the multiplicities of repeated tasks and ports in the UML models, they specify the shape of an AssemblyPart or a FlowPort in the MARTE meta-model. Stereotypes specifying complex interconnection topologies, especially the tiler and the interRepetition stereotypes, figure out in the MARTE meta-model to specify the kind of Connectors
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 3 Fig. 3. ΠSDF meta-model
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 1 StructuredComponent to PiGraph: The generic model of the application, resulting from the UML to MARTE transformation, contains one or more StructuredComponents. A StructuredComponent presents either a hierarchical sub-task containing a net of other sub-tasks or the main application including a set of hierarchical tasks. A generic model of a given application can be composed of one StructuredComponent denoting the main application and zero or more Structured-Components illustrating the hierarchical sub-tasks if they exist. Looking at the PiMM meta-model, the PiGraph meta-class can present either a hierarchical actor or the main ΠSDF graph of the application. In fact, the ΠSDF hierarchy, which is a topdown hierarchy, allows to compose sub-PiDSF graphs within an upper-level ΠSDF graph. While each sub-ΠSDF graph has input and output data interfaces facilitating data-exchange between the hierarchical actor and its sub-graph, the upperlevel ΠSDF graph contains a net of actors communicating via data input and output ports. The first mapping in the MARTE to ΠSDF transformation allows to convert each Structured-Component in the MARTE-compliant model into a PiGraph. If the StructuredComponent specifies the main application, data input and output interfaces will be created in the PiGraph as shown in figure4. Otherwise, the rule that creates these interfaces will be eliminated.
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 4 Fig. 4. StructuredComponent to PiGraph transfomation rule (QVTO)
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 5 Fig. 5. AssemblyPart to Actor transfomation rule (QVTO)
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 6 Fig. 6. FlowPort to Port transfomation rule (QVTO)
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 5 AssemblyConnector to FIFO: An AssemblyConnector gathers two AssemblyParts inside the StructuredComponent. While AssemblyParts of a given StructuredComponent turn into Actors in a PiGraph, each AssemblyConnectors become a FIFO linking one source port of an actor to a target port of another actor. This mapping is guaranteed thanks to the mapping rule shown in figure 7.
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 7 Fig. 7. AssemblyConnector to FIFO transfomation rule (QVTO)
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 8 Fig. 8. shapeSpecification to Expression transfomation rule (QVTO)
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 9 Fig. 9. Model of the Sobel filter application
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 10 Fig. 10. The generated trace files for the Application class
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 11 Fig. 11. The generated Application ΠSDF graph

Fig. 12 .

 12 Fig. 12. The generated Sobel filter ΠSDF graph

TABLE I .

 I SOME UML TO MARTE TRANSFORMATION RULES

	Source meta-model	Target meta-model
	UML meta-model	MARTE meta-model
	UML::Class	GCM::StructuredComponent
	UML::Property	GCM::AssemblyPart
	UML::port	GCM::FlowPort
	UML::Connector (kind=assembly)	GCM::AssemblyConnector
	UML::Class	Foundations::Classifier